黃 薇,楊 霞,易 華,劉黨校,苗 芳,王長(zhǎng)發(fā)
(西北農(nóng)林科技大學(xué) a 農(nóng)學(xué)院,b 生命科學(xué)學(xué)院,陜西 楊凌 712100)
肥力對(duì)冬小麥順序和非順序衰老莖同化物積累和轉(zhuǎn)運(yùn)的影響
黃 薇a,楊 霞b,易 華b,劉黨校b,苗 芳b,王長(zhǎng)發(fā)a
(西北農(nóng)林科技大學(xué) a 農(nóng)學(xué)院,b 生命科學(xué)學(xué)院,陜西 楊凌 712100)
【目的】 研究在適肥和高肥水平下,順序和非順序衰老莖頂三葉和地上器官同化物積累及轉(zhuǎn)運(yùn)特性,為闡明小麥葉片非順序衰老的生理生化機(jī)制提供理論指導(dǎo)。【方法】 以生育后期(05-16)非順序衰老發(fā)生率較高的小麥品種溫麥19、豫麥19和蘭考矮早8為材料,設(shè)高肥(尿素225 kg/hm2,磷酸二氫銨337 kg/hm2,春季追施尿素112 kg/hm2)和適肥(尿素150 kg/hm2,磷酸二氫銨225 kg/hm2,春季追施尿素75 kg/hm2)2個(gè)肥力水平,在小麥揚(yáng)花期(04-22)、葉色倒置現(xiàn)象發(fā)生時(shí)期(05-16)和成熟期,分別采集參試小麥品種正置莖和倒置莖,測(cè)定2個(gè)肥力水平下頂三葉的綠葉面積及其葉片、葉鞘、地上營(yíng)養(yǎng)器官、穗和籽粒的干質(zhì)量,比較正置莖和倒置莖頂三葉各指標(biāo)的差異?!窘Y(jié)果】 在適肥和高肥條件下,參試小麥品種正置莖綠葉面積均表現(xiàn)為旗葉>倒二葉>倒三葉,而倒置莖綠葉面積表現(xiàn)為倒二葉>旗葉>倒三葉。正置莖旗葉干物質(zhì)積累量與倒二葉接近,均大于倒三葉;倒置莖倒二葉干物質(zhì)積累量顯著大于旗葉和倒三葉。正置莖和倒置莖頂三葉葉鞘干物質(zhì)積累量均表現(xiàn)為旗葉葉鞘>倒二葉葉鞘>倒三葉葉鞘。正置莖地上營(yíng)養(yǎng)器官花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率均大于倒置莖,而正置莖地上營(yíng)養(yǎng)器官花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率均低于倒置莖。倒置莖籽粒千粒質(zhì)量均顯著高于正置莖。與適肥水平相比,高肥水平可以延緩葉片衰老,增加營(yíng)養(yǎng)器官干物質(zhì)積累量,減少營(yíng)養(yǎng)器官花前同化物向籽粒的轉(zhuǎn)運(yùn),提高千粒質(zhì)量?!窘Y(jié)論】 在高肥和適肥條件下,參試小麥品種均有葉片非順序衰老的發(fā)生,且生育后期小麥葉片的非順序衰老有利于籽粒的充實(shí)。
冬小麥;非順序衰老;肥力;同化物積累
小麥?zhǔn)俏覈?guó)的第二大糧食作物,在農(nóng)業(yè)生產(chǎn)中占有舉足輕重的地位。近年來在對(duì)不同溫度型小麥的研究中發(fā)現(xiàn),有些小麥品種頂部二葉的衰老順序發(fā)生異常,即不是常見的自下而上順序衰老——倒二葉先于旗葉衰老,而是旗葉先于倒二葉衰老,而且這種類型的小麥并非所有莖都呈非順序衰老狀態(tài),有的莖葉片呈順序衰老狀態(tài)[1-4]。因此,將葉片呈非順序衰老的莖稱為倒置莖,葉片呈順序衰老的莖稱為正置莖。據(jù)研究報(bào)道,在面團(tuán)期,小麥倒置莖旗葉的葉綠素含量、可溶性蛋白質(zhì)含量、凈光合速率和蒸騰速率均低于倒二葉,與正置莖旗葉和倒二葉的表現(xiàn)正好相反[2,4]。
在小麥粒質(zhì)量形成的主要時(shí)期,旗葉的衰老方式和生理特性對(duì)小麥干物質(zhì)的積累、轉(zhuǎn)運(yùn)分配和千粒質(zhì)量均有重要影響。小麥產(chǎn)量是光合物質(zhì)生產(chǎn)、同化物運(yùn)輸分配及同化物的利用相互作用的結(jié)果[5],尤其是小麥開花后光合產(chǎn)物的積累及葉片、葉鞘、莖稈、穂等地上器官積累的光合產(chǎn)物運(yùn)轉(zhuǎn)到籽粒的量對(duì)粒質(zhì)量和產(chǎn)量的形成至關(guān)重要[6-9]。與花前同化物相比,花后同化物對(duì)籽粒產(chǎn)量的貢獻(xiàn)較大,但在開花后環(huán)境脅迫條件下,籽粒生長(zhǎng)將更多依賴于花前的貯藏物質(zhì)[10-11]。肥料是影響小麥產(chǎn)量的重要因素之一[6,12]。近年來,人們對(duì)不同肥力水平下小麥地上部分干物質(zhì)的積累特性、轉(zhuǎn)運(yùn)及產(chǎn)量形成研究報(bào)道較多。結(jié)果表明,隨著肥力水平的提高,開花后同一天各器官光合產(chǎn)物積累量、營(yíng)養(yǎng)器官光合產(chǎn)物的輸出值、籽粒干質(zhì)量等均呈上升趨勢(shì)[6,13-14]。增施氮肥能提高營(yíng)養(yǎng)器官花前貯藏物質(zhì)的總轉(zhuǎn)運(yùn)量和粒質(zhì)量以及花后同化物對(duì)籽粒的貢獻(xiàn)率[15-16]。
目前,關(guān)于冬小麥順序性和非順序性衰老的生理表現(xiàn)已有研究報(bào)道[17-20],但關(guān)于其同化物轉(zhuǎn)運(yùn)特性及高肥對(duì)其同化物轉(zhuǎn)運(yùn)的影響還未見文獻(xiàn)報(bào)道。為此,本研究在高肥和適肥條件下,分析了冬小麥發(fā)生順序衰老和非順序衰老時(shí)頂部三葉及地上其他營(yíng)養(yǎng)器官的干物質(zhì)積累和轉(zhuǎn)運(yùn)特性,旨在為下一步研究非順序衰老的生理生化機(jī)制提供理論指導(dǎo),并有利于客觀評(píng)價(jià)非順序衰老在小麥育種中的應(yīng)用價(jià)值。
1.1 田間試驗(yàn)設(shè)計(jì)
試驗(yàn)于2012-10-2013-06在西北農(nóng)林科技大學(xué)節(jié)水農(nóng)業(yè)灌溉試驗(yàn)站內(nèi)進(jìn)行。試驗(yàn)地土壤為黏土,含有機(jī)質(zhì)3.157 g/kg,全氮0.327 g/kg,速效磷5.76 mg/kg,速效鉀156.27 mg/kg。試驗(yàn)設(shè)2個(gè)肥力水平:高肥(尿素225 kg/hm2,磷酸二氫銨337 kg/hm2,春季追施尿素112 kg/hm2)和適肥(尿素150 kg/hm2,磷酸二氫銨225 kg/hm2,春季追施尿素75 kg/hm2)。小區(qū)面積44 m2,隨機(jī)區(qū)組設(shè)計(jì),重復(fù)3次,每小區(qū)行長(zhǎng)1.2 m,行距0.23 m,株距0.03 m。選擇葉片非順序衰老小麥品種溫麥19、蘭考矮早8和豫麥19,葉片非順序衰老的發(fā)生時(shí)期為05-15至成熟。于2012-10-07點(diǎn)播,冬灌1次,春季防蟲、防病害1次,其他管理措施同大田。
1.2 采樣方法
在小麥揚(yáng)花期(04-22),選擇同一天開花、無病蟲害、發(fā)育較一致的莖稈掛牌標(biāo)記,以后的樣品均從掛牌莖稈中采取。在小麥揚(yáng)花期,每個(gè)品種每個(gè)小區(qū)采集5莖稈,3個(gè)小區(qū)總計(jì)15莖稈,在105 ℃下殺青30 min 后,80 ℃烘干至恒質(zhì)量,稱取莖稈干質(zhì)量,作為正置莖和倒置莖在揚(yáng)花期的莖稈干質(zhì)量。在非順序衰老發(fā)生時(shí)期(05-16),用紅線標(biāo)記正置莖,用藍(lán)線標(biāo)記倒置莖,每個(gè)品種每小區(qū)分別采集正置莖和倒置莖各5稈,重復(fù)3次。首先測(cè)定旗葉、倒二葉和倒三葉的綠葉面積,然后將旗葉、倒二葉、倒三葉、旗葉葉鞘、倒二葉葉鞘、倒三葉葉鞘、其余部分莖稈和葉、穗分開包裝,在105 ℃下殺青30 min,80 ℃烘干至恒質(zhì)量后分別稱質(zhì)量。在小麥成熟期(06-03)分別采集各品種正置莖和倒置莖各5稈,重復(fù)3次,并將籽粒和莖稈其他部分分裝烘干,稱質(zhì)量。
1.3 測(cè)定指標(biāo)及方法
綠葉面積測(cè)定采用系數(shù)法,即葉面積=葉長(zhǎng)×葉寬×0.83[21]?;ㄇ巴镛D(zhuǎn)運(yùn)量(g)=開花期營(yíng)養(yǎng)器官干質(zhì)量-成熟期營(yíng)養(yǎng)器官干質(zhì)量;花后同化物轉(zhuǎn)運(yùn)量(g)=成熟期籽粒干質(zhì)量-花前同化物轉(zhuǎn)運(yùn)量;花前同化物轉(zhuǎn)運(yùn)率=花前同化物轉(zhuǎn)運(yùn)量/開花期營(yíng)養(yǎng)器官干質(zhì)量×100%;花后同化物轉(zhuǎn)運(yùn)率=花后同化物轉(zhuǎn)運(yùn)量/(收獲期全株干質(zhì)量-開花期全株干質(zhì)量)×100%;花前同化物對(duì)籽粒貢獻(xiàn)率=花前同化物轉(zhuǎn)運(yùn)量/成熟期籽粒干質(zhì)量×100%;花后同化物對(duì)籽粒貢獻(xiàn)率=花后同化物轉(zhuǎn)運(yùn)量/成熟期籽粒干質(zhì)量×100%[22]。
1.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)均為15莖稈的平均值,采用SPSS軟件單因素Duncan方法統(tǒng)計(jì)分析。
2.1 肥力對(duì)小麥順序和非順序衰老頂三葉綠葉面積的影響
肥力對(duì)小麥順序和非順序衰老頂三葉綠葉面積的影響見圖1。
從圖1可以看出,在適肥條件下,溫麥19正置莖旗葉綠葉面積分別比倒二葉和倒三葉高出39.19%和158.80%,蘭考矮早8分別高出11.77%和168.57%,豫麥19分別高12.19%和363.32%;而在倒置莖中,溫麥19旗葉綠葉面積比倒二葉低11.08%,比倒三葉高121.91%;蘭考矮早8旗葉綠葉面積比倒二葉低12.65%,比倒三葉高89.29%;豫麥19旗葉綠葉面積比倒二葉低10.61%,比倒三葉高84.00%。在高肥條件下,參試小麥品種頂部3葉綠葉面積均大于適肥條件下,各品種仍表現(xiàn)有順序和非順序衰老,溫麥19正置莖旗葉綠葉面積分別比倒二葉和倒三葉高出39.12%和102.60%,蘭考矮早8分別高出16.88%和180.89%,豫麥19分別高出13.04%和364.12%。而在倒置莖中,溫麥19旗葉綠葉面積比倒二葉低9.06%,比倒三葉高35.58%;蘭考矮早8旗葉綠葉面積比倒二葉低13.46%,比倒三葉高78.47%;豫麥19旗葉綠葉面積比倒二葉低22.94%,比倒三葉高82.68%。試驗(yàn)結(jié)果表明,高肥條件能延緩葉片的衰老,保持較高的葉片綠葉面積,但不能改變參試小麥品種葉片的順序和非順序衰老次序。
2.2 肥力對(duì)小麥順序和非順序衰老頂三葉干物質(zhì)積累的影響
從圖2可以看出,無論在適肥條件還是高肥條件下,參試小麥品種正置莖旗葉和倒二葉干物質(zhì)積累量差異并不顯著(溫麥19正置莖除外),但均顯著高于倒三葉。與正置莖不同的是,倒置莖倒二葉干物質(zhì)積累量均顯著高于旗葉,而旗葉又顯著高于倒三葉(豫麥19除外),其中溫麥19在適肥條件下倒二葉干物質(zhì)積累量比旗葉高10.95%,在高肥條件下高11.72%;蘭考矮早8在適肥條件下倒二葉干物質(zhì)積累量比旗葉高27.29%,在高肥條件下高20.61%;豫麥19在適肥條件下倒二葉干物質(zhì)積累量比旗葉高25.00%,在高肥條件下高27.08%。與適肥相比,高肥條件下參試小麥品種正置莖和倒置莖頂三葉的干物質(zhì)積累量均不同程度增加。
2.3 肥力對(duì)小麥順序和非順序衰老頂三葉葉鞘干物質(zhì)積累的影響
從圖3可以看出,在適肥和高肥條件下,參試小麥品種無論是倒置莖還是正置莖,頂三葉葉鞘干物質(zhì)積累量的變化趨勢(shì)一致,均表現(xiàn)為旗葉葉鞘>倒二葉葉鞘>倒三葉葉鞘。在適肥條件下,溫麥19正置莖旗葉葉鞘干物質(zhì)比倒二葉高65.36%,比倒三葉高212.34%;倒置莖旗葉葉鞘干物質(zhì)比倒二葉高52.05%,比倒三葉高119.49%。蘭考矮早8正置莖旗葉葉鞘干物質(zhì)比倒二葉高69.76%,比倒三葉高195.85%;倒置莖旗葉葉鞘干物質(zhì)比倒二葉高47.34%,比倒三葉高141.28%。豫麥19正置莖旗葉葉鞘干物質(zhì)比倒二葉高53.68%,比倒三葉高156.75%;倒置莖旗葉葉鞘干物質(zhì)比倒二葉高42.66%,比倒三葉高129.24%。在高肥條件下,溫麥19正置莖旗葉葉鞘干物質(zhì)比倒二葉高63.88%,比倒三葉高195.11%;倒置莖旗葉葉鞘干物質(zhì)比倒二葉高39.51%,比倒三葉高117.09%。蘭考矮早8 正置莖旗葉葉鞘干物質(zhì)比倒二葉高57.73%,比倒三葉高168.42%;倒置莖旗葉葉鞘干物質(zhì)比倒二葉高40.22%,比倒三葉高143.49%。豫麥19正置莖旗葉葉鞘干物質(zhì)比倒二葉高50.11%,比倒三葉高133.78%;倒置莖旗葉葉鞘干物質(zhì)比倒二葉高43.10%,比倒三葉高130.33%。結(jié)果表明,與正置莖相比,倒置莖頂三葉葉鞘干物質(zhì)積累量差距縮小。與適肥相比,高肥下頂三葉葉鞘干物質(zhì)積累量增加。
2.4 肥力對(duì)小麥順序和非順序衰老同化物轉(zhuǎn)運(yùn)特性的影響
2.4.1 地上營(yíng)養(yǎng)器官花前同化物的轉(zhuǎn)運(yùn)特性 由圖4可以看出,無論正置莖還是倒置莖,參試小麥品種在適肥條件下地上營(yíng)養(yǎng)器官的花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率均高于高肥條件。無論在適肥還是高肥條件下,各參試品種正置莖地上營(yíng)養(yǎng)器官的花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率均高于倒置莖。在適肥條件下,溫麥19正置莖花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率分別比倒置莖高112.47%,112.09%和246.34%,蘭考矮早8分別高15.31%,20.14%和13.44%,豫麥19分別高105.52%,104.73%和172.35%。在高肥條件下,溫麥19正置莖花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率分別比倒置莖高91.04%,89.81%和279.47%,蘭考矮早8分別高9.68%,7.98%和27.70%,豫麥19分別高149.15%,149.30%和326.21%。
2.4.2 地上營(yíng)養(yǎng)器官花后同化物的轉(zhuǎn)運(yùn)特性 由圖5可以看出,無論在適肥還是高肥條件下,各參試品種倒置莖地上營(yíng)養(yǎng)器官的花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率均高于正置莖。在適肥條件下,溫麥19倒置莖花后同化物轉(zhuǎn)運(yùn)量、對(duì)籽粒的貢獻(xiàn)率分別比正置莖高250.71%和113.66%,蘭考矮早8分別高39.22%和3.79%,豫麥19分別高193.30%和95.68%。在高肥條件下,溫麥19倒置莖花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率分別比正置莖高184.59%和77.83%,蘭考矮早8分別高34.45%和5.45%,豫麥19分別高161.40%和97.70%。但倒置莖花后同化物轉(zhuǎn)運(yùn)率均低于正置莖。
從圖4和圖5可以得出,無論在適肥還是高肥條件下,倒置莖地上營(yíng)養(yǎng)器官花前同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率均低于正置莖,而花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率均高于正置莖?;ㄇ巴镛D(zhuǎn)運(yùn)量低有利于維持營(yíng)養(yǎng)器官的正常生理代謝,延遲器官衰老,而花后同化物轉(zhuǎn)運(yùn)量高有利于籽粒的充實(shí),提高籽粒產(chǎn)量,這正是小麥倒置莖的優(yōu)勢(shì)所在。與適肥相比,高肥降低了營(yíng)養(yǎng)器官花前同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率,而提高了花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率,最終提高了籽粒產(chǎn)量。
2.5 肥力對(duì)小麥順序和非順序衰老莖千粒質(zhì)量的影響
從圖6可以看出,無論在適肥還是高肥條件下,參試各小麥品種倒置莖千粒質(zhì)量均大于正置莖。在適肥條件下,溫麥19、蘭考矮早8、豫麥19倒置莖千粒質(zhì)量分別比正置莖高4.21%,3.17%和3.44%;在高肥條件下,溫麥19、蘭考矮早8、豫麥19倒置莖千粒質(zhì)量分別比正置莖高4.05%,2.79%和3.10%。此結(jié)果表明,在生育后期小麥頂三葉非順序衰老有利于籽粒千粒質(zhì)量的提高。
葉片的非順序衰老現(xiàn)象在水稻中也有研究報(bào)道。Mondal等[23]研究發(fā)現(xiàn),在生長(zhǎng)發(fā)育過程中水稻Ratna出現(xiàn)葉片非順序衰老現(xiàn)象,在非順序衰老過程中,水稻旗葉表現(xiàn)出較高的同化物運(yùn)輸能力,導(dǎo)致旗葉的衰老早于倒二葉。小麥葉片的非順序衰老從灌漿后期開始出現(xiàn),表現(xiàn)為旗葉的葉綠素含量、凈蒸騰速率、凈光合速率、抗氧化保護(hù)酶活性等生理指標(biāo)均低于倒二葉[2,24];旗葉的PSⅡ?qū)嶋H光化學(xué)效率、最大光化學(xué)效率、PSⅡ潛在活性也明顯低于倒二葉,旗葉的熱耗散量子比率明顯高于倒二葉[25]。本研究結(jié)果表明,在小麥葉片非順序衰老過程中,旗葉的綠葉面積、干物質(zhì)積累量均小于倒二葉,非順序衰老花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率均高于順序衰老,非順序衰老莖的千粒質(zhì)量顯著高于順序衰老莖,說明在生育后期,小麥葉片的非順序衰老有利于小麥千粒質(zhì)量的提高。分析其可能原因如下:小麥葉片在順序衰老過程中,旗葉是最后衰老的葉片,從揚(yáng)花至成熟,旗葉一直向籽粒輸送養(yǎng)分,倒二葉和倒三葉雖然對(duì)籽粒充實(shí)有貢獻(xiàn),但均先于旗葉衰亡,始終不能占據(jù)一段獨(dú)立的灌漿時(shí)間段,因此在順序衰老過程中,旗葉對(duì)籽粒的充實(shí)具有最重要意義。在小麥葉片非順序衰老過程中,從開花至面團(tuán)期前,旗葉作為籽粒灌漿的主要葉源;而在面團(tuán)期后,旗葉衰老較快,而倒二葉相對(duì)具有較強(qiáng)的活力,繼續(xù)向籽粒提供養(yǎng)分,具有旗葉和倒二葉“接力式”灌漿的特點(diǎn)。另外,小麥葉片發(fā)生非順序衰老時(shí),營(yíng)養(yǎng)器官花后同化物轉(zhuǎn)運(yùn)率較高,說明花后各光合器官光合能力較強(qiáng),有利于提高籽粒質(zhì)量,而花前同化物轉(zhuǎn)運(yùn)率低,有利于維持同化器官正常的生理功能,延遲器官的衰老,最終提高小麥產(chǎn)量。
施肥水平對(duì)葉片的衰老有重要的影響。施肥可使小麥旗葉保護(hù)酶系SOD、CAT活性和可溶性蛋白含量保持在較高水平,并且抑制膜脂過氧化物MDA的產(chǎn)生,延緩葉片衰老[26];施肥可促進(jìn)根、莖、葉和分蘗的增長(zhǎng),增加光合作用,同時(shí)有效延長(zhǎng)根、莖、葉的功能期,促進(jìn)更多光合產(chǎn)物的形成與積累[13]。本研究結(jié)果表明,高肥條件能明顯增大葉片的綠葉面積、增加地上營(yíng)養(yǎng)器官干物質(zhì)的積累,但不能改變?nèi)~片的衰老次序,無論在適肥條件還是高肥條件下,參試小麥品種中均有順序衰老和非順序衰老莖的發(fā)生。衰老是植物發(fā)育的最后階段,不但受環(huán)境和遺傳因素的影響[27-28],而且受衰老基因的調(diào)控[29]。據(jù)報(bào)道,在葉片衰老過程中,大約有800個(gè)與衰老相關(guān)的基因參與表達(dá)[30],因此闡明小麥葉片非順序衰老的內(nèi)在機(jī)理還需開展大量的研究工作。
施肥對(duì)同化物的轉(zhuǎn)運(yùn)有較大的影響,并且隨品種的不同,施肥的影響有所不同。于振文等[31]研究表明,增施氮肥使魯麥22灌漿期同化物向籽粒中分配增加,而魯麥14則在高氮處理下同化物向籽粒的分配率降低。Pheloung等[32]認(rèn)為,小麥開花前合成的同化物有3%~30%重新轉(zhuǎn)運(yùn)到籽粒。呂金印等[10]認(rèn)為,花后同化物對(duì)小麥產(chǎn)量的貢獻(xiàn)較大,花前同化物大部分用于器官構(gòu)建,但干旱脅迫下籽粒生長(zhǎng)更多地依賴于花前積累的干物質(zhì)[11]。郭文善等[8]認(rèn)為,增施氮肥增加了花前同化物積累量、花后同化物貯藏量、總輸出量和輸出率。王月福等[9]研究表明,增施氮肥有利于促進(jìn)花前小麥營(yíng)養(yǎng)體內(nèi)貯藏同化物向籽粒中的運(yùn)轉(zhuǎn),有利于促進(jìn)花后同化物的積累,但轉(zhuǎn)運(yùn)率下降。本試驗(yàn)研究結(jié)果與上述報(bào)道不盡相同。本研究結(jié)果表明,高肥條件增加了小麥頂三葉同化物的積累量,降低了地上營(yíng)養(yǎng)器官的花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率,提高了花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率,而降低了花后同化物的轉(zhuǎn)運(yùn)率。非順序衰老莖地上營(yíng)養(yǎng)器官的花前同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒的貢獻(xiàn)率均低于順序衰老莖,而花后同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率均高于順序衰老莖。綜上所述,花前同化物主要用于器官的建成和器官生命的維持,花前同化物轉(zhuǎn)運(yùn)量和轉(zhuǎn)運(yùn)率低,有利于延緩小麥植株的衰老,延長(zhǎng)小麥葉片的功能期,而花后較高的同化物轉(zhuǎn)運(yùn)量和對(duì)籽粒的貢獻(xiàn)率,有利于小麥籽粒產(chǎn)量的形成,這正是非順序衰老莖千粒質(zhì)量較高的原因所在。
[1] Zhang S W.Concept,characteristics and future of cold type wheat [J].Science Foundation in China,2007,15(1):51-56.
[2] 張嵩午,王長(zhǎng)發(fā),姚有華.小麥葉片的逆向衰老 [J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(11):2229-2238.
Zhang S W,Wang C F,Yao Y H.Inverted senescing sequence of wheat leaves [J].Scientia Agricultura Sinica,2010,43(11):2229-2238.(in Chinese)
[3] Feller U.Proteolytic enzymes in relation to leaf senescence [C]//Dalling M J.Plant proteolytic enzymes (Vol 2).Boca Raton,Fla:CRC Press,1986:49-68.
[4] 沈成國(guó),關(guān)軍鋒.植物衰老生理與分子生物學(xué) [M].北京:中國(guó)農(nóng)業(yè)出版社,2001:8-15,31-33.
Shen C G,Guan J F.Plant senescence physiology and molecular biology [M].Beijing:China Agricultural Press,2001:8-15,31-33.(in Chinese)
[5] 馬冬云,郭天財(cái),王晨陽(yáng),等.施氮量對(duì)冬小麥灌漿期光合產(chǎn)物積累、轉(zhuǎn)運(yùn)及分配的影響 [J].作物學(xué)報(bào),2008,34(6):1027-1033.
Ma D Y,Guo T C,Wang C Y,et al.Effects of nitrogen application rates on accumulation,translocation,and partitioning of photosynthate in winter at grain filling stage [J].Acta Agron Sin,2008,34(6):1027-1033.(in Chinese)
[6] 魏其克,李紅霞.肥力對(duì)冬小麥營(yíng)養(yǎng)體內(nèi)光合產(chǎn)物積累運(yùn)轉(zhuǎn)及產(chǎn)量的影響 [J].干旱地區(qū)農(nóng)業(yè)研究,1996(4):12-16.
Wei Q K,Li H X.Effect of different soil fertility on winter wheat photosynthetic yield accumulation and translocation and yield after flowering [J].Agricultural Research in the Arid Areas,1996(4):12-16.(in Chinese)
[7] 楊兆生,許紅霞,梁文科.小麥葉片、穗、芒對(duì)粒重的作用及品種間效應(yīng)的研究 [J].麥類作物學(xué)報(bào),1995(4):38-39.
Yang Z S,Xu H X,Liang W K.Study on the effect and varieties of grain weight in wheat leaves,spike effect and awn [J].J Triticeae Crops,1995(4):38-39.(in Chinese)
[8] 郭文善,封超年,嚴(yán)六零,等.小麥開花后源庫(kù)關(guān)系分析 [J].作物學(xué)報(bào),1995,21(3):334-340.
Guo W S,Feng C N,Yan L L,et al.Analysis on source sink relationship after anthesis in wheat [J].Acta Agron Sin,1995,21(3):334-340.(in Chinese)
[9] 王月福,于振文,李尚霞,等.氮素營(yíng)養(yǎng)水平對(duì)小麥開花后碳素同化、運(yùn)轉(zhuǎn)和產(chǎn)量的影響 [J].麥類作物學(xué)報(bào),2002,22(2):55-57.
Wang Y F,Yu Z W,Li S X,et al.Effect of nitrogen nutrition on carbon assimilation and transfer and yield after wheat anthesis [J].J Triticeae Crops,2002,22(2):55-57.(in Chinese)
[10] 呂金印,劉 軍,高俊鳳.春小麥花前14C同化物分配與累積研究 [J].核農(nóng)學(xué)報(bào),1999,13(6):357-361.
Lü J Y,Liu J,Gao J F.14C assimilate distribution and accumulation of hybrid spring wheat during fore anthesis [J].Acta Agric Nucl Sin,1999,13(6):357-361.(in Chinese)
[11] 王志敏,王樹安,蘇寶林.小麥莖稈貯藏物質(zhì)的積累與再運(yùn)轉(zhuǎn) [J].北京農(nóng)業(yè)大學(xué)學(xué)報(bào),1994,20(4):369-374.
Wang Z M,Wang S A,Su B L.Accumulation and remobilization of stem reserves in wheat [J].Acta Agric Univ Pekinensis,1994,20(4):369-374.(in Chinese)
[12] 陳萬(wàn)金,信乃詮.中國(guó)北方旱地農(nóng)業(yè)綜合發(fā)展與對(duì)策 [M].北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,1994:152-155.
Chen W J,Xin N Q.China northern dryland agriculture comprehensive development and countermeasures [M].Beijing:China Agricultural Science and Technology Press,1994:152-155.(in Chinese)
[13] 閆素紅,蔡忠民,楊兆生,等.不同肥力對(duì)晚播小麥開花后地上器官干物質(zhì)積累運(yùn)轉(zhuǎn)及產(chǎn)量的影響 [J].麥類作物學(xué)報(bào),2000,20(3):46-49.
Yan S H,Cai Z M,Yang Z S,et al.Effects of different fertility on yield and canopy biomass accumulation and distribution after anthesis of later sowing wheat [J].J Triticeae Crops,2000,20(3):46-49.(in Chinese)
[14] 孔麗紅,趙玉路,周福平.簡(jiǎn)述小麥干物質(zhì)積累轉(zhuǎn)運(yùn)與高產(chǎn)的關(guān)系 [J].山西農(nóng)業(yè)科學(xué),2007,35(8):6-8.
Kong L H,Zhao Y L,Zhou F P.The relations of the high production and the wheat dry matter accumulation and the revolution [J].Journal of Shanxi Agricultural Sciences,2007,35(8):6-8.(in Chinese)
[15] 范雪梅,戴廷波,姜 東,等.花后干旱與漬水下氮素供應(yīng)對(duì)小麥碳氮運(yùn)轉(zhuǎn)的影響 [J].水土保持學(xué)報(bào),2004,8(6):63-68.
Fan X M,Dai T B,Jiang D,et al.Effects of nitrogen rates on carbon and nitrogen assimilate translocation in wheat grown under drought and water logging from anthesis to maturity [J].J Soil & Water Conserv,2004,8(6):63-68.(in Chinese)
[16] 馬東輝,王月福,周 華,等.氮肥和花后土壤含水量對(duì)小麥干物質(zhì)積累、運(yùn)轉(zhuǎn)及產(chǎn)量的影響 [J].麥類作物學(xué)報(bào),2007,27(5):847-851.
Ma D H,Wang Y F,Zhou H,et al.Effect of postanthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat [J].J Triticeae Crops,2007,27(5):847-851.(in Chinese)
[17] Patterson T G,Moss D N.Senescence in field grown wheat [J].Crop Science,1979,19(5):635-640.
[18] Maria R G,Patricia A A,AtiUo J B.Effect of source sink relations and nitrogen nutrition on senescence and N remobilization in the flag leaf of wheat [J].Physiologia Plantarum,1991,82:278-284.
[19] Zhang S W,Miao F,Wang C F.Low temperature wheat germplasm and its leaf photosynthetic traits and structure characteristics [J].Progress in Natural Science,2004,14(6):483-488.
[20] Zhang S W,Miao F,Feng B L,et al.Some traits of low temperature germplasm wheat under extremely unfavorable weather conditions [J].Progress in Natural Science,2001,11(12):911-917.
[21] 楊俊峰,龔月樺,王俊儒,等.旱地覆膜對(duì)小麥干物質(zhì)積累及轉(zhuǎn)運(yùn)特性的影響 [J].麥類作物學(xué)報(bào),2005,25(6):96-99.
Yang J F,Gong Y H,Wang J R,et al.Effects of film mulching on dry matter accumulation and transportation characteristics of wheat in dry land area [J].J Triticeae Crops,2005,25(6):96-99.(in Chinese)
[22] Cox M C,Qualset C O,Rains D W.Genetic variation for nitrogen assimilation and translocation in wheat:Ⅰ.Dry matter and nitrogen accumulation to grain [J].Crop Sci,1985,25:430-435.
[23] Mondal W A,Choudhuri M A.Sequential and non-sequential pattern of monocarpic senescence in two rice cultivars [J].Physiol Plant,1984,61:287-292.
[24] 張嵩午,王長(zhǎng)發(fā),苗 芳,等.旗葉先衰型小麥生長(zhǎng)后期頂三葉光合特性及其意義 [J].作物學(xué)報(bào),2012,38(12):2258-2266.
Zhang S W,Wang C F,Miao F,et al.Photosynthetic characteristics and its significance of top most three leaves at fruiting stage in wheat with presenile flag leaf [J].Acta Agron Sin,2012,38(12):2258-2266.(in Chinese)
[25] 白月梅,黃 薇,張邦杰,等.小麥葉片逆向衰老中葉綠素及熒光參數(shù)的變化 [J].西北農(nóng)業(yè)學(xué)報(bào),2013,22(7):95-99.
Bai Y M,Huang W,Zhang B J,et al.Variations of chlorophyll content and chlorophyll fluorescence parameters during inverted senescing process of wheat leaves [J].Acta Agriculturae Boreali-Occidentalis Sinica,2013,22(7):95-99.(in Chinese)
[26] 石 巖,于振文,位東斌,等.施肥深度對(duì)旱地小麥花后旗葉衰老及產(chǎn)量的影響 [J].西北植物學(xué)報(bào),1999,19(6):139-142.
Shi Y,Yu Z W,Wei D B,et al.Effects of fertilizer application depth on senescence of flag leaf after anthesis and yield in dry land wheat [J].Acta Botanica Boreali-Occidentalia Sinica,1999,19(6):139-142.(in Chinese)
[27] He Y,Tang W,Swain J D,et al.Networking senescence-regul-ating pathways by usingArabidopsisenhancer trap lines [J].Plant Physiol,2001,126:707-716.
[28] Ingrid B D,Joseph J K.Molecular mechanisms of cytokinin action [J].Plant Biol,1999,2:359-364.
[29] Liu L,Zhou Y,Zhou G,et al.Identification of early senescence-associated genes in rice flag leaves [J].Plant Mol Biol,2008,67:37-55.
[30] Nooden L D,Guiamet J J,John I.Senescence mechanisms [J].Physiol Plantarum,1997,101:746-753.
[31] 于振文,潘慶民,姜 東,等.9 000 kg/公頃小麥?zhǔn)┑颗c生理特性分析 [J].作物學(xué)報(bào),2003,29(1):37-43.
Yu Z W,Pan Q M,Jiang D,et al.Analysis of the amount of nitrogen wheat of the yield level of 9 000 kg applied and physiological characteristics in per hectare [J].Acta Agron Sin,2003,29(1):37-43.(in Chinese)
[32] Pheloung P C,Siddique K H M.Contribution of stem dry matter to grain yield in wheat cultivars [J].Aust Plant Physiol,1991,18:52-64.
Effects of fertilizer on accumulation and transport of assimilative matter in sequential and non-sequential senescence stems of winter wheat
HUANG Weia,YANG Xiab,YI Huab,LIU Dang-xiaob,MIAO Fangb,WANG Chang-faa
(aCollegeofAgronomy,bCollegeofLifeSciences,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
【Objective】 The accumulation and transportation characteristics of assimilative matter in top three leaves and organs aboveground in sequential and non-sequential senescent stems were researched under high and appropriate fertilizer levels in order to provide theoretical guidance for understanding the physiological and biochemical mechanisms of non-sequential senescence.【Method】 Wenmai 19,Yumai 19 and Lankaoaizao 8 with high non-sequential senescence rates were planted at appropriate (urea 150 kg/hm2,ammonium dihydrogen phosphate 225 kg/hm2,and top dressing urea 75 kg/hm2) and high (urea 225 kg/hm2,ammonium dihydrogen phosphate 337 kg/hm2,and top dressing urea 112 kg/hm2) fertilizer levels.Conventional and inverted wheat stems were collected in anthesis (April 22),non-sequential senescence (May 16) and harvest periods,and green leaf area and dry weights of leaf,sheath,organs aboveground,spike and grain were measured and compared.【Result】 With appropriate and high fertilizer levels,the area of green leaf in conventional stems was in the order of flag leaf >top second leaf >top third leaf,while in inverted stems were in the order of top second leaf>flag leaf >top third leaf.The dry matter accumulation of flag leaf in conventional stems was close to that of top second leaf and top third leaf.The dry matter accumulation of top second leaf in inversed stems was significantly greater than that of flag leaf and top third leaf.The dry matter accumulation was in the order of flag leaf sheath >top second leaf sheath>top third leaf sheath in both conventional stems and inversed stems.The transport amount,transportation rate and contribution to seeds of aboveground organs in conventional stems before anthesis were higher than that in inversed stems,while the transport amount and contribution after anthesis were lower than that in inversed stems.1 000-grain weight in conventional stems was significantly lower than that in inverted stems.Compared with appropriate fertilizer level,high fertilizer delayed leaf senescence,reduced assimilate transportation before anthesis,increased dry matter accumulation and 1 000-grain weight.【Conclusion】 In high and appropriate fertilizer levels,non-sequential senescence phenomenon occurred in all experimental wheat and it was beneficial to enrichment of grain.
winter wheat;non-sequential senescence;fertility level;assimilative matter accumulation
2014-01-02
國(guó)家自然科學(xué)基金項(xiàng)目“葉片逆向衰老小麥生態(tài)變異特征及其形成機(jī)理”(31170366)
黃 薇(1988-),女,陜西岐山人,在讀碩士,主要從事植物資源研究。
王長(zhǎng)發(fā)(1967-),男,河北南宮人,副教授,主要從事作物栽培與種質(zhì)資源研究。
時(shí)間:2015-05-11 15:02
10.13207/j.cnki.jnwafu.2015.06.005
S512.1+1
A
1671-9387(2015)06-0079-09
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20150511.1502.005.html