• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      microRNAs調控動物骨骼肌發(fā)育的研究進展

      2015-03-22 09:10:09盛熙暉鄧桂馨倪和民劉云海邢書涵
      畜牧獸醫(yī)學報 2015年2期
      關鍵詞:成肌細胞骨骼肌分化

      盛熙暉,鄧桂馨,倪和民,劉云海,邢書涵,郭 勇

      (北京農學院動物科技學院,北京 102206)

      microRNAs調控動物骨骼肌發(fā)育的研究進展

      盛熙暉,鄧桂馨,倪和民,劉云海,邢書涵,郭 勇*

      (北京農學院動物科技學院,北京 102206)

      microRNAs(miRNAs)是一類重要的內源性非編碼小分子RNA,參與調控機體生長、發(fā)育的各個環(huán)節(jié)。近年研究表明,miRNAs在動物骨骼肌發(fā)育過程中發(fā)揮著重要的調節(jié)作用。本文綜述了目前已發(fā)現的調控動物骨骼肌發(fā)育的關鍵miRNAs。

      microRNA;骨骼肌發(fā)育;動物;調控

      MicroRNAs (miRNAs),是一類長度在22個核苷酸左右的內源性非編碼小分子單鏈RNA,廣泛存在于植物、線蟲及人類的細胞中,具有高度的進化保守性[1]。miRNAs介導的基因轉錄后調控在生物體發(fā)育過程中有著重要的意義,其主要通過與靶基因3′UTR區(qū)的特異性結合,引起靶基因mRNA降解或轉錄后翻譯受抑[2]。從第1個miRNA的發(fā)現至今,有關miRNAs的研究突飛猛進。截至目前,miRNA數據庫中注冊的成熟miRNAs的數量已達28 645條,分布于植物、動物、單細胞藻類、病毒等200多個物種中(數據來源于miRBase Release21.0:2014.06.at http://microRNA.sanger.ac.uk)。這些miRNAs參與調控生物體的生長、發(fā)育、分化、信號轉導、疾病發(fā)生等各個方面[3-6]。其中,有研究表明miRNAs可以調控動物骨骼肌細胞的增殖與分化過程。

      骨骼肌是脊椎動物身體中最豐富的組織。動物肌肉量的增加主要通過2種途徑,肌纖維數目的增加和肌纖維直徑或者橫截面積的變大。其中,肌纖維數目的增加主要發(fā)生在胎兒期。當個體出生時,大部分動物的肌纖維數目已基本恒定,出生后則主要依靠增加原有肌纖維的直徑或者橫截面積使整個肌肉束變大,從而增加肌肉含量[7]。在骨骼肌的生成過程中,不同發(fā)育階段會形成不同類型的成肌細胞(胚胎成肌細胞、胎兒成肌細胞和衛(wèi)星細胞)[8],這些成肌細胞經過一系列的增殖、遷移、分化,最終形成多種類型的快、慢肌纖維[9]。該過程涉及了眾多基因的表達、信號途徑及網絡式調控。盡管利用候選基因法、分子標記-QTL連鎖分析等技術,已找到了一些與生長發(fā)育有關的基因或標記,例如,生肌調節(jié)因子家族(MRFs)[10]、肌細胞增強子因子2家族(MEF2)[11]、轉化生長因子β超家族(TGF-β)[12]、成對框基因(Pax)[13]、胰島素樣生長因子(IGFs)[14]等,但仍然有相當數量的生肌調節(jié)因子和轉錄因子有待鑒定。有關肌肉生長的分子機制尚未徹底闡明。因此,對miRNAs調控骨骼肌細胞增殖分化的深入研究,有利于人們對動物骨骼肌生長發(fā)育機制的理解,并為動物育種工作提供理論基礎。

      1 miRNAs在骨骼肌中的表達模式

      C2C12細胞是小鼠成肌細胞系,由D.Yaffe等于1977年建立[15]。在低血清條件下進行體外培養(yǎng)時,C2C12細胞可被誘導進行成肌分化,進而成熟為多核肌管,同時伴隨myosin、myogenin以及其他分化基因的表達。目前,C2C12細胞作為體外模型,已廣泛應用于骨骼肌的增殖與分化研究。研究表明,一些miRNAs在骨骼肌細胞的不同發(fā)育階段呈現出不同的表達水平。例如,當C2C12細胞由增殖階段轉換到分化階段時,分別有77和68個miRNAs發(fā)生了2倍以上的表達上調和下調[16]。其中,上調基因有miR-133b、miR-133a-1、miR-133a-2和miR-206,下調基因有miR-703、miR-122a、miR-9-2和miR-805。這表明,骨骼肌的發(fā)育同時受到miRNAs的正向和反向的共同調節(jié)。另有研究發(fā)現,在成肌細胞的分化過程中,miR-1、miR-133a、miR-133b和miR-206的表達呈現上升趨勢[17]。

      依據組織表達特性,調節(jié)骨骼肌發(fā)育的miRNAs可分為2類:一類miRNAs僅在骨骼肌細胞中特異表達,例如miR-1、miR-206和miR-133;而另一類miRNAs除在骨骼肌中表達外,亦可在多種組織細胞中表達。研究表明,這2類miRNAs均在骨骼肌的生長、發(fā)育以及骨骼肌疾病方面發(fā)揮著重要的調控作用。其中,以肌肉特異表達miRNAs的研究最為深入。

      同時,在骨骼肌發(fā)育過程中,miRNAs的表達具有階段特異性。一些miRNAs在個體胚胎期的表達水平高于生后期[18-19],這些miRNAs參與調控胚胎發(fā)育和組織同一性的保持[20]。另有研究人員對豬不同發(fā)育階段的肌肉組織進行miRNAs檢測,結果顯示miR-133在成年豬的肌肉中高度表達,但在新生仔豬和胚胎中表達水平較低。miR-24和miR-27在肌肉衛(wèi)星細胞和成年個體中高度表達,而miR-368、miR-376和miR-423-5p在初生仔豬中表達量較高[21]。

      2 miRNAs調控動物骨骼肌發(fā)育的研究現狀

      研究表明,miRNAs在動物骨骼肌發(fā)育過程中發(fā)揮著重要的調控作用。這些miRNAs可與生肌調節(jié)因子(如MyoD和myogenin)形成反饋回路來精確調控骨骼肌發(fā)育。例如,miR-1和miR-206通過抑制Pax7的表達來促進成肌細胞的分化[22-23],同時,miRNAs的表達又受控于MyoD、myogenin、MEF2和Pax7的調節(jié)[23-25]。

      miRNAs調控骨骼肌的發(fā)育過程,主要作用于3個方面:成肌細胞的分化、增殖以及骨骼肌疾病。

      2.1 miRNAs調節(jié)成肌細胞的分化

      miR-1是在心肌和骨骼肌中特異表達的miRNAs之一,具有高度的進化保守性,可以調控成肌細胞的分化過程。在小鼠C2C12細胞中的研究表明,miR-1以組蛋白去乙酰化酶4(HDAC4)為靶點,促進成肌細胞的分化[26]。其中,HDAC4主要通過調控MEF2(一種重要的肌肉相關轉錄因子)來抑制肌肉分化和骨骼肌基因表達[27]。在豬上的研究表明,miR-1以calponin 3 (CNN3)基因作為靶基因來調控豬的骨骼肌發(fā)育過程。研究同時發(fā)現,CNN3基因的單核苷酸多態(tài)性(SNPs)與豬的生長性狀顯著相關[28]。另有報道,在成肌細胞中,YY1基因可以抑制肌肉miRNAs(miR-1、miR-206和miR-133)的表達,同時miR-1又可以反向作用于YY1基因,由此形成了一個調控骨骼肌成肌分化的負反饋環(huán)[16]。miR-1在心的分化發(fā)育中也扮演著重要的角色。研究表明,在果蠅發(fā)育過程中,miR-1的突變可導致心和肌肉前體細胞的分化受阻[29]。在小鼠心中,miR-1的過量表達可降低心肌細胞的擴張,減少增殖細胞的數量[30]。

      miR-206是miR-1家族的成員之一,與miR-1具有相同的種子序列,在脊椎動物的骨骼肌中特異表達[31]。目前的研究表明,miR-206在肌肉發(fā)生過程中發(fā)揮著重要的調控作用,并且具有多個靶基因,調控方式復雜。例如,通過對Texel綿羊的研究發(fā)現,造成該品種肌肉異常發(fā)達的原因是由于肌肉生長抑制素基因(Myostatin)3′UTR內的1個點突變。該突變產生了1個可以被miR-1和miR-206同時作用的靶位點,從而引起了miRNAs介導的Myostatin蛋白濃度的轉錄后降低,而造成肌肉肥大[32]。研究人員應用體內和體外的試驗證明,在調控胚胎體節(jié)的成肌分化和成體骨骼肌衛(wèi)星細胞的分化過程中,配對盒基因3(Pax3)和配對盒基因7(Pax7)是miR-1和miR-206的關鍵靶點[22-23,33]。在小鼠C2C12細胞中的多項研究表明,miR-206可分別通過下調縫隙連接蛋白43(Cx43)、DNA聚合酶α1(Pola1)和組蛋白去乙?;?(HDAC4)[34]的表達,促進成肌細胞的分化。此外,研究人員應用體外模型研究發(fā)現,MyoD通過誘導增加miR-206初級轉錄本的表達,引起其靶基因(Fstl1和Utrn)的表達下調,進而調控成肌細胞的分化過程[25]。

      此外,一些非肌肉特異性的miRNAs在成肌細胞的分化過程中亦具有調控功能(表1)。例如,miR-181在成肌細胞分化過程中顯著上調,并通過下調抑制分化因子Hox-A11基因的表達調控成肌分化過程[35];miR-148a在成肌細胞分化過程中被誘導表達,并通過下調Rho相關蛋白激酶1(ROCK1)的表達來促進細胞分化[36];miR-125b可以通過靶向胰島素樣生長因子2 (IGF-II),負調控骨骼肌分化過程[37];miR-23a通過抑制快肌肌動蛋白重鏈(MYH)的表達抑制成肌細胞分化[38];miR-199a-3p在骨骼肌中高度表達,并可通過調控IGF-1/AKT/mTOR信號通路中的若干基因來調控C2C12成肌細胞的分化[39];miR-186同樣可以抑制成肌細胞的分化,通過抑制成肌調節(jié)因子Myogenin的表達來完成[40]。

      表1 調控骨骼肌細胞增殖分化的miRNAs及其靶基因

      Table 1 The miRNAs and their target genes regulating myoblast proliferation and differentiation

      miRNA功能Function靶基因Targetgene參考文獻ReferencemiR-1促進分化HDAC4、CNN3、Pax7、YY1、Myostatin[16,22,26,28,32]miR-206促進分化Pax3、Cx43、Pola1、Pax7、HDAC4、Fstl1、Utrn、Myostatin[22-23,25,32-34,45-46]miR-486促進分化Pax7[23]miR-181促進分化Hox-A11[35]miR-148a促進分化ROCK1[36]miR-26a促進分化Ezh2、Smad1、Smad4[47-48]miR-27b促進分化Pax3[49]miR-378促進分化MyoR[50]miR-322/424/503促進分化Cdc25A[51]miR-24促進分化未知[52]miR-221/222抑制分化p27[53]miR-155抑制分化MEF2A[54]miR-125b抑制分化IGF-II[37]miR-23a抑制分化MYH[38]miR-199a-3p抑制分化IGF-1、mTOR、RPS6KA6[39]miR-186抑制分化Myogenin[40]miR-669a/669q抑制分化MyoD[55]miR-133促進增殖SRF、IGF-1R、nPTB、MAML1、MEF2C[26,42-44]miR-214促進增殖、促進分化N-ras、Ezh2[56-57]miR-27a促進增殖Myostatin[58]miR-682抑制增殖未知[59]miR-29抑制增殖Akt3、YY1[60-61]miR-128a抑制增殖Irs1[62]

      2.2 miRNAs調節(jié)成肌細胞的增殖

      miR-133在心肌和骨骼肌中特異表達。該家族包括2個成員,miR-133a和miR-133b。miR-133b與miR-206成簇位于小鼠的1號染色體上,其轉錄和表達并不相同。miR-133a與miR-1成簇位于小鼠的2號和18號染色體上,并一起轉錄[41]。但是,miR-133 和miR-1在骨骼肌發(fā)育過程中發(fā)揮著相反的生物學功能,miR-1促進肌肉分化,而miR-133抑制肌肉分化、促進成肌細胞增殖。研究表明,miR-133通過調控SRF[26]、MAML1[42]、IGF-1R[43]與nPTB[44]的表達,促進成肌細胞的增殖。與miR-1相似,miR-133在心發(fā)育中也發(fā)揮著不可或缺的調控作用。在爪蟾中的研究表明,如果原核期時過表達miR-1,可導致心的完全缺失。而在胚胎中注射miR-133,心組織雖然可以形成,但是結構紊亂,不能形成腔室且不能環(huán)化[26]。

      參與調控成肌細胞增殖過程的miRNAs中也包含了一些非肌肉特異性的miRNAs。例如,在小鼠成肌細胞中,miR-214既可以促進成肌細胞的增殖,又可以促進其分化[56];miR-27a通過抑制肌肉生成的重要抑制因子Myostatin,促進細胞的增殖[58];另有研究人員發(fā)現,miR-27a可以被亮氨酸誘導表達,并促進亮氨酸所誘導的成肌細胞的增殖[63]。同時,一些miRNAs可以抑制成肌細胞的增殖過程。例如,miR-682在生肌祖先細胞增殖過程中表達上調,并抑制其細胞增殖[59];miR-29通過轉錄后下調Akt3基因(絲氨酸/蘇氨酸蛋白激酶家族成員之一)的表達,可以抑制小鼠成肌細胞的增殖并促進肌管形成[60];另有,在小鼠中的研究表明,miR-128a的過量表達可以抑制成肌細胞的增殖,其靶基因為Irs1 (胰島素受體底物1),該基因是胰島素信號通路中的重要基因之一。對小鼠進行連續(xù)4周的miR-128a表達抑制,顯著誘導產生了小鼠的肌肉肥大[62]。

      2.3 miRNAs與一些骨骼肌疾病密切相關

      目前的研究表明,一些miRNAs與骨骼肌疾病密切相關。例如,I.Eisenberg等發(fā)現,185個miRNAs在10個人類主要的肌肉疾病中存在表達差異。其中,miR-146、miR-155、miR-221、miR-222和miR-214在全部樣本中均有差異表達[64];miR-31參與調控肌肉萎縮癥,研究發(fā)現抑制miR-31可望作為該疾病治療的有效手段[65]。另有研究表明,miR-206以及其他肌肉特異的miRNAs可用來監(jiān)測杜氏肌營養(yǎng)不良癥的病理進展,作為該疾病的生物標志物[66]。miRNAs亦與骨骼肌肥大癥有關。有報道指出,miR-1和miR-133a在骨骼肌肥大的小鼠肌肉中表達下調[67]。miRNA也與肌肉癌相關。研究顯示,miR-29作為腫瘤抑制者,能靶向作用于YY1基因,抑制橫紋肌肉瘤生長并刺激分化[68]。

      3 展望

      綜上所述,miRNAs在動物骨骼肌發(fā)育過程中發(fā)揮著關鍵的調控作用,并且作用機制復雜。目前,針對miRNAs的研究主要集中于miRNAs的深度挖掘及其功能鑒定。盡管已鑒定出眾多的miRNAs及其在骨骼肌中的作用靶點,但是其具體的調控機制仍需進一步研究,例如miRNAs介導的調控網絡、miRNAs與重要信號通路的作用關系等。并且,目前miRNAs在骨骼肌中的功能研究主要應用的是體外細胞模型,未來人們應該采用體內研究技術,如轉基因、基因敲除技術等,深入闡明miRNAs在骨骼肌發(fā)育過程中的調控機制,為今后的動物育種和疾病治療奠定理論基礎。

      [1] BARTEL D P.MicroRNAs:genomics,biogenesis,mechanism,and function [J].Cell,2004,116(2):281-297.

      [2] LAI E C.Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation [J].NatGenet,2002,30(4):363-364.[3] LEE R C,FEINBAUM R L,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J].Cell,1993,75(5):843-854.

      [4] CHEN C Z,LI L,LODISH H F,et al.MicroRNAs modulate hematopoietic lineage differentiation [J].Science,2004,303(5654):83-86.

      [5] WANG J,HUANG S K,ZHAO M,et al.Identification of a circulating microRNA signature for colorectal cancer detection [J].PLoSONE,2014,9(4):e87451.

      [6] JOSSE C,BOUZNAD N,GEURTS P,et al.Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis [J].AmJPhysiolGastrointestLiverPhysiol,2014,306(3):G229-243.

      [7] SWATLAND H J.Muscle growth in the fetal and neonatal pig [J].JAnimSci,1973,37(2):536-545.

      [8] BIRESSI S,MOLINARO M,COSSU G.Cellular heterogeneity during vertebrate skeletal muscle development [J].DevBiol,2007,308(2):281-293.

      [9] MILLER J B,EVERITT E A,SMITH T H,et al.Cellular and molecular diversity in skeletal muscle development:news frominvitroandinvivo[J].Bioessays,1993,15(3):191-196.

      [10] RUDNICKI M A,SCHNEGELSBERG P N,STEAD R H,et al.MyoD or Myf-5 is required for the formation of skeletal muscle [J].Cell,1993,75(7):1351-1359.

      [11] LUDOLPH D C,KONIECZNY S F.Transcription factor families:muscling in on the myogenic program [J].FASEBJ,1995,9(15):1595-1604.

      [12] MANCEAU M,GROS J,SAVAGE K,et al.Myostatin promotes the terminal differentiation of embryonic muscle progenitors [J].GenesDev,2008,22(5):668-681.

      [13] LAGHA M,KORMISH J D,ROCANCOURT D,et al.Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program [J].GenesDev,2008,22(13):1828-1837.

      [14] MUSARO A,MCCULLAGH K J,NAYA F J,et al.IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1 [J].Nature,1999,400(6744):581-585.

      [15] YAFFE D,SAXEL O.Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle [J].Nature,1977,270(5639):725-727.

      [16] LU L,ZHOU L,CHEN E Z,et al.A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network [J].PLoSONE,2012,7(2):e27596.

      [17] KOUTSOULIDOU A,MASTROYIANNOPOULOS N P,FURLING D,et al.Expression of miR-1,miR-133a,miR-133b and miR-206 increases during development of human skeletal muscle [J].BMCDevBiol,2011,11:34.

      [18] HUANG T H,ZHU M J,LI X Y,et al.Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development [J].PLoSONE,2008,3(9):e3225.

      [19] LI T,WU R,ZHANG Y,et al.A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs [J].BMCGenomics,2011,12:186.

      [20] YU Z,JIAN Z,SHEN S H,et al.Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos [J].NucleicAcidsRes,2007,35(1):152-164.

      [21] MCDANELD T G,SMITH T P,DOUMIT M E,et al.MicroRNA transcriptome profiles during swine skeletal muscle development [J].BMCGenomics,2009,10:77.

      [22] CHEN J F,TAO Y,LI J,et al.microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7 [J].JCellBiol,2010,190(5):867-879.

      [23] DEY B K,GAGAN J,DUTTA A.miR-206 and -486 induce myoblast differentiation by downregulating Pax7 [J].MolCellBiol,2011,31(1):203-214.

      [24] RAO P K,KUMAR R M,FARKHONDEH M,et al.Myogenic factors that regulate expression of muscle-specific microRNAs [J].ProcNatlAcadSciUSA,2006,103(23):8721-8726.

      [25] ROSENBERG M I,GEORGES S A,ASAWACHAICHARN A,et al.MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206 [J].JCellBiol,2006,175(1):77-85.

      [26] CHEN J F,MANDEL E M,THOMSON J M,et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J].NatGenet,2006,38(2):228-233.

      [27] LU J,MCKINSEY T A,ZHANG C L,et al.Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases [J].MolCell,2000,6(2):233-244.

      [28] TANG Z,LIANG R,ZHAO S,et al.CNN3 is regulated by microRNA-1 during muscle development in pigs [J].IntJBiolSci,2014,10(4):377-385.

      [29] KWON C,HAN Z,OLSON E N,et al.MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling [J].ProcNatlAcadSciUSA,2005,102(52):18986-18991.

      [30] ZHAO Y,SAMAL E,SRIVASTAVA D.Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J].Nature,2005,436(7048):214-220.

      [31] BASKERVILLE S,BARTEL D P.Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].RNA,2005,11(3):241-247.

      [32] CLOP A,MARCQ F,TAKEDA H,et al.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep [J].NatGenet,2006,38(7):813-818.

      [33] GOLJANEK-WHYSALL K,SWEETMAN D,ABU-ELMAGD M,et al.MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis [J].ProcNatlAcadSciUSA,2011,108(29):11936-11941.

      [34] WINBANKS C E,WANG B,BEYER C,et al.TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4 [J].JBiolChem,2011,286(16):13805-13814.

      [35] NAGUIBNEVA I,AMEYAR-ZAZOUA M,POLESSKAYA A,et al.The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation [J].NatCellBiol,2006,8(3):278-284.

      [36] ZHANG J,YING Z Z,TANG Z L,et al.MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene [J].JBiolChem,2012,287(25):21093-21101.

      [37] GE Y,SUN Y,CHEN J.IGF-II is regulated by microRNA-125b in skeletal myogenesis [J].JCellBiol,2011,192(1):69-81.

      [38] WANG L,CHEN X,ZHENG Y,et al.MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms [J].ExpCellRes,2012,318(18):2324-2334.

      [39] JIA L,LI Y F,WU G F,et al.MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway [J].IntJMolSci,2014,15(1):296-308.

      [40] ANTONIOU A,MASTROYIANNOPOULOS N P,UNEY J B,et al.miR-186 inhibits muscle cell differentiation through myogenin regulation[J].JBiolChem,2014,289(7):3923-3935.

      [41] LAGOS-QUINTANA M,RAUHUT R,YALCIN A,et al.Identification of tissue-specific microRNAs from mouse [J].CurrBiol,2002,12(9):735-739.

      [42] CESANA M,CACCHIARELLI D,LEGNINI I,et al.A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA [J].Cell,2011,147(2):358-369.

      [43] HUANG M B,XU H,XIE S J,et al.Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis [J].PLoSONE,2011,6(12):e29173.

      [44] BOUTZ P L,CHAWLA G,STOILOV P,et al.MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development [J].GenesDev,2007,21(1):71-84.

      [45] ANDERSON C,CATOE H,WERNER R.MiR-206 regulates connexin43 expression during skeletal muscle development [J].NucleicAcidsRes,2006,34(20):5863-5871.

      [46] KIM H K,LEE Y S,SIVAPRASAD U,et al.Muscle-specific microRNA miR-206 promotes muscle differentiation [J].JCellBiol,2006,174(5):677-687.

      [47] WONG C F,TELLAM,R L.MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis [J].JBiolChem,2008,283:9836-9843.

      [48] DEY B K,GAGAN J,YAN Z,et al.miR-26a is required for skeletal muscle differentiation and regeneration in mice.[J].GenesDev,2012,26:2180-2191.

      [49] CRIST C G,MONTARRAS D,PALLAFACCHINA G,et al.Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression.[J].ProcNatlAcadSci,2009,106:13383-13387.

      [50] GAGAN J,DEY B K,LAYER R,et al.MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation.[J].JBiolChem,2011,286:19431-19438.

      [51] SARKAR S,DEY B K,DUTTA A.MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A [J].MolBiolCell,2010,21(13):2138-2149.

      [52] SUN Q,ZHANG Y,YANG G,et al.Transforming growth factorbeta-regulated miR-24 promotes skeletal muscle differentiation [J].NucleicAcidsRes,2008,36:2690-2699.

      [53] CARDINALI B,CASTELLANI L,FASANARO P,et al.Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells [J].PLoSONE,2009,4:e7607.

      [54] SEOK H Y,TATSUGUCHI M,CALLIS T E,et al.miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation [J].JBiolChem,2011,286(41):35339-35346.

      [55] CRIPPA S,CASSANO M,MESSINA G,et al.miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors.[J].JCellBiol,2011,193:1197-1212.

      [56] FENG Y,CAO J H,LI X Y,et al.Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts [J].CellBiochemFunct,2011,29(5):378-383.

      [57] JUAN A H,KUMAR R M,MARX J G,et al.Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells [J].MolCell,2009,36:61-74.

      [58] HUANG Z,CHEN X,YU B,et al.MicroRNA-27a promotes myoblast proliferation by targeting myostatin [J].BiochemBiophysResCommun,2012,423(2):265-269.

      [59] CHEN Y,GELFOND J,MCMANUS L M,et al.Temporal microRNA expression duringinvitromyogenic progenitor cell proliferation and differentiation:regulation of proliferation by miR-682 [J].PhysiolGenomics,2011,43(10):621-630.

      [60] WEI W,HE H B,ZHANG W Y,et al.miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development [J].CellDeathDis,2013,4:e668.

      [61] WANG X H,HU Z,KLEIN J D,et al.Decreased miR-29 suppresses myogenesis in CKD [J].JAmSocNephrol,2011,22:2068-2076.

      [62] MOTOHASHI N,ALEXANDER M S,SHIMIZU-MOTOHASHI Y,et al.Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis [J].JCellSci,2013,126(Pt 12):2678-2691.

      [63] CHEN X,HUANG Z,CHEN D,et al.MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells [J].IntJMolSci,2013,14(7):14076-14084.

      [64] EISENBERG I,ERAN A,NISHINO I,et al.Distinctive patterns of microRNA expression in primary muscular disorders [J].ProcNatlAcadSciUSA,2007,104(43):17016-17021.

      [65] CACCHIARELLI D,INCITTI T,MARTONE J,et al.miR-31 modulates dystrophin expression:new implications for Duchenne muscular dystrophy therapy [J].EMBORep,2011,12(2):136-141.

      [66] HU J,KONG M,YE Y,et al.Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy [J].JNeurochem,2014,129(5):577-883.

      [67] MCCARTHY J J,ESSER K A.MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy [J].JApplPhysiol,2007,102(1):306-313.

      [68] WANG H,GARZON R,SUN H,et al.NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma [J].CancerCell,2008,14(5):369-381.

      (編輯 郭云雁)

      Research Progress on MicroRNAs Regulating Animal Skeletal Muscle Development

      SHENG Xi-hui,DENG Gui-xin,NI He-min,LIU Yun-hai,XING Shu-han,GUO Yong*

      (CollegeofAnimalScienceandTechnology,BeijingUniversityofAgriculture,Beijing102206,China)

      MicroRNAs (miRNAs) are small noncoding RNA molecules that play important roles in the regulation of animal growth and development.Recent studies have demonstrated that miRNAs are required in the process of animal skeletal muscle development.Here,the recent advances of the roles of miRNAs in the skeletal muscle development were reviewed.

      microRNA;skeletal muscle development;animal;regulation

      10.11843/j.issn.0366-6964.2015.02.001

      2014-05-06

      北京市自然科學基金(6132003);北京市教委科技計劃項目(PXM 2014_014207_000001)

      盛熙暉(1983-),女,內蒙古人,講師,博士,主要從事動物分子育種研究,Tel:010-80795592,E-mail:shengxh03@163.com

      *通信作者:郭 勇,教授,E-mail: y63guo@126.com

      Q52

      A

      0366-6964(2015)02-0179-07

      猜你喜歡
      成肌細胞骨骼肌分化
      兩次中美貨幣政策分化的比較及啟示
      Ang Ⅱ誘導大鼠成肌細胞萎縮模型的構建
      分化型甲狀腺癌切除術后多發(fā)骨轉移一例
      成肌細胞原代培養(yǎng)及臨床應用前景*
      8-羥鳥嘌呤可促進小鼠骨骼肌成肌細胞的增殖和分化
      骨骼肌細胞自噬介導的耐力運動應激與適應
      骨骼肌缺血再灌注損傷的機制及防治進展
      Cofilin與分化的研究進展
      NO及NOS在老年Ⅰ期壓瘡大鼠骨骼肌組織細胞凋亡中的作用
      知識如何在分化中造就語言(上)
      當代修辭學(2011年4期)2011-01-23 06:40:48
      商洛市| 阿鲁科尔沁旗| 新蔡县| 庄浪县| 洛川县| 彰化市| 五原县| 澄迈县| 合江县| 平昌县| 韶山市| 象州县| 荥经县| 南陵县| 旌德县| 衡水市| 庆城县| 金塔县| 台南县| 米脂县| 边坝县| 榆林市| 小金县| 大丰市| 张家界市| 红河县| 凤山县| 镇坪县| 河东区| 泰安市| 大英县| 闽侯县| 庆元县| 离岛区| 且末县| 溧水县| 昌图县| 德江县| 社会| 武汉市| 吴堡县|