• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      典型晶格結(jié)構(gòu)FCC/BCC鋼的劇烈塑性變形研究現(xiàn)狀

      2015-03-17 06:53:32蔡明暉唐正友東北大學(xué)材料與冶金學(xué)院沈陽110819
      材料與冶金學(xué)報(bào) 2015年4期
      關(guān)鍵詞:孿晶塑性變形雙相

      馬 明,蔡明暉,唐正友,丁 樺(東北大學(xué)材料與冶金學(xué)院, 沈陽110819)

      典型晶格結(jié)構(gòu)FCC/BCC鋼的劇烈塑性變形研究現(xiàn)狀

      馬 明,蔡明暉,唐正友,丁 樺
      (東北大學(xué)材料與冶金學(xué)院, 沈陽110819)

      晶格結(jié)構(gòu)(體心立方BCC、面心立方FCC及其復(fù)合形式)類型對(duì)金屬材料劇烈塑性變形過程中的晶粒細(xì)化機(jī)制產(chǎn)生重要影響.本文以不同晶格結(jié)構(gòu)的鋼鐵材料為對(duì)象,重點(diǎn)闡述和總結(jié)了不同晶格結(jié)構(gòu)類型及其變形模式差異對(duì)劇烈塑性變形過程中晶粒細(xì)化理論、組織形貌和力學(xué)性能的影響規(guī)律,其結(jié)果有望為探索劇烈塑性變形工藝過程中的組織細(xì)化理論提供一個(gè)新途徑.

      劇烈塑性變形;FCC鋼;BCC鋼;雙相不銹鋼;晶粒超細(xì)化

      自從20世紀(jì)50年代Hall-Petch[1, 2]提出材料的晶粒尺寸d與屈服強(qiáng)度σs和韌脆轉(zhuǎn)變溫度Tc之間的定量關(guān)系后,晶粒細(xì)化對(duì)金屬材料強(qiáng)韌化的貢獻(xiàn)引起科研工作者越來越多的關(guān)注.在此驅(qū)動(dòng)下,20世紀(jì)80和90年代鋼鐵領(lǐng)域相繼產(chǎn)生了兩大組織細(xì)化的新理論和新工藝,即“控軋控冷(Thermo-Mechanical Control Process, TMCP)”[3]和“形變誘發(fā)鐵素體相變(Strain-Induced Ferrite Transformation, SIFT)”[4]技術(shù).通過這些新技術(shù)可將C-Mn鋼的鐵素體晶粒細(xì)化到10 μm 以下,甚至2~3 μm[5, 6],但要進(jìn)一步細(xì)化鋼的組織達(dá)到亞微米/超細(xì)晶的目標(biāo),需要引入新理論和新技術(shù),比如近年來提出的劇烈塑性變形(Severe Plastic Deformation, SPD)就是制備超細(xì)晶鋼鐵材料最為有效的途徑之一.

      近年來,人們對(duì)體心立方結(jié)構(gòu)BCC鋼采用不同的SPD方法,如等徑角擠壓工藝(Equal Channel Angular Extrusion/Pressing,ECAE/ECAP)[7-13]、累積疊軋工藝(Accumulative Roll Bonding,ARB)[14-17]和異步軋制(Asymmetric Rolling, AsR)[18-22]等,在無間隙原子鋼和低碳鋼中分別實(shí)現(xiàn)了晶粒超細(xì)化/亞微米化,并大幅度地提高了材料的強(qiáng)度;在此基礎(chǔ)上,研究者們探討了亞微米尺寸的BCC鋼的顯微組織和力學(xué)性能之間的關(guān)系.

      隨著研究的深入,人們對(duì)面心立方結(jié)構(gòu)FCC鋼的SPD工藝的認(rèn)識(shí)也越來越深入.與BCC鋼不同,層錯(cuò)能的變化會(huì)引起奧氏體鋼中塑性變形模式的差異,進(jìn)而會(huì)影響材料的晶粒細(xì)化及其力學(xué)性能.例如,已有的文獻(xiàn)表明[23],當(dāng)奧氏體的層錯(cuò)能低于15 mJ/m2時(shí),發(fā)生應(yīng)變誘發(fā)馬氏體相變;當(dāng)層錯(cuò)能在 20~50 mJ/m2的范圍時(shí),主要發(fā)生形變孿生;當(dāng)層錯(cuò)能高于60 mJ/m2時(shí),由于不全位錯(cuò)難以生成,既不產(chǎn)生應(yīng)變誘發(fā)馬氏體,也不出現(xiàn)形變孿生,滑移以全位錯(cuò)的方式進(jìn)行.因此,研究FCC鋼的層錯(cuò)能變化對(duì)SPD過程中晶粒細(xì)化的影響規(guī)律要比單一的BCC結(jié)構(gòu)鋼更加復(fù)雜.另外,雙相不銹鋼的連續(xù)大變形也深受研究者的重視.其組織特征為鐵素體(BCC)和奧氏體(FCC)共存,且兩相比例隨溫度的變化而發(fā)生改變.不同相之間的晶體結(jié)構(gòu)及變形行為等方面的差異,會(huì)引起組織內(nèi)部晶間和相間在塑性變形過程中的應(yīng)變/應(yīng)力再分配.因此,相比于單相FCC或BCC鋼而言,雙相不銹鋼的應(yīng)變方式更加復(fù)雜,這在很大程度上也增加了人們對(duì)其塑性變形過程中變形機(jī)制研究的難度.

      本文擬以具有典型晶格結(jié)構(gòu)(體心立方結(jié)構(gòu)BCC、面心立方結(jié)構(gòu)FCC及其復(fù)合形式)的鋼鐵材料為對(duì)象,系統(tǒng)地概述和總結(jié)不同晶格結(jié)構(gòu)及其變形模式的差異對(duì)晶粒細(xì)化理論、組織形貌和力學(xué)性能的影響規(guī)律,為探索劇烈塑性變形工藝過程中的組織細(xì)化理論提供一條新途徑.

      1 BCC鋼的劇烈塑性變形

      對(duì)BCC鋼而言,大塑性變形誘發(fā)晶粒超細(xì)化的機(jī)制主要伴隨著形變位錯(cuò)的增殖及湮滅,稱之為第一類大塑性形變誘發(fā)晶粒細(xì)化機(jī)制[24-27].在變形過程中,形變位錯(cuò)不斷發(fā)生纏結(jié)、重排并將粗大的基體晶粒逐步細(xì)化為大量的、細(xì)小的位錯(cuò)胞狀結(jié)構(gòu).而后隨著應(yīng)變量的增加,這些細(xì)小的位錯(cuò)胞狀結(jié)構(gòu)與后續(xù)應(yīng)變反應(yīng)所形成的可動(dòng)位錯(cuò)進(jìn)一步發(fā)生交互作用,從而完成位錯(cuò)胞→小角晶界→大角晶界的轉(zhuǎn)變過程.

      1.1 BCC鋼的ECAE/ECAP工藝

      自從上世紀(jì)80年代前蘇聯(lián)科學(xué)家Segal等[28]提出利用ECAE/ECAP法制備超細(xì)晶金屬材料以來,該技術(shù)已引起了材料科學(xué)家的廣泛關(guān)注.近年來,許多學(xué)者利用ECAE/ECAP工藝研究了不同碳含量低碳鋼的晶粒細(xì)化和力學(xué)性能的關(guān)系.例如,Aoki等[29]在室溫下實(shí)現(xiàn)了超低碳鋼多道次的A方式ECAP變形;王效崗等[30]也對(duì)0.001%C超低碳鋼在室溫下進(jìn)行了多道次C方式的ECAP變形,結(jié)果表明:第4道次ECAP變形為IF鋼的組織細(xì)化極限,平均晶粒尺寸約為300 nm;繼續(xù)增加循環(huán)次數(shù),晶粒細(xì)化不明顯,如圖1所示.4道次ECAP后,實(shí)驗(yàn)鋼的屈服強(qiáng)度高達(dá)670 MPa,伸長率超過45%.Fukuda等[31]對(duì)0.08%C低碳鋼在室溫條件下進(jìn)行了Bc方式的ECAP變形,結(jié)果發(fā)現(xiàn):經(jīng)3次循環(huán)ECAP工藝,即可獲得具有大的晶界取向差,且晶粒尺寸約為200 nm的等軸晶組織.

      Shin等[10]研究了碳含量為0.15%(質(zhì)量分?jǐn)?shù))的低碳鋼在450 ℃經(jīng)C方式ECAP變形的組織性能演變規(guī)律及晶粒細(xì)化機(jī)制,發(fā)現(xiàn):經(jīng)1次循環(huán)ECAP后,鐵素體晶粒由大約30 μm細(xì)化至300 nm 的片層型界面,同時(shí)內(nèi)部存在位錯(cuò)胞界面;經(jīng)2次循環(huán)ECAP后,形成平均晶粒尺寸約為500 nm 的等軸晶組織,同時(shí)位錯(cuò)密度增大,且亞晶之間的取向差增大;隨著增大循環(huán)道次,組織的細(xì)化效果減弱,如經(jīng)4和8道次ECAP后,等軸晶的尺寸約為200~300 nm.在ECAP變形的初始階段,鐵素體中多個(gè)滑移系,如{110}<111>和{112}<111>等被激活,從而發(fā)生了多系滑移.同時(shí),文獻(xiàn)[8, 9]也對(duì)該超細(xì)晶鋼的機(jī)械熱穩(wěn)定性進(jìn)行了研究,認(rèn)為退火態(tài)超細(xì)晶鋼的強(qiáng)度高且不存在應(yīng)變硬化現(xiàn)象,證實(shí)了該鋼良好的熱穩(wěn)定性.

      為了進(jìn)一步研究SPD過程中珠光體的變形模式,王效崗等[32]對(duì)45鋼(0.45%C)在500 ℃條件下進(jìn)行了C方式的ECAP變形:與鐵素體晶粒細(xì)化機(jī)制(即板條位錯(cuò)胞→晶界滑移或旋轉(zhuǎn)→等軸晶組織)不同,珠光體中的滲碳體主要以彎曲、頸縮、剪切、扭折和切斷變形等五種方式對(duì)塑性變形行為加以協(xié)調(diào),如圖2所示.

      1.2 BCC鋼的ARB工藝

      累積疊軋工藝是由日本學(xué)者Saito等[33]于1998年提出的一種制備塊體超細(xì)/亞微米結(jié)構(gòu)薄板金屬材料的劇烈塑性成形方法.隨后,Tsuji等[14]在500 ℃對(duì)無間隙原子鋼(IF鋼)進(jìn)行了7循環(huán)道次的ARB變形,制備出平均晶粒尺寸約為420 nm的超細(xì)/亞微米鐵素體組織,抗拉強(qiáng)度可達(dá)870 MPa.Costa等[34]通過研究ARB變形IF鋼的晶粒細(xì)化和強(qiáng)韌化機(jī)制,證實(shí)了ARB工藝實(shí)質(zhì)上是一種由壓應(yīng)力和剪切應(yīng)力兩者共同作用的軋制過程,晶粒細(xì)化主要是通過位錯(cuò)胞向納米晶的連續(xù)或不連續(xù)轉(zhuǎn)變實(shí)現(xiàn)組織的超細(xì)化.其中,剪切應(yīng)力主要是由材料表面與軋輥之間的相互摩擦或者由異種材料表面的變形抗力的差異所引起.同時(shí),ARB變形會(huì)引入大量的位錯(cuò)缺陷及晶格畸變,這也將導(dǎo)致其它的強(qiáng)化因素參與作用.基于此,Jamaati等[35]選擇了三種不同類型的金屬材料,即純IF鋼,IF鋼/納米粒子以及IF鋼/微米粒子,定量分析了ARB變形中的位錯(cuò)密度演變規(guī)律.結(jié)果表明:隨ARB道次的增加,三種材料中位錯(cuò)密度均增加,但其增加的速率與ARB道次有關(guān);第1道次后位錯(cuò)密度增加得較為明顯,而隨著增加ARB道次,位錯(cuò)密度的增加趨于平緩;納米/微米尺寸的SiC顆粒對(duì)材料變形行為的影響主要是通過抑制位錯(cuò)的運(yùn)動(dòng)來實(shí)現(xiàn).

      2 FCC鋼的劇烈塑性變形

      如前所述,層錯(cuò)能的變化會(huì)引起奧氏體鋼中塑性變形模式的差異.例如在一些低層錯(cuò)能奧氏體鋼(如TWIP鋼)的劇烈塑性變形中,孿晶和二次孿晶的形成以及孿晶界與形變位錯(cuò)的交互作用是第二類大變形誘發(fā)晶粒細(xì)化的主要機(jī)制[36-39].而在此過程中超細(xì)晶晶粒的尺寸與孿晶界間距密切相關(guān).在材料的SPD過程中,孿晶界間距的臨界值取決于材料的層錯(cuò)能.在一些較低的層錯(cuò)能材料中,孿晶界間距可達(dá)到最小約2 nm左右[40].目前由劇烈塑性變形所誘發(fā)的超細(xì)晶結(jié)構(gòu),其平均晶粒尺寸一般大于10 nm,對(duì)于層錯(cuò)能較低的FCC結(jié)構(gòu)材料而言,其大變形誘發(fā)晶粒超細(xì)化的過程主要?dú)w因于多種微觀組織演變的共同作用.

      2.1 FCC鋼的ECAP工藝

      目前,一些研究者對(duì)奧氏體不銹鋼在ECAP過程中的組織演變和力學(xué)性能進(jìn)行了研究[41-44].例如,對(duì)316L 和316LN鋼的研究表明[42],合金添加N元素后,層錯(cuò)能下降.316L鋼的層錯(cuò)能為34.8 mJ/m2,316LN鋼的層錯(cuò)能為25.8 mJ/m2,不同的層錯(cuò)導(dǎo)致材料具有不同的力學(xué)性能.N元素的加入增加了溶質(zhì)原子和位錯(cuò)的相互作用,從而降低了位錯(cuò)的可動(dòng)性,限制了動(dòng)態(tài)回復(fù)的發(fā)生.同時(shí),添加N元素使合金的層錯(cuò)能降低,形變孿生的臨界應(yīng)力降低,致使交滑移難于發(fā)生.這兩個(gè)因素都使位錯(cuò)的運(yùn)動(dòng)受到限制而使孿生容易發(fā)生.因此,孿晶的體積分?jǐn)?shù)隨ECAP道次的增加和N元素的添加而增加.如圖3所示,316L不銹鋼中添加N元素后,其綜合力學(xué)性能得到改善,強(qiáng)塑積明顯增大.其原因?yàn)椋阂环矫鍺原子的固溶強(qiáng)化和孿晶的生成使合金強(qiáng)度提高,而另一方面大量孿晶的出現(xiàn)則使合金的應(yīng)變硬化能力增強(qiáng).

      Dobatkin等[43]研究了Cr-Ni 奧氏體鋼(0.07%C-17.3Cr-9.2%Ni-0.7%Ti)在ECAP過程中的組織演變、相變和性能.結(jié)果表明:合金在ECAP過程中發(fā)生馬氏體相變.當(dāng)循環(huán)次數(shù)N=4時(shí)(ε=3.2),馬氏體的含量可達(dá)40%.這是由于材料的層錯(cuò)能較低,從而易于發(fā)生馬氏體相變.大量馬氏體的形成使合金的強(qiáng)度顯著提高,屈服強(qiáng)度從初始態(tài)的320 MPa提高至1 090 MPa.

      在ECAP對(duì)奧氏體鋼腐蝕性能的影響方面也有一些工作.鄭志軍等[44]以304奧氏體不銹鋼為研究對(duì)象,采用多道次ECAP工藝獲得了塊體納米晶不銹鋼(80~100 nm),并對(duì)納米晶不銹鋼的表面鈍化膜特性和耐腐蝕性能進(jìn)行了分析和表征.靜電位極化實(shí)驗(yàn)和鈍化膜電容測(cè)量結(jié)果表明:納米晶試樣的表面鈍化膜更為致密,化學(xué)穩(wěn)定性更好.謝賢龍等[45]對(duì)316不銹鋼進(jìn)行了ECAP變形,并對(duì)其耐蝕性進(jìn)行了研究.陽極極化分析結(jié)果表明:經(jīng)變形后,材料的腐蝕電流密度下降,腐蝕傾向性降低,耐腐蝕性增強(qiáng).變形道次增加,表面腐蝕趨于均勻.

      2.2 FCC鋼的HPT工藝

      Shuro等人[46]對(duì)Fe-18Cr-8Ni奧氏體不銹鋼進(jìn)行了壓力為5 GPa、應(yīng)變速率為 0.2 rpm 的高壓扭轉(zhuǎn)實(shí)驗(yàn).研究發(fā)現(xiàn), 當(dāng)圈數(shù)N=10時(shí),所有奧氏體均完成馬氏體相變,此時(shí)的微觀組織為全馬氏體,合金屈服強(qiáng)度相比初始態(tài)提升了約1 700 MPa.Matoso等人[47]用HPT方法對(duì)一種TWIP鋼(Fe-24Mn-3Al-2Si-1Ni-0.06C,質(zhì)量分?jǐn)?shù)%)在劇烈塑性變形過程中組織及性能的演變規(guī)律進(jìn)行了研究.HPT實(shí)驗(yàn)在室溫下進(jìn)行,壓力為6 GPa.結(jié)果表明:當(dāng)圈數(shù)為1/4時(shí),合金發(fā)生少量的馬氏體相變,其體積分?jǐn)?shù)為27%;當(dāng)圈數(shù)為1時(shí),馬氏體體積分?jǐn)?shù)降至23%.當(dāng)圈數(shù)為5和10時(shí),馬氏體的體積分?jǐn)?shù)進(jìn)一步降至20%和19%,如圖4所示.根據(jù)文獻(xiàn)[48]中提出的模型計(jì)算,F(xiàn)e-24Mn-3Al-0.06C合金的層錯(cuò)能約為 28.6 mJ/m2.由于Ni元素的添加增加層錯(cuò)能[49],Si元素則降低層錯(cuò)能[50],因此可認(rèn)為Fe-24Mn-3Al-2Si-1Ni-0.06C合金的層錯(cuò)能約為28 mJ/m2,應(yīng)該難于發(fā)生應(yīng)變誘發(fā)馬氏體相變.但是,作者指出,應(yīng)變誘發(fā)馬氏體相變的發(fā)生可能是由于HPT的應(yīng)變量很大所致.組織觀察還表明,當(dāng)圈數(shù)為1/4時(shí),已經(jīng)形成大量的形變孿晶.當(dāng)應(yīng)變量很大時(shí),變形帶是主要的組織特征.文中指出,成分類似的鋼退火狀態(tài)的硬度約為180 HV,冷軋態(tài)的硬度為360 HV,而當(dāng)實(shí)驗(yàn)材料經(jīng)過10圈的HPT變形時(shí),其硬度可達(dá)到約450 HV.

      另外,Hardfield鋼是應(yīng)變硬化能力較強(qiáng)的高錳奧氏體鋼.Astafurova等人[51]研究了高壓扭轉(zhuǎn)對(duì)Hardfield鋼(Fe-13Mn-1.0C, 質(zhì)量分?jǐn)?shù)%)單晶組織和性能的影響.研究結(jié)果表明,對(duì)單晶體進(jìn)行HPT實(shí)驗(yàn),材料的變形呈多階段應(yīng)變硬化行為,這與變形過程中微觀組織演變有關(guān).在變形的初始階段,形成薄片孿晶網(wǎng)絡(luò),應(yīng)變硬化率很高;隨著變形量的增加,孿晶結(jié)構(gòu)發(fā)生碎化,同時(shí)形成局部剪切帶,應(yīng)變硬化率下降.之后,作者選擇了三種合金: Fe-13Mn-1.3C(Hardfield鋼),F(xiàn)e-13Mn-2.7Al-1.3C和Fe-28Mn-2.7Al-1.3C, 研究了層錯(cuò)能對(duì)組織和性能的影響[52],如圖5所示.第一種單晶體的層錯(cuò)能為 30 mJ/m2,后兩種單晶體的層錯(cuò)能分別為 45 mJ/m2和 60 mJ/m2.在高壓扭轉(zhuǎn)過程中,由于形成了高密度的位錯(cuò)、孿晶和局部剪切帶,單晶體發(fā)生碎化.研究結(jié)果表明:隨著層錯(cuò)能的增加,局部的塑性流動(dòng)更容易發(fā)生.在Fe-13Mn-1.3C鋼中,經(jīng)HPT后,材料中發(fā)生孿生,形成剪切帶,并形成了少量的馬氏體.中等層錯(cuò)能的Fe-13Mn-2.7Al-1.3C和Fe-28Mn-2.7Al-1.3C實(shí)驗(yàn)鋼在HPT過程中產(chǎn)生大量的孿晶,在圈數(shù)N=1時(shí)孿晶體積分?jǐn)?shù)即為40%.組織觀察表明,兩種奧氏體單晶的孿晶寬度比Fe-13Mn-1.3C鋼要寬.在性能方面,HPT使奧氏體鋼發(fā)生了顯著的應(yīng)變硬化.變形5圈后,材料的顯微硬度從原始的 2.5 GPa 可增至6.4~7.8 GPa.與其它兩種材料相比,Hardfield鋼的應(yīng)變硬化率更高,從而具有最高的硬度.一般的材料在HPT后組織往往存在不均勻的現(xiàn)象,但Hardfield鋼在HPT后硬度分布非常均勻.作者認(rèn)為這是因?yàn)镠ardfiel鋼在變形過程中產(chǎn)生了大量片層寬度很窄的孿晶(5~15 nm).在作者研究的幾種材料中,經(jīng)HPT后合金內(nèi)并未發(fā)現(xiàn)真正具有大角界面的超細(xì)晶組織,而是獲得了包含大量孿晶界和高位錯(cuò)密度的超細(xì)結(jié)構(gòu).

      一些研究者研究了HPT溫度對(duì)材料組織和性能的影響.Vorhauer等人[53]對(duì)鐵素體和奧氏體鋼進(jìn)行了比較.他們的研究結(jié)果表明,在0.16~0.40Tm 的溫度范圍內(nèi)變形時(shí),當(dāng)?shù)刃?yīng)變達(dá)到8~16時(shí),組織和力學(xué)性能進(jìn)入穩(wěn)態(tài)階段.隨著變形溫度增加,鐵素體鋼在穩(wěn)態(tài)變形階段組織發(fā)生粗化,而奧氏體鋼中的組織對(duì)變形溫度并不敏感.這是由兩種材料層錯(cuò)能的不同而引起的,層錯(cuò)能顯著影響晶格缺陷的湮沒速率和晶界的可動(dòng)性.鐵素體鋼的層錯(cuò)能比奧氏體鋼高,更容易發(fā)生動(dòng)態(tài)回復(fù),從而表現(xiàn)出更強(qiáng)的溫度依賴性.316L奧氏體鋼不同溫度的HPT實(shí)驗(yàn)結(jié)果表明[54],在較高的變形溫度下(T=450 ℃),主導(dǎo)變形機(jī)制是位錯(cuò)滑移;在中等溫度區(qū)間(450 ℃>T>20 ℃),觀察到了形變孿晶;而在很低的溫度下(20 ℃>T>-196 ℃),形變誘發(fā)馬氏體相變是主要的變形機(jī)制.這是由于溫度的變化引起了合金層錯(cuò)能發(fā)生改變所致.在研究中,他們還對(duì)奧氏體納米晶的形成進(jìn)行了分析.

      3 雙相不銹鋼的劇烈塑性變形

      雙相不銹鋼中奧氏體及鐵素體在結(jié)構(gòu)和性能之間存在差異,致使兩相在SPD工藝過程中呈現(xiàn)出不同的組織演變規(guī)律.同時(shí),兩相之間層錯(cuò)能的不同也會(huì)導(dǎo)致SPD誘發(fā)晶粒細(xì)化機(jī)制的差異性.在雙相不銹鋼中,BCC結(jié)構(gòu)的鐵素體為高層錯(cuò)能相,其塑性變形及微觀組織演變規(guī)律通常遵循第一類大變形誘發(fā)晶粒細(xì)化機(jī)制;而FCC結(jié)構(gòu)的奧氏體作為低層錯(cuò)能相,其塑性變形過程中常伴隨著形變孿生的形成.

      圖6為雙相不銹鋼ECAP工藝過程中的TEM形貌[55].如圖6(a) 所示,奧氏體內(nèi)可觀察到不同取向的形變孿晶,其中二次孿晶如白色箭頭所示.同時(shí),在各孿晶界區(qū)域附近,可觀察到網(wǎng)格狀的位錯(cuò)結(jié)構(gòu),這證實(shí)了形變過程中位錯(cuò)與孿晶界的交互作用是雙相不銹鋼中奧氏體相的形變機(jī)制之一.圖6(b)示出了雙相不銹鋼鐵素體相經(jīng)ECAP工藝后的微觀組織形貌.可以看出,劇烈塑性變形下大量位錯(cuò)墻及亞晶界在鐵素體內(nèi)呈條帶狀分布,這說明第一類大變形誘發(fā)晶粒細(xì)化為雙相不銹鋼中BCC相主要的微觀組織演變機(jī)制.

      3.1 劇烈塑性變形中雙相的協(xié)同變形

      由于雙相不銹鋼中奧氏體及鐵素體在結(jié)構(gòu)及性能之間存在差異,其SPD誘發(fā)晶粒細(xì)化往往是兩相協(xié)同變形作用結(jié)果.研究表明,在雙相不銹鋼的SPD過程中,兩相的塑性形變往往是同時(shí)發(fā)生的[56],正如圖7中HPT實(shí)驗(yàn)結(jié)果所證實(shí):奧氏體及鐵素體相在不同形變階段的硬度或強(qiáng)度水平幾乎始終保持一致.

      Cao等人[57]在DP3W雙相不銹鋼HPT實(shí)驗(yàn)研究過程中還發(fā)現(xiàn),奧氏體內(nèi)不僅有形變孿生發(fā)生,隨著應(yīng)變量的增加,亦可觀察到去孿晶現(xiàn)象,如圖8所示.文中分析認(rèn)為,鐵素體內(nèi)超細(xì)晶的形成是由于位錯(cuò)增殖以及位錯(cuò)與小角晶界的交互作用,因此鐵素體相強(qiáng)度與晶粒尺寸的對(duì)應(yīng)關(guān)系應(yīng)滿足Hall-Petch關(guān)系.而在奧氏體內(nèi),持續(xù)應(yīng)變導(dǎo)致孿晶界密度“異常增大”,這將在一定程度上降低奧氏體的強(qiáng)度.吳志強(qiáng)[58]在Fe-Mn-Al-C高錳低密度鋼的HPT實(shí)驗(yàn)過程中發(fā)現(xiàn),孿晶片層較寬的主孿晶和二次孿晶交割以后,片層寬度明顯降低.文中指出,二次孿晶和主孿晶之間的交互作用,將引發(fā)去孿晶反應(yīng),(孿晶消失過程).晶粒內(nèi)部發(fā)生去孿晶反應(yīng)后,片層較寬的主孿晶消失,產(chǎn)生大量片層細(xì)小的二次孿晶.高壓扭轉(zhuǎn)過程中這種奧氏體內(nèi)孿生-去孿晶混合機(jī)制將有利于奧氏體與鐵素體保持強(qiáng)度上的匹配關(guān)系,從而在形變的各個(gè)階段維持兩相之間的協(xié)調(diào)變形.

      3.2 雙相不銹鋼SPD過程中FCC的相變行為

      由于基體相FCC與BCC之間的轉(zhuǎn)變?yōu)榈湫偷臄U(kuò)散性相變,其相變過程往往受制于金屬原子的長程或短程擴(kuò)散控制.與大量的熱變形研究結(jié)果不同[59-61],雙相不銹鋼SPD實(shí)驗(yàn)中,并不會(huì)發(fā)生FCC與BCC之間的擴(kuò)散型相變.在SPD條件下,雙相不銹鋼中的FCC相單元往往發(fā)生以切變?yōu)樵又饕w移形式的馬氏體相變.圖9為雙相不銹鋼經(jīng)多道次ECAP實(shí)驗(yàn)后的TEM組織形貌[55].圖9(a)為明場(chǎng)下等軸奧氏體相的組織形貌;圖9(b)為與圖9(a) 對(duì)應(yīng)的暗場(chǎng)照片,經(jīng)選區(qū)電子衍射標(biāo)定(圖9(c))可知,高亮的針狀組織為馬氏體.文中指出,雙相不銹鋼在ECAP模式下,奧氏體相中同時(shí)發(fā)生形變孿生及馬氏體相變.

      4 總結(jié)與展望

      劇烈塑性變形可使金屬材料的晶粒尺寸細(xì)化到超細(xì)/亞微米水平,從而可大幅度改善材料的性能.晶格結(jié)構(gòu)(體心立方BCC、面心立方FCC、及其復(fù)合形式)類型及層錯(cuò)能對(duì)金屬材料劇烈塑性變形過程中的晶粒細(xì)化機(jī)制產(chǎn)生重要影響.對(duì)于BCC結(jié)構(gòu)的鋼鐵材料,大塑性變形誘發(fā)晶粒超細(xì)化的機(jī)制主要伴隨著形變位錯(cuò)的增殖及湮滅,稱之為第一類大塑性形變誘發(fā)晶粒細(xì)化機(jī)制[27-30].但對(duì)第二相或者析出相粒子對(duì)劇烈塑性變形過程中鐵素體晶粒超細(xì)化的影響機(jī)制還有待進(jìn)一步的研究.

      對(duì)于FCC結(jié)構(gòu)的鋼鐵材料,層錯(cuò)能的變化會(huì)使大塑性變形過程中的變形模式產(chǎn)生較大差異,如對(duì)于低層錯(cuò)能的TWIP鋼,孿晶和二次孿晶的形成以及孿晶界與形變位錯(cuò)的交互作用被認(rèn)為是第二類大變形誘發(fā)晶粒細(xì)化的主要機(jī)制[36-39].由于FCC鋼變形模式的復(fù)雜性,對(duì)其劇烈塑性變形過程中的組織演變尚需開展更深入的研究工作.盡管文獻(xiàn)[42,52] 在FCC鋼的ECAP和HPT變形過程中均觀察到了剪切帶,但對(duì)剪切帶的精細(xì)結(jié)構(gòu)、形核與長大機(jī)理尚缺乏細(xì)致的研究.此外,HPT的壓力對(duì)形變誘發(fā)馬氏體相變和形變孿生的影響規(guī)律等也需進(jìn)一步明確.對(duì)于雙相不銹鋼而言,由于兩相之間的晶格結(jié)構(gòu)及層錯(cuò)能均不同,使其塑性變形模式更為復(fù)雜,有關(guān)這方面的研究工作尚待進(jìn)一步開展.

      [1]Hall E O. The deformation and ageing of mild steel: III Discussion of Results [C]//Proceedings of the Physical Society London. 1951, 64: 747-753.

      [2]Petch N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 147: 25-28.

      [3]Shikanai N, Mitao S, Endo S. Recent development in microstructural control technologies through the thermo-mechanical control process (TMCP) with JFE steel’s high-performance plates [J]. JFE Technical Report, 2008, 11: 1-6.

      [4]Matsumura Y, Yada H. Evolution of ultrafine-grained ferrite in hot successive deformation[J]. Transactions ISIJ, 1987, 27(6): 492-498.

      [5]王國棟, 劉相華, 李維娟, 等. 超級(jí)Super-SS400鋼的工業(yè)軋制實(shí)驗(yàn)[J]. 鋼鐵, 2001, 36(5): 39-43. (Wang G D, Liu X H, Li W J,etal. Industrial rolling trials of Super-SS400 steel [J]. Iron and Steel, 2001, 36(5): 39-43.)

      [6]Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel [J], Scripta Materialia, 1999, 40(10): 1179-1184.

      [7]Shin D H, Park K T. Ultrafine grained steels processed by equal channel angular pressing [J]. Materials Science and Engineering A, 2005, 410: 299-302.

      [8]Park K T, Kim Y S, Lee J G,etal. Thermal stability and mechanical properties of ultrafine grained low carbon steel [J]. Materials Science and Engineering A, 2000, 293(1-2): 165-172.

      [9]Park K T, Shin D H. Annealing behaviour of submicrometer grained ferrite in a low carbon steel fabricated by severe plastic deformation [J]. Materials Science and Engineering A, 2002, 334(1-2): 79-86.

      [10]Shin D H, Kim B C, Kim Y S,etal. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing [J]. Acta Materialia, 2000, 48(9): 2247-2255.

      [11]Shin D H, Park K T, Kim Y S. Formation of fine cementite precipitates in an ultra-fine grained low carbon steel [J]. Scripta Materialia, 2003, 48(5): 469-473.

      [12]Park K T, Han S Y, Ahn B D,etal. Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing [J]. Scripta Materialia, 2004, 51(9): 909-913.

      [13]Park K T, Han S Y, Shin D H,etal. Effect of heat treatment on microstructures and tensile properties of ultrafine grained C-Mn steel containing 0.34 mass% V [J]. ISIJ International, 2004, 44: 1057-1062.

      [14]Tsuji N, Saito Y, Utsunomiya H,etal. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process [J]. Scripta Materialia, 1999, 40(7): 795-800.

      [15]Lee H B, Utsunomiya H, Sakai T. Microstructures and mechanical properties of ultra low carbon interstitial free steel severely deformed by a multi-stack accumulative roll bonding process [J]. Materials Transactions, 2004, 45(7): 2177-2181.

      [16]Tamimi S, Ketabchi M. Parvin N. Microstructural evolution and mechanical properties of accumulative roll bonded interstitial free steel [J]. Materials and Design, 2009, 30(7): 2556-2562.

      [17]Krallics G, Lenard J G. An examination of the accumulative roll bonding process [J]. Journal of Materials Process and Technology, 2004, 152(2): 154-161.

      [18]Lapovok R, Orlov D, Timokhina I B,etal. Asymmetric rolling of interstitial-free steel using one idle roll [J]. Metallurgy and Materials Transactions A, 2012, 43(4): 1328-1340.

      [19]Orlov D, Pougis A, Lapovok R,etal. Asymmetric rolling of interstitial-free steel using differential roll diameters. Part I: Mechanical properties and deformation textures [J]. Metallurgy and Materials Transactions A, 2013, 44(9): 4346-4359.

      [20]Orlov D, Lapovok R, Toth L S,etal. Asymmetric rolling of interstitial-free steel using differential roll diameters. Part II: Microstructure and annealing effects [J]. Metallurgy and Materials Transactions A, 2014, 45(1): 447-454.

      [21]Cai M H, Dhinwal S S, Han Q H,etal. Gradient ultrafine ferrite and martensite structure and its tensile properties by asymmetric rolling in low carbon microalloyed steel [J]. Materials Science and Engineering A, 2013, 583: 205-209.

      [22]Cai M H, Wei X, Rolfe B,etal. Microstructure and texture evolution during tensile deformation of symmetric/asymmetric-rolled low carbon microalloyed steel [J]. Materials Science and Engineering A, 2015, 641: 297-304.

      [23]Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J]. Acta Materialia, 2003, 51(11): 3063-3071.

      [24]Song R, Ponge D, Raabe D,etal. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels[J]. Materials Science and Engineering A, 2006, 441(1-2): 1-17.

      [25]Jia D, Ramesh K T, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta Materialia, 2003, 51(12): 3495-3509.

      [26]Kecskes L J, Cho K C, Dowding R J,etal. Grain size engineering of bcc refractory metals: top-down and bottom-up-application to tungsten[J]. Materials Science and Engineering A, 2007, 467(1-2):33-43.

      [27]Hughes D A, Hansen N. Microstructure and strength of nickel at large strains[J]. Acta Materialia, 2000, 48(11): 2985-3004.

      [28]Segal V M. Materials processing by simple shear [J]. Materials Science and Engineering A, 1995, 197(2): 157-164.

      [29]Aoki K, Kimura Y, Azushima A. Proceedings of International symposium on ultrafine grained steels [C]. Tokyo: The Iron and Steel Institute of Japan, 2001: 266.

      [30]王效崗, 趙西成. 等徑彎曲通道變形對(duì)超低碳鋼組織及性能的影響 [J]. 鋼鐵研究學(xué)報(bào), 2007, 19: 54-57. (Wang X G, Zhao X C. Microstructure and mechanical properties of equal channel angular pressed ultra low carbon steel [J]. Journal of Iron and Steel Research, 2007, 19: 54-57.)

      [31]Fukuda Y, Oh-ishi K, Horita Z,etal. Processing of a low-carbon stcel by equal-channel angular pressing[J]. Acta Materialia, 2002, 50(6): 1359-1368.

      [32]王效崗. 超低碳鋼ECAP及組織性能研究 [D]. 西安: 西安建筑科技大學(xué), 2004. (Wang X G. ECAP processing of ultra low carbon steel and its microstructure and mechanical properties [D]. Xian: Xi’an University of Architecture and Technology, 2004.)

      [33]Saito Y, Tsuji N, Utsunomiya H,etal. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J]. Scripta Materialia, 1998, 39(9): 1221-1227.

      [34]Costa A L M, Reis A C C, Kestens L,etal. Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding [J]. Materials Science and Engineering A, 2005, 406(1-2): 279-285.

      [35]Jamaati R, Toroghinejad M R, Amirkhanlou S,etal. Strengthening mechanisms in nanostructured interstitial free steel deformed to high strain [J]. Materials Science and Engineering A, 2015, 639: 656-662.

      [36]Ni S, Wang Y B, Liao X Z,etal. Strain hardening and softening in a nanocrystalline Ni-Fe alloy induced by severe plastic deformation [J]. Materials Science and Engineering A, 2011, 528(9): 3398-3403.

      [37]Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.% Mn-0.6wt.% C TWIP steel observed by electron channeling contrast imaging[J]. Acta Materialia, 2011, 59(16): 6449-6462.

      [38]Hong C S, Tao N R, Huang X,etal. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation[J]. Acta Materialia, 2010, 58(8): 3103-3116.

      [39]An X H, Lin Q Y, Wu S D,etal. The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu-Al alloys processed by high-pressure torsion[J]. Scripta Materialia, 2011, 64(10): 954-957.

      [40]Cao Y, Wang Y B, Chen Z B,etal. De-twinning via secondary twinning in face-centered cubic alloys [J]. Materials Science and Engineering A, 2013, 578: 110-114.

      [41]Qu S, Huang C X, Gao Y L. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing [J]. Materials Science and Engineering A, 2008, 475(1-2): 207-216.

      [42]Dong F Y, Zhang P, Pang J C. Optimizing strength and ductility of austenitic stainless steels through equal-channel angular pressing and adding nitrogen element [J]. Materials Science and Engineering A, 2013, 587: 185-191.

      [43]Dobatkin S V, Rybal’chenko O V, Raab G I. Structure formation, phase transformation and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating [J]. Materials Science and Engineering A, 2007, 463(1-2): 41-45.

      [44]鄭志軍. ECAP制備的塊體納米晶304不銹鋼的組織演變、力學(xué)性能與腐蝕行為[D]. 廣州: 華南理工大學(xué), 2012. (Zheng Z J. Microstructural evolution, mechanical properties and corrosion behaviour of bulk nano-scaled 304 austenitic stainless steels processed by ECAP [D]. Guangzhou, South China University of Technology, 2012.)

      [45]謝賢龍. 等徑角變形優(yōu)化奧氏體不銹鋼性能的研究[D]. 南京: 南京理工大學(xué), 2013. (Xie X L. Optimal properties of austenitic stainless steels processed by ECAP [D]. Nanjing: Nanjing University of Science and Technology, 2013.)

      [46]Shuro I, Kuo H H, Sasaki T,etal. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion [J]. Materials Science and Engineering A, 2012, 552: 194-198.

      [47]Matoso M S, Figueiredo R B, Kawasaki M,etal. Processing a twinning-induced plasticity steel by high-pressure torsion [J]. Scripta Materialia, 2012, 67(7-8): 649-652.

      [48]Hirth J P. Thermodynamics of stacking faults [J]. Metallurgy Transactions A, 1970, 1: 2367-2374.

      [49]Gavriljuk V, Petrov Y, Shanina B, Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels[J]. Scripta Materialia, 2006, 55(6): 537-540.

      [50]Jeong K, Jin J E, Jung Y S,etal. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel [J]. Acta Materialia, 2013, 61(9): 3399-3410.

      [51]Astafurova E G, Tukeeva M S, Maier G G,etal. The role of twinning on microstructure and mechanical response of severely deformed single crystal of high-manganese austenitic steel [J]. Materials Characterization, 2011, 62(6): 588-592.

      [52]Astafurova E G, Tukeeva M S, Maier G G,etal. Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking fault energy [J]. Materials Science and Engineering A, 2014, 604: 166-175.

      [53]Vorhauer A, Kleber S, Pippan R. Influence or processing temperature on microstructural and mechanical properties of high-alloyed single-phase steels subjected to severe plastic deformation [J]. Materials Science and Engineering A, 2005, 410-411: 281-284.

      [54]Scheriau S, Zhang Z, Kleber S,etal. Deformation mechanism of a modified 316L austenitic steel subjected to high pressure torsion[J]. Materials Science and Engineering A, 2011,528: 2776-2786.

      [55]Chen L, Yuan F P, Jiang P,etal. Mechanical properties and nanostructures in a duplex stainless steel subjected to equal channel angular pressing [J]. Materials Science and Engineering A, 2012, 551: 154-159.

      [56]Cao Y, Wang Y B, Figueiredo R B,etal. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution[J]. Acta Materialia, 2011, 59(10): 3903-3914.

      [57]Cao Y, Wang Y B, An X H,etal. Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion[J]. Acta Materialia, 2014, 63, 16-29.

      [58]吳志強(qiáng). 高強(qiáng)度高塑性低密度鋼的組織性能和變形機(jī)制研究[D]. 沈陽: 東北大學(xué), 2015. (Wu Z Q. Microstructure, properties and deformation mechanisms of high strength and high ductility low density steels [D]. Shenyang: Northeastern University, 2015.)

      [59]Zhang P, Hu C, Ding C G,etal. Plastic deformation behavior and processing maps of a Ni-based superalloy [J]. Materials and Design, 2015, 65: 575-584.

      [60]Prasad Y, Gegel H L, Doraivelu S M,etal. Modeling of dynamic material behaviour in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15: 1883-1892.

      [61]Fang Y L, Liu Z Y, Wang G D. Crack properties of lean duplex stainless steel 2101 in hot forming processes [J]. Journal of Iron and Steel Research, International, 2011, 18(4): 58-62.

      Research progress on severe plastic deformation of steels with BCC/FCC crystal structures

      Ma Ming, Cai Minghui, Tang Zhengyou, Ding Hua

      (School of Materials and Metallurgy, Northeastern University,Shenyang 110819, China)

      The crystal-structure types of metallic materials such as face-centered cubic (FCC) and body-centered cubic (BCC) play a crucial role on ultra-grain refinement during severe plastic deformation (SPD). This work will focus on three different types of steels with BCC, FCC, and BCC/FCC crystal structures, and comprehensively discuss and summarize the influence of different crystal-structure types on deformation modes, ultra-grain refinement, microstructure and properties, which will provide a new route to apply and develop this theory to ultra-grain refinement of metallic materials through SPD processing.

      severe plastic deformation; FCC steel; BCC steel; duplex stainless steels; ultra-grain refinement

      10.14186/j.cnki.1671-6620.2015.04.007

      TG 306

      A

      1671-6620(2015)04-0283-10

      猜你喜歡
      孿晶塑性變形雙相
      熱軋雙相鋼HR450/780DP的開發(fā)與生產(chǎn)
      山東冶金(2022年2期)2022-08-08 01:50:42
      鎂金屬孿晶變形的實(shí)驗(yàn)和理論模型研究進(jìn)展
      劇烈塑性變形制備的納米金屬材料的力學(xué)行為
      硅量子點(diǎn)中的孿晶對(duì)其電子結(jié)構(gòu)和光學(xué)性能的影響
      高速切削Inconel718切屑形成過程中塑性變形研究
      空化水噴丸工藝誘導(dǎo)塑性變形行為的數(shù)值模擬
      S32760超級(jí)雙相不銹鋼棒材的生產(chǎn)實(shí)踐
      上海金屬(2016年1期)2016-11-23 05:17:28
      DP600冷軋雙相鋼的激光焊接性
      焊接(2016年8期)2016-02-27 13:05:13
      LDX2404雙相不銹鋼FCAW焊接及存在問題
      焊接(2015年9期)2015-07-18 11:03:52
      基于條元法的異步軋制金屬三維塑性變形分析
      乐亭县| 容城县| 南投县| 突泉县| 开江县| 九台市| 桂平市| 安国市| 华容县| 靖边县| 襄垣县| 绥化市| 永顺县| 金坛市| 泌阳县| 汕头市| 汉中市| 孟州市| 鸡东县| 宝丰县| 通江县| 延长县| 连州市| 天柱县| 定边县| 天长市| 仙居县| 太湖县| 泰安市| 胶州市| 辽中县| 和硕县| 康马县| 方正县| 历史| 赤水市| 吉安市| 霍州市| 乡城县| 驻马店市| 铁力市|