• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      繩系衛(wèi)星編隊(duì)動力學(xué)及控制研究進(jìn)展*

      2015-03-01 08:39:38余本嵩文浩金棟平
      關(guān)鍵詞:繩系系繩構(gòu)形

      余本嵩 文浩 金棟平

      (南京航空航天大學(xué)機(jī)械結(jié)構(gòu)力學(xué)及控制國家重點(diǎn)實(shí)驗(yàn)室,南京 210016)

      引言

      繩系系統(tǒng)作為空間探索的一種新型飛行器,在深空探測、樣本采集、軟攻防等領(lǐng)域具有廣闊的應(yīng)用前景[1-4].多體繩系衛(wèi)星編隊(duì)是繩系系統(tǒng)技術(shù)的重要擴(kuò)展,由于具有可靠性強(qiáng)、穩(wěn)定性高、成本低、易于重構(gòu)等特征[5-7],使其在空間運(yùn)輸、極光觀測、三維探察及干涉測量等方面被廣泛重視[8-11].

      多體繩系衛(wèi)星編隊(duì)是由兩體繩系衛(wèi)星系統(tǒng)演化而來,通常由多個衛(wèi)星或航天器在空間范圍內(nèi)相對靜止地組成某種特定的構(gòu)形,同時星體間通過特制系繩連接,如圖1所示.一般地,多體繩系衛(wèi)星是進(jìn)入預(yù)定空間軌道后再按照一定的任務(wù)要求展開成相應(yīng)的編隊(duì)構(gòu)形,此外,還可以根據(jù)任務(wù)需求及變化進(jìn)行編隊(duì)重構(gòu).

      圖1 多體繩系衛(wèi)星編隊(duì)系統(tǒng)Fig.1 The multi-tethered satellite formation system

      繩系衛(wèi)星編隊(duì)所處空間環(huán)境特殊、自身構(gòu)形種類繁多、柔性系繩動力學(xué)特性復(fù)雜,需要對編隊(duì)構(gòu)形及穩(wěn)定性、周期運(yùn)動、展開/回收動力學(xué)及控制、衛(wèi)星剛體姿態(tài)的影響等開展研究.

      1 編隊(duì)構(gòu)形及穩(wěn)定性

      空間多體繩系衛(wèi)星系統(tǒng)以一定的編隊(duì)構(gòu)形在軌飛行,按照編隊(duì)所占據(jù)的空間維度,系統(tǒng)構(gòu)形可分為一維、二維及三維構(gòu)形.一維構(gòu)形,即編隊(duì)系統(tǒng)中所有衛(wèi)星都分布在一條直線上[12],如圖2所示;二維構(gòu)形,是指系統(tǒng)中全部衛(wèi)星皆處于同一平面內(nèi),研究較多的構(gòu)形有環(huán)形[13]、開軸-輻形[14]、閉軸-輻形[15]及TetraStar構(gòu)形[16]等,如圖3所示;三維構(gòu)形,指的是系統(tǒng)中所有衛(wèi)星不在同一平面內(nèi),此類構(gòu)形較為復(fù)雜,典型的有四面體形[17]、雙四面體形[18]、雙金字塔形[19]等,如圖4所示.此外,還有一些其它構(gòu)形也同樣受到關(guān)注[20-24].

      圖2 一維構(gòu)形Fig.2 One-dimensional configuration

      圖3 二維構(gòu)形Fig.3 Two-dimensional configuration

      圖4 三維構(gòu)形Fig.4 Three-dimensional configuration

      若按照繩系衛(wèi)星編隊(duì)的穩(wěn)定飛行形式,系統(tǒng)還可分為靜態(tài)構(gòu)形和動態(tài)構(gòu)形[25].對于靜態(tài)構(gòu)形,系統(tǒng)編隊(duì)與軌道坐標(biāo)系保持相對靜止.靜態(tài)構(gòu)形主要包括一維重力梯度穩(wěn)定構(gòu)形,如圖2(a)所示;一維阻力穩(wěn)定構(gòu)形,如圖2(b)所示;二維重力梯度-阻力穩(wěn)定構(gòu)形,如圖5(a)所示;二維重力梯度-電磁力穩(wěn)定構(gòu)形,如圖5(b)所示.而對于動態(tài)構(gòu)形,系統(tǒng)編隊(duì)相對于軌道坐標(biāo)系旋轉(zhuǎn),即飛行編隊(duì)是通過系統(tǒng)自旋從而使系繩拉緊以達(dá)到穩(wěn)定的目的.動態(tài)構(gòu)形主要包括二維離心力穩(wěn)定構(gòu)形,如圖6(a)所示;三維離心力-重力穩(wěn)定構(gòu)形,如圖6(b)所示.需指出的是,以上提及的動態(tài)平衡構(gòu)形其旋轉(zhuǎn)軸通常都是指向地球表面或垂直于軌道平面.

      圖5 靜態(tài)構(gòu)形Fig.5 Static configuration

      圖6 動態(tài)構(gòu)形Fig.6 Dynamic configuration

      除此以外,還存在一類較為特殊的相對平衡構(gòu)形,即以Likins-Pringle相對平衡為基線的編隊(duì)構(gòu)形[26,27].Likins-Pringle平衡又可分為三種相對平衡狀態(tài),即編隊(duì)構(gòu)形分別呈圓柱形、雙曲線形及圓錐形.這三種構(gòu)形的旋轉(zhuǎn)軸相對于軌道坐標(biāo)系保持固定,且角速率與軌道平均角速率相同,其中,圓柱形的旋轉(zhuǎn)軸垂直于軌道平面,如圖7(a)所示;雙曲線形的旋轉(zhuǎn)軸垂直于當(dāng)?shù)卮咕€,如圖7(b)所示;圓錐形的旋轉(zhuǎn)軸垂直于軌道切線,如圖7(c)所示.

      圖7 相對平衡Fig.7 Relative equilibrium

      對于以上三種相對平衡構(gòu)形,若采用三維環(huán)形繩系衛(wèi)星編隊(duì),圓柱形和雙曲線形的自旋軸將垂直于天底方向,故編隊(duì)在地球上的投影是一條線,這不適合編隊(duì)系統(tǒng)進(jìn)行地球觀測;而圓錐形繩系衛(wèi)星編隊(duì)的自旋軸則是垂直于軌道切線的,在地球表面的投影是一個橢圓形,這可以增大對地觀測范圍,所以此圓錐形相對平衡構(gòu)形被較多采用[28].

      由于繩系衛(wèi)星編隊(duì)構(gòu)形較為復(fù)雜,人們對系統(tǒng)穩(wěn)定性的研究雖然取得了一些進(jìn)展,但仍存在不小的局限性.如學(xué)者們僅從數(shù)值角度論證了,除直線形構(gòu)形外絕大多數(shù)空間編隊(duì)是自旋穩(wěn)定的;當(dāng)自旋平面與軌道平面重合或垂直時,不同衛(wèi)星數(shù)目的開(閉)軸-輻形編隊(duì)在一定自旋角速率下都可以實(shí)現(xiàn)自旋穩(wěn)定,但此自旋角速率閥值與衛(wèi)星數(shù)目、自旋傾角等重要的系統(tǒng)參數(shù)關(guān)系尚不明確;Likins-Pringle相對平衡構(gòu)形并非是Lyapunov意義下的穩(wěn)定等.常見繩系衛(wèi)星編隊(duì)構(gòu)形及穩(wěn)定性如表1所示.

      表1 常見繩系衛(wèi)星編隊(duì)構(gòu)形及穩(wěn)定性Table 1 Formation configuration and stability of tethered satellite

      圖8 軸-輻形構(gòu)形Fig.8 Hub-and-spoke configuration

      2 動力學(xué)與控制

      繩系衛(wèi)星編隊(duì)系統(tǒng)的動力學(xué)與控制研究成果豐富,不過在系統(tǒng)基礎(chǔ)方程的建立上還是相對統(tǒng)一的.譬如,系統(tǒng)模型構(gòu)建及動力學(xué)響應(yīng)研究通常使用第二類Lagrange方程或Newton第二定律[31-32];討論衛(wèi)星剛體姿態(tài)問題時經(jīng)常涉及動量矩定理[33]等.最近,有學(xué)者提出利用圖論方法研究系統(tǒng)編隊(duì)的復(fù)雜構(gòu)形[34].

      2.1 周期運(yùn)動

      空間多體繩系衛(wèi)星編隊(duì)系統(tǒng)存在著豐富的動力學(xué)行為,主要有兩類運(yùn)動頗受學(xué)者們關(guān)注,即圍繞系統(tǒng)質(zhì)心的自旋運(yùn)動和類似單擺的系繩振蕩.關(guān)于系統(tǒng)自旋運(yùn)動穩(wěn)定性的主要研究成果已列于表1,其中Pizarro-Chong等在數(shù)值研究中發(fā)現(xiàn),對運(yùn)行于圓周軌道的開(閉)軸-輻形繩系衛(wèi)星編隊(duì),若衛(wèi)星體數(shù)目不小于4,自旋編隊(duì)構(gòu)形通常是穩(wěn)定的[7].Kumar等在對三角形繩系衛(wèi)星編隊(duì)進(jìn)行數(shù)值仿真時發(fā)現(xiàn),此類編隊(duì)的自旋速率必須大于軌道速率的0.58倍才能保持系統(tǒng)在軌道平面內(nèi)自旋穩(wěn)定[30].此外,Williams分別對三維三體和雙金字塔形兩類繩系衛(wèi)星編隊(duì)進(jìn)行了討論,通過利用系繩拉伸進(jìn)行最優(yōu)控制實(shí)現(xiàn)了系統(tǒng)轉(zhuǎn)軸朝地的周期自旋運(yùn)動[35-36].

      同時,系繩振蕩也受到人們的持續(xù)關(guān)注.比如,Modi等分別將系繩考慮為剛性桿和柔性體模型,深入研究了多體繩系衛(wèi)星編隊(duì)中系繩的橫向與縱向、面內(nèi)與面外振蕩[37-39].Arrell等論述了對深空旋轉(zhuǎn)繩系干涉儀研究的初步結(jié)果,采用偏移控制和yo-yo控制抑制系繩的面內(nèi)和面外振蕩,同時提出利用系繩動力學(xué)實(shí)現(xiàn)繩系干涉儀的重新定位[40].Nakanishi等運(yùn)用Lyapunov指數(shù)、Poincaré映射、van del Pol平面等多種非線性方法,分析了橢圓軌道下多體繩系衛(wèi)星編隊(duì)中系繩周期運(yùn)動的穩(wěn)定性[41].Kojima等提出了一種“群電動繩系衛(wèi)星”系統(tǒng),這種新型編隊(duì)可在所謂的“磁盤”軌道上實(shí)現(xiàn)軌道面外飛行,也可利用電動繩實(shí)現(xiàn)面內(nèi)運(yùn)動,而且通過同步控制能夠使系繩做4p-周期的運(yùn)動[42].Fedi等考慮重力梯度及系繩拉力的影響,數(shù)值分析了軌道面內(nèi)(外)開(閉)軸-輻形及雙金字塔形五種繩系衛(wèi)星編隊(duì),討論了系繩的橫向周期振蕩[43-45].

      另外,基于限制性三體問題,在日-地系統(tǒng)中存在五個引力平衡點(diǎn),即日-地平動點(diǎn)L1、L2、L3、L4和L5,如圖9所示.這些平動點(diǎn)附近沒有重力梯度、殘余大氣、地磁場等外部攝動,為各類空間科學(xué)研究的展開提供了良好條件.其中L1與L2兩點(diǎn)距地球最近,且位于L2平動點(diǎn)附近的航天器能夠始終背向太陽和地球,易于保護(hù)和校準(zhǔn),故更適合于放置空間天文設(shè)備.因此,繩系衛(wèi)星編隊(duì)在L2平動點(diǎn)附近的力學(xué)問題也吸引了不少學(xué)者的目光,如Wong等重點(diǎn)研究了開軸-輻形繩系衛(wèi)星編隊(duì)在L2平動點(diǎn)附近的動力學(xué)行為,利用線性二次型控制器對系繩的面內(nèi)、面外天平擺動進(jìn)行了有效抑制,還設(shè)計(jì)了一套線性反饋控制器通過調(diào)節(jié)系繩長度及角位移實(shí)現(xiàn)系統(tǒng)的螺旋展開[46-48].蔡志勤團(tuán)隊(duì)建立了三維繩系衛(wèi)星編隊(duì)在L2平動點(diǎn)附近halo軌道的非線性多體耦合動力學(xué)方程,對系統(tǒng)的周期軌道運(yùn)動、自旋及非自旋穩(wěn)定性、面內(nèi)(外)系繩振動、最優(yōu)軌跡控制等諸多力學(xué)問題進(jìn)行了深入探究[49-54].最近,他們考慮軌-姿耦合,研究了L2平動點(diǎn)附近旋轉(zhuǎn)三角形繩系衛(wèi)星編隊(duì)的運(yùn)動穩(wěn)定性,數(shù)值結(jié)果表明自旋速率及運(yùn)行軌道對系統(tǒng)的穩(wěn)定性影響很大[55-57].

      圖9 日-地平動點(diǎn)Fig.9 Sun-Earth libration points

      2.2 展開與回收

      對于空間多體繩系衛(wèi)星系統(tǒng),其穩(wěn)定展開直接關(guān)系到系統(tǒng)后期能否正常工作,另一方面,穩(wěn)定回收與系統(tǒng)安全也是息息相關(guān)的,目前此方面也已產(chǎn)生較多的研究成果.譬如,Nakaya等基于虛擬結(jié)構(gòu)法,分別利用角動量和系繩拉力生成系繩釋放控制命令實(shí)現(xiàn)了三體環(huán)形繩系衛(wèi)星編隊(duì)展開,最后通過數(shù)值和地面仿真實(shí)驗(yàn)驗(yàn)證了此編隊(duì)展開控制策略[58].Kumar等在研究軌道面內(nèi)三角形及直線形繩系衛(wèi)星編隊(duì)的平衡條件時,也提出了一套系統(tǒng)展開控制策略,通過不斷變化自旋速率,系統(tǒng)能夠以一個較小的系繩釋放速率穩(wěn)定展開[29-30].此外,Kumar等還設(shè)計(jì)了一套繩長控制律,使三體串形繩系衛(wèi)星編隊(duì)可以沿水平方向穩(wěn)定展開/回收[59].Williams等基于系繩拉力控制,研究了三體環(huán)形繩系衛(wèi)星編隊(duì)的自旋展開問題,通過構(gòu)造最優(yōu)展開/回收軌跡函數(shù)以在最優(yōu)機(jī)動時間下完成構(gòu)形變化[60-61].Kim等設(shè)計(jì)了一套自適應(yīng)輸出反饋控制器,實(shí)現(xiàn)了TetraStar形繩系衛(wèi)星編隊(duì)的漸近穩(wěn)定展開[62].劉麗麗等討論了一類面內(nèi)三體繩系衛(wèi)星編隊(duì)系統(tǒng)的最優(yōu)回收控制問題,針對不同回收初值及回收初值受擾情況,數(shù)值研究了此類繩系編隊(duì)的最優(yōu)控制張力及飛行軌跡[63].基于時變的離散系繩單元,可以通過僅改變離系繩收放點(diǎn)最近單元的屬性來仿真系繩的收放過程,并于適當(dāng)時刻在離散單元鏈的最前端加入/移除一個單元,從而實(shí)現(xiàn)多體柔性繩系衛(wèi)星編隊(duì)展開/回收過程的數(shù)值模擬[64].McKenzie分析了在動量交換繩作用下空間多體繩系系統(tǒng)展開過程的動力學(xué)特性,討論了軌道偏心率、系繩制動、繩長控制律等對釋放過程的影響[65].蔡志勤等在討論L2平動點(diǎn)附近非自旋繩系衛(wèi)星編隊(duì)時發(fā)現(xiàn),系繩在釋放階段的天平振動比回收時穩(wěn)定得多[52].同時,他們采用線性系繩收放控制律,數(shù)值分析了L2平動點(diǎn)附近三角形繩系衛(wèi)星編隊(duì)展開/回收過程的穩(wěn)定性,同時討論了初始旋轉(zhuǎn)速率及耦合的軌道振幅對收放過程的影響[66].

      2.3 剛體姿態(tài)控制

      對于空間飛行的繩系衛(wèi)星編隊(duì),由于內(nèi)部安裝有大量精密儀器或在觀測時的精度要求,衛(wèi)星本體的剛體姿態(tài)往往不能忽略.如Modi等討論了一類空間繩系衛(wèi)星編隊(duì)-平臺系統(tǒng)的剛體動力學(xué)問題,通過Lyapunov方法將剛體平臺控制到平衡位置[67].同時,他們還研究了運(yùn)行于三維空間的多體繩系衛(wèi)星編隊(duì),考慮柔性系繩橫向及縱向振動對衛(wèi)星剛體的影響,提出利用線性反饋技術(shù)和線性二次高斯/回路轉(zhuǎn)換復(fù)原法對衛(wèi)星剛體天平動及系繩振蕩進(jìn)行抑制[68].Takeichi等數(shù)值分析了橢圓軌道下多體繩系衛(wèi)星編隊(duì)的子星姿態(tài)動力學(xué),通過Poincaré映射發(fā)現(xiàn)大氣阻尼及重力梯度變化會導(dǎo)致處于周期運(yùn)動的子星失穩(wěn)[69].Nakaya等計(jì)入衛(wèi)星姿態(tài),使用虛擬結(jié)構(gòu)法實(shí)現(xiàn)了自旋繩系衛(wèi)星編隊(duì)的構(gòu)形機(jī)動[70].Vogel以空間遙感任務(wù)為背景,在其博士學(xué)位論文中詳細(xì)描述了各類構(gòu)形的多體繩系衛(wèi)星編隊(duì),通過推進(jìn)力、預(yù)調(diào)卷軸及拉力卷軸等完成對衛(wèi)星剛體的姿態(tài)控制[71].Chung等先后采用線性控制、非線性控制、分散控制、同步控制,討論了多體繩系衛(wèi)星的衛(wèi)星剛體姿態(tài)控制問題;此外,還介紹了已開展的空間繩系衛(wèi)星編隊(duì)實(shí)驗(yàn)器件及實(shí)施方法,展示了測試平臺及初步的實(shí)驗(yàn)結(jié)果[11,72-76].文浩等通過氣浮實(shí)驗(yàn)裝置對空間繩系衛(wèi)星的編隊(duì)構(gòu)形、收放控制、位移測量及剛體姿態(tài)進(jìn)行了二維物理仿真[77],如圖10所示.Chang等采用狀態(tài)相關(guān)Riccati法控制器對衛(wèi)星剛體姿態(tài)進(jìn)行誤差調(diào)節(jié),實(shí)現(xiàn)了三維三體繩系衛(wèi)星編隊(duì)的全局漸近穩(wěn)定控制[78].黃靜等考慮一類直線形三體旋轉(zhuǎn)繩系衛(wèi)星的參數(shù)不確定性及未知有界干擾,設(shè)計(jì)了一套分布式魯棒最優(yōu)控制器,對衛(wèi)星剛體進(jìn)行姿態(tài)跟蹤控制[79];同時,又針對此類系統(tǒng)的外部有界干擾和控制飽和問題,提出一套分布式欠驅(qū)動非線性控制器,僅通過力矩作用便能使該欠驅(qū)動系統(tǒng)的衛(wèi)星剛體姿態(tài)能夠以較高的精度跟蹤并達(dá)到期望狀態(tài)[80].

      圖10 繩系衛(wèi)星編隊(duì)仿真器Fig.10 Simulators for tethered satellite formation

      3 展望

      不難看出,繩系衛(wèi)星編隊(duì)構(gòu)形及穩(wěn)定性、自旋運(yùn)動、系繩振動、L2平動點(diǎn)附近周期運(yùn)動、系統(tǒng)展開/回收、衛(wèi)星剛體姿態(tài)的動力學(xué)及控制研究已取得不少進(jìn)展,而且空間多體繩系衛(wèi)星編隊(duì)因其潛在的應(yīng)用前景也必將會受到更多學(xué)者的密切關(guān)注.但是,在取得豐碩成果的同時仍有許多不足,基于以上論述,我們可將今后的研究放眼于以下幾方面:

      (1)高維多自由度繩系衛(wèi)星編隊(duì)飛行的理論分析.目前繩系衛(wèi)星編隊(duì)構(gòu)形的穩(wěn)定性、動力學(xué)行為、控制方法等大多使用數(shù)值方法.

      (2)多物理場耦合因素對系統(tǒng)的影響研究.諸如J2攝動、空間碎片沖擊、熱交變、太陽光壓等空間環(huán)境對系統(tǒng)擾動的影響研究尚不充分.

      (3)編隊(duì)構(gòu)形地面實(shí)驗(yàn)研究.目前地面實(shí)驗(yàn)研究僅局限于簡單繩系衛(wèi)星編隊(duì),復(fù)雜編隊(duì)尤其是三維空間編隊(duì)構(gòu)形實(shí)驗(yàn)無人嘗試.

      1 Sanmartín JR,Lorenzini E C,Martinez-Sanchez M.Electrodynamic tether applications and constraints.Journal of Spacecraft and Rockets,2010,47(3):442~456

      2 Peláez J,Bombardelli C,Scheeres D J.Dynamics of a tethered observatory at Jupiter.Journal of Guidance,Control,and Dynamics,2012,35(1):195~207

      3 Woo P,Misra A K.Mechanics of very long tethered systems.Acta Astronautica,2013,87(1):153~162

      4 Zhang F,Sharf I,Misra A K,et al.On-line estimation of inertia parameters of space debris for its tether-assisted removal.Acta Astronautica,2015,107(1):150~162

      5 Williams P.Dynamics of tethered satellite formations.In:Proceedings of AAS/AIAA Space Flight Mechanics Meeting,San Antonio,USA,2002

      6 朱振才,楊根慶,余金培等.微小衛(wèi)星組網(wǎng)與編隊(duì)技術(shù)的發(fā)展.上海航天,2004,6(1):46~49(Zhu Z C,Yang G Q,Yu JP,et al.The development of micro-satellite network and formation technologies.Aerospace Shanghai,2004,6(1):46~49(in Chinese))

      7 Pizarro-Chong A,Misra A K.Dynamics of a multi-tethered satellite formation.In:Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Providence,USA,2004

      8 Misra A K,Amier Z,Modi V J.Attitude dynamics of three-body tethered systems.Acta Astronautica,1988,17(10):1059~1068

      9 Tan Z,Bainum P M.Tethered satellite constellations in auroral observation mission.In:Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Monterey,USA,2002

      10 Topal E,Daybege U.Dynamics of a trianglar tethered satellite system on a low earth orbit.In:Proceedings of 2nd International Conference on Recent Advances in Space Technologies,Istanbul,Turkey,2005

      11 Chung SJ.Nonlinear control and synchronization of multiple lagrangian systems with application to tethered formation flight spacecraft[PhD Thesis].Cambridge:Massachusetts Institute of Technology,2007

      12 Corrêa A A,Gómez G.Equilibrium configurations of a four-body tethered system.Journal of Guidance,Control,and Dynamics,2006,29(6):1430~1435

      13 Kim M,Hall C D.Control of a rotating variable-length tethered system.Journal of Guidance,Control,and Dynamics,2004,27(5):849~858

      14 Misra A K,Pizzaro-Chong A.Dynamics of tethered satellites in a hub-spoke formation.In:Proceedings of AAS/AIAA Astrodynamics Specialists Conference,Big Sky,USA,2003

      15 Pizarro-Chong A D.Dynamics of multi-tethered satellite formations[Master Thesis].Montreal:McGill University,2005

      16 Kim M,Hall CD.Dynamics and control of tethered satellite systems for NASA's SPECSmission.In:Proceedings of AAS/AIAA Astrodynamics Specialists Conference,Big Sky,USA,2003

      17 謝永亮.輻射開環(huán)繩系衛(wèi)星編隊(duì)飛行的穩(wěn)定性分析[碩士學(xué)位論文].南京:南京航空航天大學(xué),2007(Xie Y L.The stability analysis of a hub-and-spoke tethered satellite formation flying[Master Thesis].Nanjing:Nanjing University of Aeronautics and Astronautics,2007(in Chinese))

      18 Tragesser SG,Tuncay A.Orbital design of earth-oriented tethered satellite formations.In:Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Monterey,USA,2002

      19 Sabatini M,Palmerini G B.Dynamics of a 3D rotating tethered formation flying.In:Proceedings of Aerospace Conference,Big Sky,USA,2007

      20 Beletsky V V,Levin E M.Stability of a ring of connected satellites.Acta Astronautica,1985,12(10):765~769

      21 Quadrelli M.Modeling and dynamics of tethered formations for space interferometry.In:Proceedings of AAS/AIAA Spaceflight Mechanics Meeting,Santa Barbara,USA,2001

      22 Cassanova R A.A contamination-free ultrahigh precision formation flight method based on intracavity photon thrusters and tethers:Photon tether formation flight(PTFF),Phase 1 Final Report.Washington:NASA,2006

      23 Guerman A,Smirnov G,Paglione P,et al.Dynamics of tetrahedron tethered satellite formation.In:Proceedings of 2nd International Workshop“Spaceflight Dynamics and Control”,Covilh?,Portugal,2006

      24 Guerman A D,Smirnov G,Paglione P,et al.Stationary configurations of a tetrahedral tethered satellite formation.Journal of Guidance,Control,and Dynamics,2008,31(2):424~428

      25 Cosmo M L,Lorenzini E C.Tethers in space handbook,3rd Edition.Washington:NASA,1997

      26 Tragesser SG.Formation flying with tethered spacecraft.Proceedings of AIAA/AASAstrodynamics Specialist Conference,Denver,USA,2000

      27 Tuncay A.Stability of a tethered satellite formation about the Likins-Pringle equilibria[Master Thesis].Dayton:Air University,2002

      28 Tragesser SG,Tuncay A.Orbital design of earth-oriented tethered satellite formations.Journal of the Astronautical Sciences,2005,53(1):1~14

      29 Kumar K D,Yasaka T.Dynamics of rotating linear array tethered satellite system.Journal of Spacecraft and Rockets,2005,42(2):373~378

      30 Kumar K D,Yasaka T.Rotating formation flying of three satellites using tethers.Journal of Spacecraft and Rockets,2004,41(6):973~985

      31 劉麗麗.繩系衛(wèi)星動力學(xué)分析與控制的若干研究[博士學(xué)位論文].南京:南京航空航天大學(xué),2008(Liu L L.Studies on dynamic analysis and control of tethered satellite system[PhD Thesis].Nanjing:Nanjing University of Aeronautics and Astronautics,2008(in Chinese))

      32 劉壯壯,寶音賀西.基于非線性單元模型的繩系衛(wèi)星系統(tǒng)動力學(xué).動力學(xué)與控制學(xué)報(bào),2012,10(1):21~26(Liu Z Z,Baoyin Hexi.Dynamics of tethered satellite system based on nonlinear unit model.Journal of Dynamics and Control,2012,10(1):21~26(in Chinses))

      33 Gates S S.Dynamics model for a multi-tethered spacebased interferometer.Washington:Naval Research Laboratory,2000

      34 Larsen M B,Smith R S,Blanke M.Modeling of tethered satellite formations using graph theory.Acta Astronautica,2011,69(7-8):470~479

      35 Williams P.Periodic optimal control of a spinning earthpointing tethered satellite formation.In:Proceedings of AIAA/AASAstrodynamics Specialist Conference and Exhibit,Keystone,USA,2006

      36 Williams P.Optimal control of a spinning double-pyramid earth-pointing tether formation.Acta Astronautica,2009,64(11-12):1191~1223

      37 Misra A K,Modi V J.Three-dimensional dynamics and control of tether-connected n-body systems.In:Proceedings of 28th Aerospace Sciences Meeting,Reno,USA,1990

      38 Keshmiri M,Misra A K,Modi V J.General formulation for n-body tethered satellite system dynamics.Journal of Guidance,Control,and Dynamics,1996,19(1):75~83

      39 Kalantzis S,Modi V J,Pradhan S,et al.Order-n formulation and dynamics of multibody tethered systems.Journal of Guidance,Control,and Dynamics,1998,21(2):277~285

      40 Arrell R,Kasdin N J.Reorientation of rotating deep space tethered constellations.In:Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit,Austin,USA,2003

      41 Nakanishi K,F(xiàn)ujii H A.Periodic motion of multi-compound-tether satellite system.In:Proceedings of 56th International Astronautical Congress of the International Astronautical Federation,the International Academy of Astronautics,and the International Institute of Space Law,F(xiàn)ukuoka,Japan,2005

      42 Kojima H,Iwashima H,Trivailo PM.Libration synchronization control of clustered electrodynamic tether system using kuramoto model.Journal of Guidance,Control,and Dynamics,2011,34(3):706~718

      43 Avanzini G,F(xiàn)edi M.Refined dynamical analysis of multitethered satellite formations.Acta Astronautica,2013,84(1):36~48

      44 Avanzini G,F(xiàn)edi M.Effects of eccentricity of the reference orbit on multi-tethered satellite formations.Acta Astronautica,2014,94(1):338~350

      45 Fedi M.Dynamics and control of tethered satellite formations in low-earth orbits[PhD Thesis].Castelldefels:Polytechnic University of Catalonia,2015

      46 Wong B.Dynamics of a multi-tethered satellite system near the Sun-Earth Lagrangian point[Master Thesis].Montreal:McGill University,2003

      47 Wong B,Misra A.Dynamics of a libration point multitethered system.In:Proceedings of 55th International Astronautical Congress,Vancouver,Canada,2004

      48 Wong B,Misra A.Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points.Acta Astronautica,2008,63(11-12):1178~1187

      49 Zhao J,Cai Z Q.Nonlinear dynamics and simulation of multi-tethered satellite formations in halo orbits.Acta Astronautica,2008,63(5-6):673~681

      50 趙軍,蔡志勤,齊朝暉等.日地系統(tǒng)L2點(diǎn)halo軌道繩系衛(wèi)星編隊(duì)動力學(xué).應(yīng)用力學(xué)學(xué)報(bào),2010,27(1):1~7(Zhao J,Cai Z J,Qi Z H,et al.Dynamics of tethered satellite formation on halo orbits near L2point of Sun-Earth system.Chinese Journal of Applied Mechanics,2010,27(1):1~7(in Chinese))

      51 趙軍.平動點(diǎn)附近多體繩系衛(wèi)星編隊(duì)動力學(xué)與控制[博士學(xué)位論文].大連:大連理工大學(xué),2010(Zhao J.Dynamic and control of multi-tethered satellite formations near libration point[PhD Thesis].Dalian:Dalian University of Technology,2010(in Chinese))

      52 Zhao J,Cai Z Q,Qi Z H.Dynamics of variable-length tethered formations near libration points.Journal of Guidance,Control,and Dynamics,2010,33(4):1172~1183

      53 趙軍,蔡志勤,齊朝暉.基于平動點(diǎn)軌道的繩系衛(wèi)星編隊(duì)重構(gòu)仿真.系統(tǒng)仿真學(xué)報(bào),2011,23(12):2805~2811(Zhao J,Cai Z J,Qi Z H.Simulation of reconfiguration of tethered satellite formations in libration point orbits.Journal of System Simulation,2011,23(12):2805~2811(in Chinese))

      54 Cai Z Q,Li X F,Peng H J,et al.Optimal tracking control of rotating multi-tethered formations in halo orbits.In:Proceedings of 11th World Congress on Computational Mechanics,5th European Conference on Computational Mechanics,and 6th European Conference on Computational Fluid Dynamics,Barcelona,Spain,2014

      55 周紅.平動點(diǎn)附近旋轉(zhuǎn)三角形繩系衛(wèi)星編隊(duì)動力學(xué)[碩士學(xué)位論文].大連:大連理工大學(xué),2012(Zhou H.Dynamic of Rotating triangle-like tethered satellite formation near the libration point[Master Thesis].Dalian:Dalian University of Technology,2012(in Chinese))

      56 蔡志勤,周紅,李學(xué)府.旋轉(zhuǎn)三角形繩系衛(wèi)星編隊(duì)系統(tǒng)動態(tài)穩(wěn)定性分析.計(jì)算力學(xué)學(xué)報(bào),2013,30(z):62~67(Cai ZJ,Zhou H,Li X F.Dynamic stability analysis of the rotating triangle tethered satellite formation.Chinese Journal of Computational Mechanics,2013,30(z):62~67(in Chinese))

      57 Cai Z Q,Li X F,Zhou H.Nonlinear dynamics of a rotating triangular tethered satellite formation near libration points.Aerospace Science and Technology,2015,42(1):384~391

      58 Nakaya K,Iai M,Omagari K,et al.Formation deployment control for spinning tethered formation flying-simulations and ground experiments.In:Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit,Providence,USA,2004

      59 Kumar K D,Patel T R.Dynamics and control of multiconnected satellites aligned along local horizontal.Acta Mechanica,2009,204(3-4):175~191

      60 Williams P.Optimal deployment/retrieval of a tethered formation spinning in the orbital plane.Journal of Spacecraft and Rockets,2006,43(3):638~650

      61 Williams P.Optimal deployment and offset control for a spinning flexible tethered formation.In:Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit,Keystone,USA,2006

      62 Kim M,Hall CD.Dynamics and control of rotating tethered satellite systems.Journal of Spacecraft and Rockets,2007,44(3):649~659

      63 劉麗麗,文浩,金棟平等.三體繩系衛(wèi)星面內(nèi)編隊(duì)飛行的回收控制.振動工程學(xué)報(bào),2008,21(3):223~227(Liu L L,Wen H,Jin DP,et al.Retrieval control of a three-body tethered formation in orbital plane.Journal of Vibration Engineering,2008,21(3):223~227(in Chinese))

      64 文浩.繩系衛(wèi)星釋放和回收的動力學(xué)控制[博士學(xué)位論文].南京:南京航空航天大學(xué),2009(Wen H.Dynamic control for deployment and retrieval tethered satellite systems[PhD Thesis].Nanjing:Nanjing University of Aeronautics and Astronautics,2009(in Chinese))

      65 McKenzie D J.The dynamics of tethers and space-webs[PhD Thesis].Glasgow:University of Glasgow,2010

      66 Cai Z Q,Li X F,Wu Z G.Deployment and retrieval of a rotating triangular tethered satellite formation near libration points.Acta Astronautica,2014,98(1):37~49

      67 Modi V J,Gilardi G,Misra A K,et al.Attitude control of space platform based tethered satellite system.Journal of Aerospace Engineering,1998,11(2):24~31

      68 Kalantzis S,Modi V J,Pradhan S,et al.Dynamics and control of multibody tethered systems.Acta Astronautica,1998,42(9):503~517

      69 Takeichi N,Natori M C,Okuizumi N.Dynamic behavior of a tethered system with multiple subsatellites in elliptic orbits.Journal of Spacecraft and Rockets,2001,38(6):914~921

      70 Nakaya K,Matunaga S.On attitude maneuver of spinning tethered formation flying based on virtual structure method.In:Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit,San Francisco,USA,2005

      71 Vogel K A.Dynamics and control of tethered satellite formations for the purpose of space-based remote sensing[PhD Thesis].Dayton:Air University,2006

      72 Chung SJ,Kong E M,Miller D W.SPHEREStethered formation flight testbed:application to NASA's SPECS mission.In:Proceedings of SPIE 5899,UV/Optical/IR Space Telescopes:Innovative Technologies and Concepts II,San Diego,USA,2005

      73 Chung SJ,Kong E M,Miller D W.Dynamics and control of tethered formation flight spacecraft using the SPHERES testbed.In:Proceedings of AIAA Guidance,Navigation and Control Conference,San Francisco,USA,2005

      74 Chung SJ,Slotine J J E,Miller D W.Nonlinear model reduction and decentralized control of tethered formation flight.Journal of Guidance,Control,and Dynamics,2007,30(2):390~400

      75 Chung SJ,Slotine JJE,Miller DW.New control strategies for underactuated tethered formation flight spacecraft.In:Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit,Hilton Head,USA,2007

      76 Chung SJ,Miller D W.Propellant-free control of tethered formation flight,part 1:linear control and experimentation.Journal of Guidance,Control,and Dynamics,2008,31(3):571~584

      77 Wen H,Jin D P,Hu H Y.Advances in dynamics and control of tethered satellite systems.Acta Mechanica Sinica,2008,24(3):229~241

      78 Chang I,Park SY,Choi K H.Nonlinear attitude control of a tether-connected multi-satellite in three-dimensional space.IEEE Transactions on Aerospaceand Electronic Systems,2010,46(4):1950~1968

      79 黃靜,劉剛,馬廣富.直連式三體繩系衛(wèi)星姿態(tài)魯棒最優(yōu)跟蹤控制.航空學(xué)報(bào),2012,33(4):679~687(Huang J,Liu G,Ma G F.Nonlinear optimal attitude tracking control of uncertain three-inline tethered satellite systems.Acta Aeronautica et Astronautica Sinica,2012,33(4):679~687(in Chinese))

      80 黃靜,李傳江,馬廣富.欠驅(qū)動直連式三體繩系衛(wèi)星非線性姿態(tài)跟蹤控制.航空學(xué)報(bào),2015,36(6):1995~2004(Huang J,Li C J,Ma G F.Nonlinear attitude tracking control of underactuated three-inline tethered satellite.Acta Aeronautica et Astronautica Sinica,2015,36(6):1995~2004(in Chinese))

      猜你喜歡
      繩系系繩構(gòu)形
      航天員出艙可伸縮安全系繩設(shè)計(jì)與驗(yàn)證
      雙星跟飛立體成像的構(gòu)形保持控制
      基于模糊應(yīng)力-強(qiáng)度模型的空間系繩碰撞可靠性
      通有構(gòu)形的特征多項(xiàng)式
      電動力繩系離軌技術(shù)性能與任務(wù)適應(yīng)性分析
      空間繩系機(jī)器人目標(biāo)抓捕魯棒自適應(yīng)控制器設(shè)計(jì)
      繩系衛(wèi)星被動釋放無超調(diào)脈寬脈頻調(diào)制控制
      對一個幾何構(gòu)形的探究
      空間繩系拖拽系統(tǒng)擺動特性與平穩(wěn)控制
      空間系繩的安全性設(shè)計(jì)準(zhǔn)則探討
      嵊泗县| 武冈市| 金秀| 平和县| 肇东市| 拉萨市| 林西县| 阜南县| 宣汉县| 平定县| 蒙自县| 禄劝| 南汇区| 隆子县| 扎赉特旗| 新邵县| 金溪县| 安岳县| 布拖县| 青海省| 宁城县| 南涧| 金沙县| 岗巴县| 疏附县| 唐山市| 彰武县| 金门县| 邹城市| 太原市| 华坪县| 兴文县| 邵阳市| 文安县| 望都县| 城固县| 衡阳县| 高安市| 中阳县| 盐池县| 石景山区|