• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類三圈圖關(guān)于Merrifield-Simmons指標和Hosoya指標的排序

      2015-02-21 04:06:26柴文麗田文文
      關(guān)鍵詞:甘肅蘭州大學美術(shù)控制精度

      柴文麗,田文文

      (1.西北民族大學美術(shù)學院,甘肅蘭州730030;2.西北民族大學 數(shù)學與計算機科學學院,甘肅蘭州730030)

      一類三圈圖關(guān)于Merrifield-Simmons指標和Hosoya指標的排序

      柴文麗1,田文文2

      (1.西北民族大學美術(shù)學院,甘肅蘭州730030;2.西北民族大學 數(shù)學與計算機科學學院,甘肅蘭州730030)

      三圈圖;Merrifield-Simmons指標;Hosoya指標;排序

      0 引言

      1 預備知識

      引理1[4]設(shè)G是一個簡單的連通圖,對任意的u,v∈V(G),uv∈E(G),則σ(G)=σ(G-{v})+σ(G-NG[v]);σ(G)=σ(G-{uv})-σ(G-(NG[u]∪NG[v])).

      引理3[4]若G1,G2,…,Gk是圖G的連通分支,則

      引理4[4]對于n階的路Pn,有σ(Pn)=fn+2;μ(Pn)=fn+1.

      引理5[4]對于n階的圈Cn,有σ(Cn)=fn+1+fn-1;μ(Cn)=fn+1+fn-1.

      由引理1~5可得以下結(jié)論:

      引理7 對于如圖2所示的圖H,有

      1)σ(H)=fm+2fn+2·(fq+1fr+fq-1fr-1)+fm+1fn+1·(fq+1fr-1+fq-1fr-2);

      2)μ(H)= (fq+1+fq-1)(fm+1fn+1fr+fm+1fnfr-1+fmfn+1fr-1)

      +fq·(fm+1fn+1fr-1+fm+1fnfn-2+fmfn+1fr-2).

      2 主要結(jié)果及其證明

      證明 如圖1所示,由引理1及引理7可知

      (fq+1fr-1+fq-1fr-2)(fm+1fkfp-k+fm-1fk-1fp-k-1).

      (fq+1fr-1+fq-1fr-2)(fm+1fk+1fp-k-1+fm-1fkfp-k-2).

      所以,由引理6可知

      -fkfp-k)]+(fq+1fr-1+fq-1fr-2)[fm+1·(fk+1fp-k-1-fkfp-k)+fm-1·(fkfp-k-2-fk-1fp-k-1)]

      +(fq+1fr-1+fq-1fr-2)[fm+1·(lp-2k+lp-2k-2)+fm+1·(-lp-2k-lp-2k-2)]}

      而fm·(-fq+1fr-2-fq-1fr-3)<0.

      +(fq+1fr-1+fq-1fr-2)(fm+1fk+2fp-k-2+fm-1fk+1fp-k-3),

      所以由引理6可知

      -fkfp-k)]+(fq+1fr-1+fq-1fr-2)[fm+1·(fk+2fp-k-2-fkfp-k)+fm-1·(fk+1fp-k-3-fk-1fp-k-1)]

      +(fq+1fr-1+fq-1fr-2)[fm+1·(lp-2k-lp-2k-4)+fm+1·(lp-2k-4-lp-2k)]}

      而fm·(lp-2k-4-lp-2k)(fq+1fr-2+fq-1fr-3)<0,

      證明 由引理2及引理7可知

      +fq·[(fm+1+fm-1)(fkfp-kfr-1+fkfp-k-1fr-2+fk-1fp-kfr-2)+fm(fkfp-k-1fr-1+

      fkfp-k-2fr-2+2fk-1fp-k-1fr-2+fk-1fp-kfr-1+fk-2fp-kfr-2)].

      +fm·(fk+1fp-k-2fr+fk+1fp-k-3fr-1+2fkfp-k-2fr-1+fkfp-k-1fr+fk-1fp-k-1fr-1)]

      fq·[(fm+1+fm-1)(fk+1fp-k-1fr-1+fk+1fp-k-2fr-2+fkfp-k-1fr-2)+fm·

      (fk+1fp-k-2fr-1+fk+1fp-k-3fr-2+2fkfp-k-2fr-2+fkfp-k-1fr-1+fk-1fp-k-1fr-2)].

      所以,由引理6可知

      -fk-1fp-kfr-1)+fm·(fk+1fp-k-2fr+fk+1fp-k-3fr-1+fkfp-k-2fr-1-fk-1fp-k-1fr-1-fk-1fp-kfr

      -fk-2fp-kfr-1)]+fq·[(fm+1+fm-1)(fk+1fp-k-1fr-1+fk+1fp-k-2fr-2-fkfp-kfr-1-fk-1fp-kfr-2)

      由表1可知,插秧機插植部兩側(cè)浮板的最大高度差可以達到6.1cm,插植部工作中期望最大傾角達到5.71°。在靜態(tài)試驗中秧苗插深自適應(yīng)調(diào)節(jié)系統(tǒng)的控制相對誤差均在5%以內(nèi),其中當該系統(tǒng)工作在半量程區(qū)間時,有著較好的控制精度。而系統(tǒng)處于初始以及接近滿量程工作區(qū)間時,控制精度較差,相對誤差在4%以上。究其原因,這應(yīng)是該系統(tǒng)橫向仿形控制機構(gòu)的機械結(jié)構(gòu)設(shè)計引起的。

      +fm·(fk+1fp-k-2fr-1+fk+1fp-k-3fr-2+fkfp-k-2fr-2-fk-1fp-k-1fr-2-fk-1fp-kfr-1-fk-2fp-kfr-2)]

      [fr-1·(fq+1+fq-1)(fm+1+fm-1)+fr-2fm·(fq+1+fq-1)+fr-2fq·(fm+1+fm-1)+fr-3fqfm]}.

      又因(lp-2k+lp-2k+2)-(lp-2k+lp-2k-2)>0,

      (fm+1+fm-1)(fq+1fr+fq-1fr+fqfr-1)-[fr-1·(fq+1+fq-1)(fm+1+fm-1)+fr-2fm·(fq+1+fq-1)

      +fr-2fq·(fm+1+fm-1)+fr-3fqfm]=2fm-1fr-2·(fq+1+fq-1)+2fm-1fr-3fq>0,

      所以(fm+1+fm-1)(fq+1fr+fq-1fr+fqfr-1)(lp-2k+lp-2k+2)-(lp-2k+lp-2k-2)[fr-1·(fq+1+fq-1)

      (fm+1+fm-1)+fr-2fm·(fq+1+fq-1)+fr-2fq·(fm+1+fm-1)+fr-3fqfm]>0.

      +fm·(fk+2fp-k-3fr+fk+2fp-k-4fr-1+2fk+1fp-k-3fr-1+fk+1fp-k-2fr+fkfp-k-2fr-1)]

      +fq·[(fm+1+fm-1)(fk+2fp-k-2fr-1+fk+2fp-k-3fr-2+fk+1fp-k-2fr-2)

      +fm·(fk+2fp-k-3fr-1+fk+2fp-k-4fr-2+2fk+1fp-k-3fr-2+fk+1fp-k-2fr-1+fkfp-k-2fr-2)].

      所以由引理6可知

      (fk+2fp-k-3+fk+1fp-k-2-fkfp-k-1-fk-1fp-k)·fr-1+fmfr·(fk+2fp-k-3+fk+1fp-k-2-fkfp-k-1-

      fk-1fp-k)+fmfr-1·(fk+2fp-k-4+2fk+1fp-k-3-2fk-1fp-k-1-fk-2fp-k)]+fq·[(fm+1+fm-1)

      (fk+2fp-k-2-fkfp-k)·fr-1+(fm+1+fm-1)(fk+2fp-k-3+fk+1fp-k-2-fkfp-k-1-fk-1fp-k)

      ·fr-2+fmfr-1·(fk+2fp-k-3+fk+1fp-k-2-fkfp-k-1-fk-1fp-k)+fmfr-2·

      (fk+2fp-k-4+2fk+1fp-k-3-2fk-1fp-k-1-fk-2fp-k)]

      -fqfr-3fm](lp-2k-1+lp-2k-3)

      而2fm-1fr-2·(fq+1+fq-1)+2fqfm-1fr-3>0.

      [1] Bondy J A,Murty U S R.Graph theory with applications[M].New York:The Macmillan Press,1976.

      [2] Hosoya H.Topological index[J].Bull Chem Soc Japan,1971,44:2332-2339.

      [3] Merrfield R E,Simmons H E.Topological Methods in Chemistry[M].New York:Wiley,1989.

      [4] Gutman I,Polansky O E.Mathematical Concepts in Organic Chemistry[M].Berlin:Spring-er,1986.

      [5] Gutman I,Cyvin S J.Introduction to the Theory of Benzenoid Hydrocarbons[M].Berlin:Springer,1989.

      [6] Deng H Y,Chen S B,Zhang J.The Merrifield-Simmons index in-graphs[J].Journal of Mathematical Chemistry,2008,43(1):75-91.

      [7] Deng H Y.The smallest Merrifield-Simmons index of -graphs[J].Math Comput Model,2009,49(1-2):320-326.

      [8] Deng H Y.The smallest Hosoya index in -graphs[J].Journal of Mathematical Chemistry,2008,43(1):119-133.

      [9] Xu Kexiang,Gutman I.The Greatest Hosoya Index of Bicyclic Graphs with Given Maximum Degree[J].MATCH Commun Math Comput Chem,2011,66(3):795-824.

      [10] 周旭冉,王力工.一類雙圈圖的兩種指標的排序[J].山東大學學報(理學版),2011,46(11):44-47.

      [11] Zhu Zhongxun,Li Shuchao,Tan Liansheng.Tricyclic graphs with maximum Merrifield-Simmons index[J].Discrete Applied Mathematics,2010,158(3):204-212.

      [12] Dolati A,Haghighat M,Golalizadeh S,Safari M.The Smallest Hosoya index of Connected Tricyclic Graphs[J].MATCH Commun Math Comput Chem,2011,65(1):57-70.

      [13] Zhu Zhongxun,Yu Qigang.The number of independent sets of tricyclic graphs[J].Applied Mathematics Letters,2012,25(10):1327-1334.

      [14] Xuezheng Lv,Yan Yan,Aimei Yu,Jingjing Zhang.Ordering strees with given pendent vertices with respect to Merrifield-Simmons indices and Hosoya indices[J].Journal of Mathemati-cal Chemistry,2010,47:11-20.

      [15] Stephan G Wagner.Extremal trees with respect to Hosoya index and Merrifield-Simmons index[J].MATCH Commun Math Comput Chem,2007,57(1):221-233.

      Orderings of a Class of Tricyclic Graphs with Respect to Merrifield-Simmons and Hosoya Indexes

      CHAI Wen-li1,TIAN Wen-wen2

      (1. School of Fine Arts,Northwest University for Nationalities,Lanzhou 730030,China;2. School of Mathematics and Computer Science,Northwest University for Nationalities,Lanzhou 730030,China)

      The Merrifield-Simmons index and Hosoya index of the class of tricyclic graphs were investigated according to the distance between and on.Their orderings with respect to these two indices had been obtained.

      Tricyclic graphs;Merrifield-Simmons index;Hosoya index;order

      2015-11-20

      國家民委科研項目(14XBZ018);甘肅省自然科學基金(145RJZA158);西北民族大學科研創(chuàng)新團隊計劃資助項目;中央高?;究蒲袠I(yè)務(wù)費專項資金項目(31920140059).

      柴文麗(1988— ),女,甘肅天水人,碩士研究生.

      O157.5

      A

      1009-2102(2015)04-0001-05

      猜你喜歡
      甘肅蘭州大學美術(shù)控制精度
      大眾文藝(2022年23期)2022-12-25 03:09:24
      吉首大學美術(shù)學院作品精選
      聲屏世界(2022年15期)2022-11-08 10:58:04
      長春大學美術(shù)學院作品選登
      明媚美術(shù)作品
      雨露風(2019年3期)2019-09-10 07:22:44
      甘肅蘭州卷
      學生天地(2019年30期)2019-08-25 08:53:18
      甘肅蘭州鹽什公路復工預計2019年7月底建成通車
      石油瀝青(2019年2期)2019-02-13 17:24:47
      MW級太空發(fā)電站微波能量波束指向控制精度分析
      The Translation of Long Sentences in Legal Texts
      成功(2018年7期)2018-03-29 00:42:44
      基于安卓的智能車轉(zhuǎn)速系統(tǒng)的設(shè)計與實現(xiàn)
      如何深入開展大學美術(shù)國畫課程教學改革
      延安市| 三台县| 鞍山市| 柞水县| 喜德县| 华坪县| 星子县| 汉中市| 阿拉善左旗| 芜湖市| 陆丰市| 榆社县| 根河市| 霍林郭勒市| 高密市| 八宿县| 广东省| 呼图壁县| 德阳市| 正阳县| 北碚区| 祁连县| 衡水市| 德令哈市| 富裕县| 梁山县| 怀仁县| 南丹县| 广水市| 屯昌县| 富裕县| 新乡县| 尉氏县| 乌拉特后旗| 五寨县| 河津市| 沿河| 南京市| 崇明县| 大同市| 汤阴县|