劉松林,江志堅,吳云超,張景平,黃小平,*
1中國科學(xué)院南海海洋研究所,中國科學(xué)院熱帶海洋生物資源與生態(tài)重點實驗室,廣州 510301 2中國科學(xué)院南海海洋研究所,廣東省應(yīng)用海洋生物學(xué)重點實驗室,廣州 510301 3中國科學(xué)院大學(xué),北京 100049
海草床育幼功能及其機理
劉松林1,2,3,江志堅1,2,吳云超1,2,3,張景平1,2,黃小平1,2,*
1中國科學(xué)院南海海洋研究所,中國科學(xué)院熱帶海洋生物資源與生態(tài)重點實驗室,廣州 510301 2中國科學(xué)院南海海洋研究所,廣東省應(yīng)用海洋生物學(xué)重點實驗室,廣州 510301 3中國科學(xué)院大學(xué),北京 100049
海草床是近岸海域中生產(chǎn)力極高的生態(tài)系統(tǒng),是許多海洋水生動物的重要育幼場所。從生物幼體的密度、生長率、存活率和生境遷移4個方面闡述海草床育幼功能,并從食源和捕食壓力兩個方面探討海草床育幼功能機理。許多生物幼體在海草床都呈現(xiàn)出較高的密度、生長率和存活率,并且在個體發(fā)育到一定階段從海草床向成體棲息環(huán)境遷移。豐富的食物來源或較低的捕食壓力可能是海草床具有育幼功能的主要原因,但不同的生物幼體對海草床的利用有差異,海草床育幼功能的機理在不同環(huán)境條件下也存在差異。提出未來海草床育幼功能的重點研究方向:(1)量化海草床對成體棲息環(huán)境貢獻量;(2)全球氣候變化和人類活動對海草床育幼功能的影響;(3)海草床育幼功能對海草床斑塊效應(yīng)和邊緣效應(yīng)的響應(yīng),以期為促進我國海草床育幼研究和海草床生態(tài)系統(tǒng)保護提供依據(jù)。
海草床;生物幼體;育幼功能;機理
海草床生態(tài)系統(tǒng)是近岸海域中生產(chǎn)力極高的生態(tài)系統(tǒng)[1],雖然僅占全球海洋面積的0.15%,但卻貢獻了全球海洋1%的凈初級生產(chǎn)力[2]。近年來,海草床的生態(tài)功能與經(jīng)濟價值逐漸被人們所認識[3]。研究表明,海草床是許多經(jīng)濟魚類和無脊椎動物的重要育幼場所,如大西洋鯖魚(Scomberscombrus)、紅鼓魚(Sciaenopsocellatus)、蠔隆頭魚(Tautogaonitis)、大西洋鱈(Gadusmorhua)、女王鳳凰螺(Strombusgigas)、青蟹(Carcinusmaenas)、藍蟹(Callinectessapidus)等[4-5],而且海草床比沿岸其它生境具有更高水生動物幼體的生物量和密度。因此,海草床的育幼功能得到了廣泛的認可[4, 6-7]。
關(guān)于育幼功能,Deegan[8]認為是指某些魚類來到河口產(chǎn)卵孵化生長后離開該區(qū)域;而Beck等[6]認為,若單位面積的某一生境區(qū)域能夠比其它生境吸引更多的某些生物幼體,并能正常生長,就稱該區(qū)域具有育幼功能;而且相比于其它棲息環(huán)境,育幼棲息環(huán)境對成體棲息環(huán)境要有更大的貢獻。生物幼體在育幼棲息環(huán)境下的生長,以及育幼環(huán)境向成體棲息環(huán)境的貢獻量是育幼功能的重要特征[9],主要從4個方面進行比較:(1)生物幼體的密度;(2)生物幼體的生長率;(3)生物幼體的存活率;(4)生物向成體生境的遷移運動[6]。
國外學(xué)者對海草床的育幼功能開展了較多研究,主要涉及海草床與其它生境的育幼功能比較[10-12],海草床育幼功能的機理分析[13-14]等方面。前人研究表明,海草床能夠為生物幼體提供良好的棲息環(huán)境,在海草床分布具有較高的生物幼體密度,并且在促進生物幼體生長率、存活率、提供食物來源和庇護場所等具有重要作用[4, 7]。
目前,對海草床生態(tài)系統(tǒng)育幼功能的研究主要集中于北美洲和大洋洲地區(qū)[4],而在我國未見相關(guān)的研究報道。因此,亟待開展對我國海草床育幼功能的研究。本文將對國外關(guān)于海草床育幼功能的特征和機理的研究進行回顧和總結(jié),為我國的海草床育幼研究提供借鑒,并為我國的海草床生物資源保護和可持續(xù)開發(fā)利用提供科學(xué)依據(jù)。
近岸海域的生境類型多樣,包括海草床、紅樹林、珊瑚礁、鹽沼等[15]。目前,大多數(shù)研究主要通過比較海草床與其它生境生物幼體的密度、生長速率、存活率以及幼體生長后向成體生境的遷移運動,來研究海草床育幼功能的特征[4, 7]。
1.1 海草床生物幼體的密度
生物幼體的密度是反映某生境是否具有育幼功能的決定性指標[6]。對于魚類幼體密度的研究,主要是通過直接拖網(wǎng)調(diào)查[16-17]和可視化調(diào)查(浮潛或水肺潛水)[12, 18]。上述兩種方法都具有各自的優(yōu)缺點:拖網(wǎng)捕獲方法的優(yōu)點是能夠獲得魚類的樣本,而缺點是會低估魚類的密度和數(shù)量[19],并且由于網(wǎng)口大小的原因,可能導(dǎo)致有些個體較小的魚不能被捕獲[16];可視化調(diào)查方法的優(yōu)點是迅速、棲息地不被破壞以及可重復(fù)性調(diào)查等[19],但其缺點是有些魚類可能會被調(diào)查者所吸引或是驚散,且不同的調(diào)查者在估算魚類數(shù)量和密度時會有差異[20-21]。因此,這兩種調(diào)查方式會獲得差異較大的結(jié)果,如Harmelin和Francour[22]在波喜蕩草(Posidoniaoceanica)海草床利用拖網(wǎng)捕撈和可視化調(diào)查方法進行對比研究時,發(fā)現(xiàn)拖網(wǎng)能夠捕獲更多的底棲魚類,而可視化調(diào)查則能夠觀察到鯛科(Sparids)和隆頭魚科(Labrids)等更多的中層食浮游生物魚類。
海草床中的不同生物幼體密度與其它鄰近的棲息環(huán)境相比有著顯著的差異。Nagelkerken等[18]在加勒比海博奈爾島(Bonaire Island)對16種幼魚進行可視化調(diào)查研究,發(fā)現(xiàn)黃仿石鱸(Haemulonflavolineatum)、藍仿石鱸(Haemulonsciurus)、黃尾笛鯛(Ocyuruschrysurus)、小帶刺尾魚(Acanthuruschirurgus)和綠鸚鯛(Sparisomaviride)這5種幼魚在海草床的密度顯著高于鄰近紅樹林及珊瑚礁的密度,其中黃仿石鱸在海草床的密度最大,為115.3條/1000m2,表明海草床是這5種幼魚的重要育幼場所。同樣,Aguilar-Perera和Appeldoorn[12]在波多黎各西南部紅樹林-海草-珊瑚礁相連的棲息環(huán)境對20種幼魚進行可視化調(diào)查,發(fā)現(xiàn)黃仿石鱸、藍仿石鱸和普氏仿石鱸(Haemulonplumieri)在海草床的密度也顯著較高,表明海草床是這3種幼魚重要的育幼場所。另外,幼魚在同一海草床不同區(qū)域的密度也具有差異。Dorenbosch等[23]在加勒比海阿魯巴島(Aruba Island)利用可視化調(diào)查方法,研究龜裂泰來藻(Thalassiatestudinum)海草床下的幼魚密度,發(fā)現(xiàn)距離珊瑚礁最遠的海草床區(qū)域有著最高的育幼種幼魚密度,接近210條/100m2,而距離珊瑚礁最近的海草床區(qū)域,其育幼種幼魚密度最小,接近50條/100m2。
同時,無脊椎動物幼體在海草床的分布也具有一定的變化特征。例如,Heck和Thoman[24]在美國低緯度的約克河(York River)河口和高緯度的派森島(Parson′s Island)對海草床的藍蟹進行了為期2a的拖網(wǎng)調(diào)查,發(fā)現(xiàn)約克河河口海草床藍蟹幼體的數(shù)量比其鄰近的無植物裸露區(qū)域顯著高,并且也比派森島海草床區(qū)域顯著高,表明低緯度海草床區(qū)域是藍蟹的重要育幼場所;Murphey和Fonseca[25]在斑塊狀海草床和連續(xù)性海草床對桃紅對蝦(Penaeusduorarum)進行了為期1a的調(diào)查,發(fā)現(xiàn)連續(xù)性海草床區(qū)域桃紅對蝦的密度顯著高于斑塊狀海草床區(qū)域,特別是在夏季7、8月份,連續(xù)性海草床區(qū)域的桃紅對蝦密度是斑塊狀海草床區(qū)域的3倍。
1.2 海草床生物幼體的生長率
生物幼體生長率是評判生境育幼功能質(zhì)量的重要指標[26-27],主要通過野外圍隔實驗(Field Enclosure Experiments)[10-11, 27-28]或?qū)嶒炇夷M實驗[29-30]來獲取。對于魚類幼體生長率的測定,主要包括體長、體重[10, 27]或耳石日生長量[11]等指標;而對于無脊椎動物幼體,則主要通過測定其生物學(xué)指標(殼長和殼寬等)來計算其生長率[28-30]。
許多研究表明,海草床生境下生物幼體的生長率比其它無植被生境下的顯著高[10-11, 14, 29-30]。例如,Stuns等[11]對紅鼓魚幼體進行了7d的野外圍隔實驗研究,發(fā)現(xiàn)在萊氏二藥藻(Halodulewrightii) 區(qū)域紅鼓魚幼體的生長率最高,為0.42mm/d,在互花米草(Spartinaalterniflora)生長的鹽沼區(qū)域次之,為0.4mm/d,而在蠔殼礁和無植物覆蓋的裸露區(qū)域,紅鼓魚幼體生長率分別為0.12mm/d和0.21mm/d;Stoner等[30]通過實驗室模擬不同棲息環(huán)境對女王鳳凰螺幼體生長率影響的研究,發(fā)現(xiàn)在龜裂泰來藻環(huán)境下的生長率最高,為62μm/d,在蠕形絨枝藻(Dasycladusvermicularis)環(huán)境下的生長率次之,為55μm/d,而在大型藻類、礁石以及海草碎屑環(huán)境中的生長率為32—45μm/d,在擬剛毛藻屬(Cladophoropsisspp.)、沙質(zhì)裸露以及過濾海水環(huán)境下的生長率最小,僅7—19μm/d。然而,Sogard[10]通過野外圍隔實驗研究,發(fā)現(xiàn)美洲擬鰈(Pseudopleuronectesamericanus)幼體在大葉藻(Zosteramarina)海草床的生長率,與鄰近的無植被區(qū)域無顯著差異。
另外,也有研究發(fā)現(xiàn),生物幼體的生長率還受到海草床生境中溫度、溶解氧和沉積物類型等理化因子的影響[10, 27]。例如,美洲擬鰈的生長率與沉積物中砂石的含量呈顯著正相關(guān)[10]; Phelan等[27]對美洲擬鰈和蠔隆頭魚幼體進行野外圍隔實驗,發(fā)現(xiàn)相對于生境類型,溫度和溶解氧這兩個環(huán)境因子對這兩種幼魚的生長率影響更大。
1.3 海草床生物幼體的存活率
生物幼體的存活率是反映生境是否具有育幼功能的重要指標[18]。對生物幼體存活率的研究主要通過野外束縛實驗(Field Tethering Experiments)[31-33]或?qū)嶒炇夷M[34-36]進行,并通過計算實驗種幼體在單位時間被捕食者的捕食幾率來說明其存活率。
大多數(shù)研究表明,生物幼體在海草床的存活率顯著高于鄰近無植物裸露區(qū)域[4, 35]。例如,Rooker等[35]以瞬時死亡率[37]為比較參數(shù),在菱體兔牙鯛(Lagodonrhomboides)的捕食作用下,紅鼓魚幼體在無植物的裸露區(qū)域的死亡率為0.166—0.189h-1predater-1(單位時間、單位捕食者的死亡率),而在萊氏二藥藻和龜裂泰來藻海草床區(qū)域分別為0.047—0.069h-1predater-1和0.021—0.046h-1predater-1。同樣,生物幼體在海草床和鄰近棲息環(huán)境的存活率也存在差異[32, 36, 38-39]。例如,Chittaro等[32]通過90min的野外束縛實驗,研究銀仿石鱸(Haemulonchrysargyreum)幼體在不同棲息環(huán)境下的存活率,發(fā)現(xiàn)在海草床的存活率接近40%,而在珊瑚礁區(qū)域僅為15%;Dance等[38]研究發(fā)現(xiàn)糙海參(Holothuriascabra)幼體在海草床邊緣區(qū)域3d后的存活率為70%,而在珊瑚礁區(qū)域,糙海參幼體48h后全部被捕食。Orth和van Montfrans[36]通過室內(nèi)模擬藍蟹在不同棲息環(huán)境受底鳉(Fundulusheteroclitus)捕食作用下的存活率,發(fā)現(xiàn)在大葉藻棲息環(huán)境下,藍蟹的后期幼體和一齡幼體的存活率分別為44%—57%和87%,而在互花米草棲息環(huán)境下的存活率僅分別為18%—19%和43%—48%。然而,Lipcius等[39]在約克河河口研究中發(fā)現(xiàn),藍蟹幼體在海草床的存活率為20%,在鄰近的鹽沼區(qū)域的存活率卻高達80%。
另外,海草床的面積和莖枝密度等也會影響生物幼體的存活率[33, 40]。例如,哈克斯島(Harkers Island)的藍蟹存活率和海草床莖枝密度之間就有明顯的函數(shù)關(guān)系,在大斑塊海草床(>100m2)為雙曲線關(guān)系:Y=X0.14/2.5+ X0.14(r2=0.63,P<0.05),而在小斑塊的海草床(1—3m2)卻為線性關(guān)系:Y=0.0002X+0.5(r2=0.83,P<0.01)[33]。
1.4 海草床生物的遷移運動
生物從幼體棲息環(huán)境到成體棲息環(huán)境的遷移運動,是評價幼體棲息環(huán)境育幼功能的重要指標,也是評價這一生境為該生物幼體育幼場所最直接的檢驗方式[6, 41]。有些在海草床生存的生物幼體生長后會向成體棲息環(huán)境遷移,例如,熱帶和亞熱帶海草床中許多珊瑚礁魚類幼體在海草床生長,而后向珊瑚礁棲息環(huán)境遷移[42-44]。然而,溫帶海草床生物向成體棲息環(huán)境的遷移研究較少[45-46]。
研究魚類遷移運動的方法主要為調(diào)查對比魚類在各棲息環(huán)境下的密度和體長的空間分布規(guī)律[18, 44, 47]、食源分析[48-49]、耳石微化學(xué)分析[45, 50]和人工標記[51-52]等方法。Cocheret de la Morinière等[47]在加勒比海的庫拉索島(Cura?ao Island)對9種魚進行體長的空間分布調(diào)查,發(fā)現(xiàn)小帶刺尾魚、藍仿石鱸、灰笛鯛(Lutjanusgriseus)和八帶笛鯛(Lutjanusapodus) 這4種魚在海草床的平均體長分別為11、11.5、12.6cm和11.3cm,而在珊瑚礁區(qū)域的平均體長分別為17、21.5、16.6cm和18.5cm,兩個生境下4種魚體長分布差異顯著,表明這4種魚的幼體階段是在海草床生活,隨后向珊瑚礁區(qū)域遷移運動。Cocheret de la Morinière等[48]和Verweij等[49]通過比較海草床灰笛鯛、八帶笛鯛和黃尾笛鯛幼體和珊瑚礁成體這3種魚肌肉組織的δ13C,發(fā)現(xiàn)在珊瑚礁的魚成體δ13C顯著小于海草床的幼體,表明上述魚類在海草床和珊瑚礁的食物來源存在差異,這3種魚類幼體階段在海草床生活,隨后向珊瑚礁區(qū)域遷移。Gillanders和Kingsford[45]比較溫帶海草床和巖礁區(qū)綠唇藍魚(Achoerodusviridis)幼體生長期耳石中微量元素的含量,發(fā)現(xiàn)兩種棲息環(huán)境中綠唇藍魚耳石中錳、鋇和鍶的含量存在顯著差異,表明巖礁棲息環(huán)境中41%綠唇藍魚的幼體階段在海草床區(qū)域。Verweij等[51]通過對海草床中叉長為13.2—21cm八帶笛鯛亞成體進行外部標記,研究其遷移,結(jié)果發(fā)現(xiàn)叉長為17.8—20cm的魚體從海草床遷移到鄰近的珊瑚礁區(qū)域。
生物個體從海草床育幼環(huán)境向成體棲息環(huán)境遷移的原因,主要是攝食或躲避捕食的需要[42, 48, 53]。例如,Nakamura等[42]對海草床太平洋黃尾龍占(Lethrinusatkinsoni)幼體的胃含物分析,發(fā)現(xiàn)隨著體長的增加,其對大型底棲動物,如腹足類、雙殼類等的需求顯著提高,表明攝食需求是太平洋黃尾龍占從海草床向珊瑚礁區(qū)域遷移的主要原因。而Grol等[53]在西班牙灣口區(qū)海草床和鄰近珊瑚礁生境研究黃仿石鱸的存活率和生長率,發(fā)現(xiàn)幼體的存活率分別為24%和0%,差異顯著;而隨著魚體的生長存活率分別為56%和77%,珊瑚礁生境下魚的生長率顯著高于海草床的,表明控制其向珊瑚礁生境遷移的主要原因是躲避捕食的需要。
然而,并不是所有生活于海草床的生物幼體都以海草床作為育幼場所,而且不同的生物幼體在海草床的育幼特征也不一樣。因此,根據(jù)育幼功能指標來確定以海草床作為育幼場所的典型生物幼體見表1。
表1 海草床典型生物幼體Table 1 Typical juvenile species in seagrass beds
海草床育幼功能的機理主要有兩個方面:(1)食物來源,海草床可以為生物幼體提供豐富的食物;(2)被捕食風(fēng)險,海草床低密度的捕食者、復(fù)雜的環(huán)境多相性以及高渾濁度的水環(huán)境形成了較小的捕食風(fēng)險[7,18,55]。但這兩個方面并不對立,如海草床莖枝密度越大,棲息地結(jié)構(gòu)越復(fù)雜,能夠為小型生物和附生生物提供更多的棲息環(huán)境,降低被捕食幾率,也提供了豐富的食物來源[7]。同時,不同的生物幼體對海草床的需求不同,如植食性和營白天覓食的底棲魚類主要以海草床作為攝食場所,而營夜間覓食的魚類卻主要以海草床作為躲避捕食的棲息場所[55]。
2.1 食物來源
海草床不僅為海洋水生動物提供良好的棲息地[59],還為其提供豐富的有機碳食源[60]。例如,海草床中的海草、海草碎屑、海草上的附生藻類或浮游藻類等初級生產(chǎn)者,為許多魚類和無脊椎動物的幼體提供了豐富的食物[61-62]。并且在底質(zhì)環(huán)境下,海草床比鄰近的珊瑚礁和無植被裸露區(qū)域分布有更高密度的橈足類(Copepoda)、端足目(Amphipoda)、多毛類(Polychaetes),它們是生物幼體重要的食物來源[42, 63]。
海草床下的豐富食物來源,可促進生物幼體的生長[10-11, 14],如紅鼓魚[11]、藍蟹[29]、女王鳳凰螺[30]等生物幼體在海草床都有較高的生長率。相關(guān)研究表明,海草床下豐富食物能夠吸引生物幼體[13, 55-56]。例如,Horinouchi 和Sano[56]通過人為改變大葉藻植株密度,發(fā)現(xiàn)普氏細棘鰕虎魚(Acentrogobiuspflaumii)幼體的密度甚至在海草被完全移除的區(qū)域都比無植物的沙質(zhì)裸露區(qū)域顯著高;Verwey等[55]通過人工材料模擬海草結(jié)構(gòu)研究魚類的行為,發(fā)現(xiàn)小帶刺尾魚、月尾刺尾魚(Acanthurusbahianus)和虹彩鸚嘴魚(Scarusguacamaia)幼體,在有食源供應(yīng)的海草床數(shù)量是無食源供應(yīng)的海草床的2.4倍。另外,許多營夜間捕食的魚類晝間以其它棲息環(huán)境作為躲避捕食的棲息場所,而夜間則會運動到海草床進行捕食[54, 64-65],如石鱸科(Haemulidae)和笛鯛科(Lutjanidae)魚類幼體在夜間從其它棲息環(huán)境到海草床攝食異足目(Tanaidacea)和十足目(Decapoda)等底棲生物[64];Verweij等[54]通過研究黃仿石鱸的捕食行為,發(fā)現(xiàn)體長為 10—15cm的亞成體魚主要棲息于紅樹林區(qū)域,而夜間它們主要在海草床攝食。
2.2 被捕食風(fēng)險
海草床捕食者的豐度、棲息地環(huán)境多相性及水環(huán)境的渾濁度是影響被捕食風(fēng)險大小的重要因素[7]。研究表明,捕食者在海草床的豐度比其它鄰近的生境少,生物幼體的存活率相對較高[58, 66]。例如,Dorenbosch等[58]在加勒比海庫拉索島比較海草床、珊瑚礁、紅樹林等棲息環(huán)境下捕食者的密度以及黃仿石鱸幼體的存活率,發(fā)現(xiàn)海草床下捕食者的密度和種類豐富度最低,而海草床下黃仿石鱸幼體的存活率最高。迄今為止,大部分研究是關(guān)于海草床棲息環(huán)境多相性對被捕食風(fēng)險的影響[67-68]。棲息環(huán)境的多相性能夠為生物幼體提供良好的庇護場所[69],許多生物幼體選擇海草床作為自己良好的庇護場所,如銀仿石鱸[32]、紅鼓魚[35]、糙海參[38]、藍蟹[36]等幼體在海草床都呈現(xiàn)較高的存活率;同時Gotceitas等[57]通過室內(nèi)模擬實驗比較捕食者的存在與否對大西洋鱈魚幼體的影響,發(fā)現(xiàn)沒有捕食者時幼體主要棲息于裸露的砂質(zhì)環(huán)境,而在捕食者出現(xiàn)后幼體主要以海草床為庇護場所,表明海草床能夠為幼體提供良好的保護。海草莖枝密度越高,海草床多相性結(jié)構(gòu)越高,生物幼體被捕食的幾率越低[70]。如藍蟹幼體存活率隨著海草莖枝密度的增加而上升[33, 40]。同樣,在美國德州南部,萊氏二藥藻莖枝密度是龜裂泰來藻的8—10倍[71],在萊氏二藥藻海草床的紅鼓魚豐度比在龜裂泰來藻的顯著高,有接近75%的紅鼓魚分布在萊氏二藥藻海草床,這可能是因為紅鼓魚在萊氏二藥藻棲息能夠降低被捕食的幾率[72]。
棲息環(huán)境渾濁度增加可能會降低幼體被捕食的風(fēng)險存在一定爭議[73-74]。例如,渾濁度通過影響三刺魚(Gasterosteusaculeatus)幼體的分布和活動水平,來降低其被捕食風(fēng)險[73];不過維氏雙邊魚(Ambassisvachelli)和短棘鲾(Leiognathusequulus)的豐度卻與河口的渾濁度并沒有相關(guān)關(guān)系[74]。然而,水體渾濁度上升會降低透光性,限制海草生長,使海草床退化[75],進而會影響海草床育幼功能[76]。目前,關(guān)于海草床水體高渾濁度對生物幼體育幼的影響機理尚不清楚,仍需深入研究。
盡管海草床的育幼功能已被廣泛認可,但大多數(shù)研究僅從育幼功能單個指標來探討海草床育幼功能[4]。而Beck等[6]提出的育幼功能4個方面,迄今為止在海草床還沒有被同時證實[7],且大多數(shù)研究沒能明確闡明生物從海草床向成體生物棲息環(huán)境的遷移運動[4, 7]。國外對海草床育幼的研究開展較多,我國尚未有相關(guān)研究報道,明顯滯后。因此,針對我國在海草床育幼方面研究的不足,結(jié)合目前國外學(xué)者研究的熱點,提出幾個可能成為海草床育幼功能和機理的研究趨勢。
(1)量化海草床對成體棲息環(huán)境貢獻量。未來對于海草床育幼功能的研究將盡可能地從育幼功能的四個方面闡述[6],尤其是生物的遷移運動,需結(jié)合穩(wěn)定性同位素[49]、耳石微化學(xué)[50]或人工標記技術(shù)[77]等方法來探討海草床生物幼體向成體棲息環(huán)境的遷移運動,以量化海草床棲息環(huán)境對成體棲息環(huán)境的貢獻量[7]。
(2)全球氣候變化和人類活動對海草床的育幼功能的影響。海草床棲息環(huán)境理化性質(zhì)(鹽度、溫度、pH值、營養(yǎng)鹽和溶解氧等)發(fā)生改變,影響海草床的育幼功能特征[78]。如溶解氧影響菱體兔牙鯛和絨須石首魚(Micropogoniasundulatus)幼體對海草床棲息環(huán)境的利用[79];溫度上升影響海草床生物群落結(jié)構(gòu)[80]。但目前關(guān)于環(huán)境變化對海草床育幼功能影響的研究還較少。因此,建立長期的海草床育幼功能的研究系統(tǒng),對于評價和預(yù)測環(huán)境改變對海洋漁業(yè)的影響具有重要意義[78]。
(3)海草床育幼功能對其斑塊效應(yīng)和邊緣效應(yīng)的響應(yīng)。全球全球海草床呈退化趨勢[81],退化海草床會增加海草床斑塊效應(yīng)和邊緣效應(yīng),從而影響海草床的育幼功能[76]。例如,海草床邊緣及斑塊的大小、形狀影響生物幼體的存活率、生長率以及其分布的豐度[76, 82]。因此,加強生物幼體對海草床斑塊效應(yīng)和邊緣效應(yīng)響應(yīng)的研究,可以更好地揭示海草床育幼功能的機理和變化機制。
致謝:感謝中國科學(xué)院南海海洋研究所張霞副研究員和沈萍萍副研究員對寫作的幫助。
[1] Duarte C M, Chiscano C L.Seagrass biomass and production: a reassessment.Aquatic Botany, 1999, 65(1/4): 159-174.
[2] Hemminga M A, Duarte C M.Seagrass Ecology.Cambridge: Cambridge University Press, 2000.
[3] Costanza R, d′Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O′Neill R V, Paruelo J, Raskin R G, Sutton P, van den Belt M.The value of the world′s ecosystem services and natural capital.Nature, 1997, 387(6630): 253-260.
[4] Heck K L Jr, Hays G, Orth R J.Critical evaluation of the nursery role hypothesis for seagrass meadows.Marine Ecology Progress Series, 2003, 253: 123-136.
[5] Schmidt A L, Coll M, Romanuk T N, Lotze H K.Ecosystem structure and services in eelgrassZosteramarinaand rockweedAscophyllumnodosumhabitats.Marine Ecology Progress Series, 2011, 437: 51-68.
[6] Beck M W, Heck K L Jr, Able K W, Childers D L, Eggleston D B, Gillanders B M, Halpern B, Hays C G, Hoshino K, Minello T J, Orth R J, Sheridan P F, Weinstein M R.The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.Bioscience, 2001, 51(8): 633-641.
[7] Nagelkerken I.Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms // Nagelkerken I.Ecological Connectivity among Tropical Coastal Ecosystems.Netherlands: Springer, 2009: 357-399.
[8] Deegan L A.Nutrient and energy transport between estuaries and coastal marine ecosystems by fish migration.Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(1): 74-79.
[9] Adams A J, Dahlgren C P, Kellison G.T, Kendall M S, Layman C A, Ley J A, Nagelkerken I, Serafy J E.Nursery function of tropical back-reef systems.Marine Ecology Progress Series, 2006, 318:287-301.
[10] Sogard S M.Variability in growth rates of juvenile fishes in different estuarine habitats.Marine Ecology Progress Series, 1992, 85: 35-53.
[11] Stunz G W, Minello T J, Levin P S.Growth of newly settled red drumSciaenopsocellatusin different estuarine habitat types.Marine Ecology Progress Series, 2002, 238: 227-236.
[12] Aguilar-Perera A, Appeldoorn R S.Variation in juvenile fish density along the mangrove-seagrass-coral reef continuum in SW Puerto Rico.Marine Ecology Progress Series, 2007, 348: 139-148.
[13] Horinouchi M.Distribution patterns of benthic juvenile gobies in and around seagrass habitats: effectiveness of seagrass shelter against predators.Estuarine, Coastal and Shelf Science, 2007, 72(4): 657-664.
[14] Levin P, Petrik R, Malone J.Interactive effects of habitat selection, food supply and predation on recruitment of an estuarine fish.Oecologia, 1997, 112(1): 55-63.
[15] Barbier E B, Hacker S D, Kennedy C, Koch E W,Stier A C, Silliman B R.The value of estuarine and coastal ecosystem services.Ecological Monographs, 2011, 81(2): 169-193.
[16] Nagelkerken I, Kleijnen S, Klop T, van den Brand R A C J, de la Moriniere E C, van der Velde G.Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds.Marine Ecology Progress Series, 2001, 214: 225-235.
[17] Polte P, Asmus H.Influence of seagrass beds (Zosteranoltii) on the species composition of juvenile fishes temporarily visiting the intertidal zone of the Wadden Sea.Journal of Sea Research, 2006, 55(3): 244-252.
[18] Nagelkerken I, van der Velde G, Gorissen M W, Meijer G J, van′t Hof T, den Hartog C.Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique.Estuarine, Coastal and Shelf Science, 2000, 51(1): 31-44.
[19] English S, Wilkinson C, Baker V.Survey Manual for Tropical Marine Resources.Townsville: Australian Institute of Marine Science, 1994.
[20] Cheal A J, Thompson A A.Comparing visual counts of coral reef fish: implications of transect width and species selection.Marine Ecology Progress Series, 1997, 158: 241-248.
[21] Thompson A A, Mapstone B D.Observer effects and training in underwater visual surveys of reef fishes.Marine Ecology Progress Series, 1997, 154: 53-63.
[22] Harmelin-Vivien M L, Francour P.Trawling or visual censuses? Methodological bias in the assessment of fish populations in seagrass beds.Marine Ecology, 1992, 13(1): 41-51.
[23] Dorenbosch M, Verberk W C E P, Nagelkerken I, van der Velde G.Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs.Marine Ecology Progress Series, 2007, 334: 103-116.
[24] Heck K L Jr, Thoman T A.The nursery role of seagrass meadows in the upper and lower reaches of the Chesapeake bay.Estuaries, 1984, 7(1): 70-92.
[25] Murphey P L, Fonseca M S.Role of high and low energy seagrass beds as nursery areas forPenaeusduorarumin North Carolina.Marine Ecology Progress Series, 1995, 121: 91-98.
[26] Gibson R N.Impact of habitat quality and quantity on the recruitment of juvenile flatfishes.Netherlands Journal of Sea Research, 1994, 32(2): 191-206.
[27] Phelan B A, Goldberg R, Bejda A J, Pereira J, Hagan S, Clark P, Studholme A L, Calabrese A, Able K W.Estuarine and habitat-related differences in growth rates of young-of-the-year winter flounder (Pseudopleuronectesamericanus) and tautog (Tautogaonitis) in three northeastern US estuaries.Journal of Experimental Marine Biology and Ecology, 2000, 247(1): 1-28.
[28] Seitz R D, Lipcius R N, Seebo M S.Food availability and growth of the blue crab in seagrass and unvegetated nurseries of Chesapeake Bay.Journal of Experimental Marine Biology and Ecology, 2005, 319(1): 57-68.
[29] Perkins-Visser E, Wolcott T G, Wolcott D L.Nursery role of seagrass beds: enhanced growth of juvenile blue crabs (CallinectessapidusRathbun).Journal of Experimental Marine Biology and Ecology, 1996, 198(2): 155-173.
[30] Stoner A W, Ray M, Glazer R A, McCarthy K J.Metamorphic responses to natural substrata in a gastropod larva: decisions related to postlarval growth and habitat preference.Journal of Experimental Marine Biology and Ecology, 1996, 205(1/2): 229-243.
[31] Bullard S G, Hay M E.Plankton tethering to assess spatial patterns of predation risk over a coral reef and seagrass bed.Marine Ecology Progress Series, 2002, 225: 17-28.
[32] Chittaro P M, Usseglio P, Sale P F.Variation in fish density, assemblage composition and relative rates of predation among mangrove, seagrass and coral reef habitats.Environmental Biology of Fishes, 2005, 72(2): 175-187.
[33] Hovel K A, Fonseca M S.Influence of seagrass landscape structure on the juvenile blue crab habitat-survival function.Marine Ecology Progress Series, 2005, 300: 179-191.
[34] Pile A J, Lipcius R N, van Montfrans J, Orth R J.Density-dependent settler-recruit-juvenile relationships in blue crabs.Ecological Monographs, 1996, 66(3): 277-300.
[35] Rooker J R, Holt G J, Holt S A.Vulnerability of newly settled red drum (Sciaenopsocellatus) to predatory fish: is early-life survival enhanced by seagrass meadows? Marine Biology, 1998, 131(1): 145-151.
[36] Orth R J, van Montfrans J.Habitat quality and prey size as determinants of survival in post-larval and early juvenile instars of the blue crab Callinectes sapidus.Marine Ecology Progress Series, 2002, 231: 205-213.
[37] Fuiman L A.The interplay of ontogeny and scaling in the interactions of fish larvae and their predators.Journal of Fish Biology, 1994, 45(Supplement A): 55-79.
[38] Dance S K, Lane I, Bell J D.Variation in short-term survival of cultured sandfish (Holothuriascabra) released in mangrove-seagrass and coral reef flat habitats in Solomon Islands.Aquaculture, 2003, 220(1/4): 495-505.
[39] Lipcius R N, Seitz R D, Seebo M S, Colón-Carrión D.Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay.Journal of Experimental Marine Biology and Ecology, 2005, 319(1/2): 69-80.
[40] Hovel K A, Lipcius R N.Habitat fragmentation in a seagrass landscape: patch size and complexity control blue crab survival.Ecology, 2001, 82(7): 1814-1829.
[41] Gillanders B M, Able K W, Brown J A, Eggleston D B, Sheridan P F.Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries.Marine Ecology Progress Series, 2003, 247: 281-295.
[42] Nakamura Y, Hirota K, Shibuno T, Watanabe Y.Variability in nursery function of tropical seagrass beds during fish ontogeny: timing of ontogenetic habitat shift.Marine Biology, 2012, 159(6): 1305-1315.
[43] Nagelkerken I, Roberts C M, van der Velde G, Dorenbosch M, van Riel M C, Cocheret de la Morinière E, Nienhuis P H.How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale.Marine Ecology Progress Series, 2002, 244: 299-305.
[44] Shibuno T, Nakamura Y, Horinouchi M, Sano M.Habitat use patterns of fishes across the mangrove-seagrass-coral reef seascape at Ishigaki Island, southern Japan.Ichthyological Research, 2008, 55(3): 218-237.
[45] Gillanders B M, Kingsford M J.Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish.Marine Ecology Progress Series, 1996, 141(1/3): 13-20.
[46] Guido P, Omori M, Katayama S, Kimura K.Classification of juvenile rockfish,Sebastesinermis, toZosteraandSargassumbeds, using the macrostructure and chemistry of otoliths.Marine Biology, 2004, 145(6): 1243-1255.
[47] Cocheret de la Moriniere E, Pollux B J A, Nagelkerken I, van der Velde G.Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries.Estuarine, Coastal and Shelf Science, 2002, 55(2): 309-321.
[48] Cocheret de la Morinière E, Pollux B J A, Nagelkerken I, Hemminga M A, Huiskes A H L, van der Velde G.Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis.Marine Ecology Progress Series, 2003, 246: 279-289.
[49] Verweij M C, Nagelkerken I, Hans I, Ruseler S M, Mason P R D.Seagrass nurseries contribute to coral reef fish populations.Limnology and Oceanography, 2008, 53(4): 1540-1547.
[50] Gillanders B M.Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats.Estuarine, Coastal and Shelf Science, 2005, 64(1): 47-57.
[51] Verweij Marieke C, Nagelkerken I.Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment.Hydrobiologia, 2007, 592(1): 257-270.
[52] Luo J G, Serafy J E, Sponaugle S, Teare P B,Kieckbusch D.Movement of gray snapperLutjanusgriseusamong subtropical seagrass, mangrove, and coral reef habitats.Marine Ecology Progress Series, 2009, 380: 255-269.
[53] Grol M G G, Nagelkerken I, Rypel A L, Layman C A.Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish.Oecologia, 2011, 165(1): 79-88.
[54] Verweij M C, Nagelkerken I, Wartenbergh S L J, Pen I R, van der Velde G.Caribbean mangroves and seagrass beds as daytime feeding habitats for juvenile French grunts,Haemulonflavolineatum.Marine Biology, 2006, 149(6): 1291-1299.
[55] Verwey M C, Nagelkerken I, de Graaff D, Peeters M, Bakker E J, van der Velde G.Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment.Marine Ecology Progress Series, 2006, 306: 257-268.
[56] Horinouchi M, Sano M.Effects of changes in seagrass shoot density and leaf height on the abundance of juveniles ofAcentrogobiuspflaumiiin aZosteramarinabed.Ichthyological Research, 2001, 48(2): 179-185.
[57] Gotceitas V, Fraser S, Brown J A.Use of eelgrass beds (Zosteramarina) by juvenile Atlantic cod (Gadusmorhua).Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(6): 1306-1319.
[58] Dorenbosch M, Grol M G G, de Groene A, van der Velde G, Nagelkerken I.Piscivore assemblages and predation pressure affect relative safety of some back-reef habitats for juvenile fish in a Caribbean bay.Marine Ecology Progress Series, 2009, 379: 181-196.
[59] Bertelli C M, Unsworth R K F.Protecting the hand that feeds us: Seagrass (Zosteramarina) serves as commercial juvenile fish habitat.Marine Pollution Bulletin, 2014, 83(2): 425-429.
[60] Park H J, Choy E J, Lee K S, Kang C K.Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures.Marine and Freshwater Research, 2013, 64(12): 1169-1183.
[61] Gullstr?m M, Berkstr?m M, ?hman M C, Bodin M, Dahlberg M.Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarusvaigiensis) in a tropical seagrass-dominated seascape.Marine Biology, 2011, 158(7): 1483-1495.
[62] Lugendo B R, Nagelkerken I, van der Velde G, Mgaya Y D.The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses.Journal of Fish Biology, 2006, 69(6): 1639-1661.
[63] Nakamura Y, Sano M.Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan.Fisheries Science, 2005, 71(3): 543-550.
[64] Robblee M B, Zieman J C.Diel variation in the fish fauna of a tropical seagrass feeding ground.Bulletin of Marine Science, 1984, 34(3): 335-345.
[65] Nagelkerken I, Dorenbosch M, Verberk W, Cocheret de la Morinière E, van der Velde G.Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae.Marine Ecology Progress Series, 2000, 194: 55-64.
[66] Wilson S K, Street S, Sato T.Discarded queen conch (Strombusgigas) shells as shelter sites for fish.Marine Biology, 2005, 147(1): 179-188.
[67] Orth R J, Heck K L Jr, van Montfrans J.Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships.Estuaries, 1984, 7(4): 339-350.
[68] Horinouchi M.Review of the effects of within-patch scale structural complexity on seagrass fishes.Journal of Experimental Marine Biology and Ecology, 2007, 350(1): 111-129.
[69] Crowder L B, Cooper W E.Habitat structural complexity and the interaction between bluegills and their prey.Ecology, 1982, 63(6): 1802-1813.
[70] Savino J F, Stein R A.Behavioural interactions between fish predators and their prey: effects of plant density.Animal Behaviour, 1989, 37(Part 2): 311-321.
[71] Czerny A B, Dunton K H.The effects of in situ light reduction on the growth of two subtropical seagrasses,ThalassiatestudinumandHalodulewrightii.Estuaries, 1995, 18(2): 418-427.
[72] Rooker J R, Holt S A.Utilization of subtropical seagrass meadows by newly settled red drumSciaenopsocellatus: patterns of distribution and growth.Marine Ecology Progress Series, 1997, 158: 139-149.
[73] Ajemian M J, Sohel S, Mattila J.Effects of turbidity and habitat complexity on antipredator behavior of three-spined sticklebacks (Gasterosteusaculeatus).Environmental Biology of Fishes, 2014, doi: 10.1007/s10641-014-0235-x.
[74] Johnston R, Sheaves M, Molony B.Are distributions of fishes in tropical estuaries influenced by turbidity over small spatial scales? Journal of Fish Biology, 2007, 71(3): 657-671.
[75] Erftemeijer P L A, Lewis R R R III.Environmental impacts of dredging on seagrasses: A review.Marine Pollution Bulletin, 2006, 52(12): 1553-1572.
[76] Carroll J M, Peterson B J.Ecological trade-offs in seascape ecology: bay scallop survival and growth across a seagrass seascape.Landscape Ecology, 2013, 28(7): 1401-1413.
[77] Gillanders B M.Tools for studying biological marine ecosystem interactions-natural and artificial tags // Nagelkerken I.Ecological Connectivity among Tropical Coastal Ecosystems.Netherlands: Springer, 2009: 457-492.
[78] Jones C M.Can we predict the future: juvenile finfish and their seagrass nurseries in the Chesapeake Bay.ICES Journal of Marine Science, 2014, 71(3): 681-688.
[79] Froeschke J T, Stunz G W.Hierarchical and interactive habitat selection in response to abiotic and biotic factors: the effect of hypoxia on habitat selection of juvenile estuarine fishes.Environmental Biology of Fishes, 2012, 93(1): 31-41.
[80] Sobocinski K L, Orth R J, Fabrizio M C, Latour R J.Historical comparison of fish community structure in lower Chesapeake Bay seagrass habitats.Estuaries and Coasts, 2013, 36(4): 775-794.
[81] Waycott M, Duarte C M, Carruthers T J B, Orth R J, Dennison W C, Olyarnik S, Calladine A, Fourqurean J W, Heck K L Jr, Hughes A R, Kendrick G A, Kenworthy W J, Short F T, Williams S L.Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377-12381.
[82] Smith T M, Hindell J S, Jenkins G P, Connolly R M, Keough M J.Edge effects in patchy seagrass landscapes: The role of predation in determining fish distribution.Journal of Experimental Marine Biology and Ecology, 2011, 399(1): 8-16.
Nursery function of seagrass beds and its mechanisms
LIU Songlin1,2,3, JIANG Zhijian1,2, WU Yunchao1,2,3, ZHANG Jingping1,2, HUANG Xiaoping1,2,*
1KeyLaboratoryofTropicalMarineBio-resourcesandEcology,SouthChinaSeaInstituteofOceanology,ChineseAcademyofSciences,Guangzhou510301,China2GuangdongProvincialKeyLaboratoryofAppliedMarineBiology,SouthChinaSeaInstituteofOceanology,ChineseAcademyofSciences,Guangzhou510301,China3UniversityofChineseAcademyofSciences,Beijing100049,China
Seagrass beds cover about 0.15% of the global ocean and contribute 1% of the net primary production of the ocean.They are important nursery habitats for economic fishes and invertebrates such as red drum (Sciaenopsocellatus), Atlantic cod (Gadusmorhua), queen conch (Strombusgigas), and blue crab (Callinectessapidus).The nursery function of seagrass beds has been widely recognized because the biomass and density of juvenile fishes and invertebrates in seagrass beds are higher than in other habitats along the coast.We systematically reviewed the literature on the nursery function of seagrass beds.We evaluated the seagrass nursery function based on the juveniles′ density, growth rate, survival rate, and migration to adult habitats.The factors of food availability and predation risk were also summarized to explain the mechanism of nursery function.High density of juvenile organisms was the identifying factor of the nursery function of seagrass beds, and many juveniles in the seagrass beds showed high growth and survival rates, and migrated to adult habitats during juvenile ontogeny.Primarily, abundant food or lower predation pressure seemed to enable the seagrass nursery function.Seagrass leaves, epiphytes, and phytoplankton assemblages, which served as important food sources for many herbivorous juveniles, were abundant in seagrass ecosystems.In addition, some smaller macrofauna such as copepods, amphipods, and polychaetes showed high densities in the seagrass beds.Predator abundance, structural heterogeneity, and turbidity in seagrass beds contributed either directly or indirectly to predation risk.These mechanisms were not mutually exclusive in that high structural complexity in seagrass beds could provide more living space, higher food sources, and a reduction in predation risk for juveniles.However, different juvenile species inhabited the seagrass ecosystems for different purposes, and the mechanisms of seagrass nursery function also varied with different environmental conditions.Finally, future research directions of seagrass nursery function are indicated: (1) to quantify the contribution of migration of individuals from seagrass bed to adult habitats;(2) to clarify the impact of global climate change and human activities on the nursery function of seagrass beds;and (3) to investigate the response of nursery function to the “patch effect” and “edge effect” of seagrass beds.We believe that this study provides scientific perspectives for protecting the seagrass ecosystem in China.
seagrass bed;juveniles;nursery function;mechanism
國家重點基礎(chǔ)研究發(fā)展計劃項目(2015CB452905);國家自然科學(xué)基金項目(41306108, 41406128);廣東省自然科學(xué)基金項目(S2013040013155);國家海洋局公益性行業(yè)科研專門項目(201305030);中國科學(xué)院知識創(chuàng)新工程青年人才領(lǐng)域前沿項目(SQ201307, SQ201219)
2014-06-18; < class="emphasis_bold">網(wǎng)絡(luò)出版日期:
日期:2015-05-21
10.5846/stxb201406181269
*通訊作者Corresponding author.E-mail: xphuang@scsio.ac.cn
劉松林,江志堅,吳云超,張景平,黃小平.海草床育幼功能及其機理.生態(tài)學(xué)報,2015,35(24):7931-7940.
Liu S L, Jiang Z J, Wu Y C, Zhang J P, Huang X P.Nursery function of seagrass beds and its mechanisms.Acta Ecologica Sinica,2015,35(24):7931-7940.