何潔玉,吳建云,李良娟,武 鑫(西南大學動物科技學院,重慶400715)
?
神經(jīng)膠質(zhì)細胞對GnRH 神經(jīng)元的調(diào)控機制研究進展
何潔玉,吳建云,李良娟,武鑫
(西南大學動物科技學院,重慶400715)
摘 要:促性腺激素釋放激素(gonadotropin-releasing hormone,GnRH)神經(jīng)元是控制生殖的主要神經(jīng)元。下丘腦GnRH神經(jīng)元的適時激活,興奮性和抑制性信號跨突觸傳遞的嚴格控制,決定了性腺發(fā)育和成年個體的繁殖能力。研究表明,神經(jīng)膠質(zhì)細胞是調(diào)控GnRH神經(jīng)元的主要細胞,神經(jīng)膠質(zhì)細胞利用胞體和突起,通過多種細胞和分子機制調(diào)控GnRH神經(jīng)元,包括分泌旁分泌因子調(diào)控GnRH神經(jīng)元,通過黏合分子和具有重塑性的神經(jīng)膠質(zhì)細胞覆蓋GnRH神經(jīng)元來完成神經(jīng)膠質(zhì)細胞和GnRH神經(jīng)元之間的接觸依賴性通訊。論文對神經(jīng)膠質(zhì)細胞調(diào)控GnRH神經(jīng)元活性和分泌的機制進行了綜述,以期對神經(jīng)膠質(zhì)細胞在生殖調(diào)控中的作用有更深入的了解。
關鍵詞:促性腺激素釋放激素;星形膠質(zhì)細胞;伸長細胞;生殖;神經(jīng)元
促性腺激素釋放激素(GnRH)是一種10肽激素,大量特定的神經(jīng)元分泌GnRH來控制生殖活動。GnRH神經(jīng)元主要位于嚙齒動物的海馬和視前葉區(qū)域,它們的神經(jīng)分泌軸突到達下丘腦的中央隆起,中央隆起釋放GnRH經(jīng)垂體門脈運輸?shù)酱贵w前葉,引起腺垂體分泌促卵泡素(Folide-stimulating hormone,F(xiàn)SH)和促黃體素(Futeinizing hormone,LH),這兩種激素促進性腺發(fā)育并維持生殖機能。初生時GnRH神經(jīng)元存在于下丘腦,到青春期都未完全發(fā)育成熟。在雌性嚙齒動物發(fā)情前期,GnRH神經(jīng)元適時激活,分泌大量的GnRH,導致LH巨增,引起卵巢排卵[1]。GnRH神經(jīng)元和神經(jīng)膠質(zhì)細胞親密接觸,星形膠質(zhì)細胞圍繞著GnRH神經(jīng)元的核周體,在下丘腦的中央隆起,伸長細胞和GnRH神經(jīng)元軸突交互作用。同時,神經(jīng)膠質(zhì)細胞利用多種分子機制調(diào)控GnRH神經(jīng)元。本文就這些機制進行簡單綜述。
前列腺素E2和轉化生長因子β家族是最具特色的神經(jīng)膠質(zhì)細胞旁分泌因子,它們通過旁分泌方式調(diào)控GnRH神經(jīng)元。
1.1神經(jīng)膠質(zhì)細胞通過前列腺素E2調(diào)控GnRH神經(jīng)元
前列腺素E2是磷脂的衍生分子,是GnRH神經(jīng)元強有力的刺激物[2]。下丘腦神經(jīng)膠質(zhì)細胞,包括星形膠質(zhì)細胞和伸長細胞,都是前列腺素E2的主要來源。
下丘腦中,一系列有效的信號系統(tǒng)刺激星形膠質(zhì)細胞表皮生長因子受體,erbB酪氨酸激酶,引起星形膠質(zhì)細胞釋放前列腺素E2。嚙齒動物下丘腦星形膠質(zhì)細胞表達3類erb B受體,包括erbB1(表皮生長因子受體)、erbB2和erbB4[3-4]。轉化生長因子α(transforming growth factor-alpha,TGFα)和神經(jīng)調(diào)節(jié)蛋白共同激活erbB1/erbB2異二聚體和erb B4/erbB2異二聚體,從而釋放前列腺素E2。前列腺素E2反過來刺激能分泌GnRH的細胞和中間隆起外植體[5]釋放GnRH。由于GnRH神經(jīng)元缺乏erbB受體[3],因此,以上這個信號系統(tǒng)刺激GnRH神經(jīng)元分泌GnRH,必須通過星形膠質(zhì)細胞這個中間體來完成。此外,谷氨酸的跨膜輸入能實現(xiàn)星形膠質(zhì)細胞和神經(jīng)元之間的信號傳遞。谷氨酸的跨膜輸入激活神經(jīng)膠質(zhì)細胞瘤中的離子型谷氨酸受體和代謝型谷氨酸受體,通過重新分配細胞膜上的轉化生長因子α-erbB1和神經(jīng)調(diào)節(jié)蛋白-erbB4,隨后金屬蛋白酶反式激活erbB受體信號[4,6],刺激星形膠質(zhì)細胞分泌前列腺素E2。星形膠質(zhì)細胞中谷氨酸受體和erbB信號之間的聯(lián)系說明,在哺乳動物的青春期,神經(jīng)內(nèi)分泌調(diào)控能加大谷氨酸能神經(jīng)元的神經(jīng)傳遞,增強神經(jīng)膠質(zhì)細胞到GnRH神經(jīng)元的信號反饋。Lomniczi A等的試驗證明,在體內(nèi),表皮生長因子信號通路也能調(diào)控GnRH神經(jīng)元。隨著青春期下丘腦谷氨酸輸入增加,表皮生長因子信號通路激活胞內(nèi)的腫瘤壞死因子α轉化酶、TGFα、erbB1、erbB2、erbB4,同時胞外區(qū)域轉化生長因子α脫去金屬蛋白酶并激活erbB1[6],引發(fā)星形神經(jīng)膠質(zhì)細胞分泌前列腺素E2。另外,體內(nèi)轉化生長因子α/erb B1異常,或者erb B2信號異常,或者抑制腫瘤壞死因子α轉化酶活性[8],都會影響雌性青春期發(fā)育。星形神經(jīng)膠質(zhì)細胞erbB信號能控制生殖活動,轉基因小鼠星形神經(jīng)膠質(zhì)細胞表達大量低活力的erbB4受體,這些低活力的erbB4受體降低了配體激活erbB4、erbB2受體,影響前列腺素E2分泌,導致GnRH分泌減少,從而影響生殖發(fā)育。因此,在成年早期,轉基因小鼠表現(xiàn)出性成熟推遲以及生育能力低下。此外,erbB1,erbB4協(xié)同作用調(diào)控生殖,erbB1、erbB4信號紊亂的小鼠和只缺乏erbB1或者erbB4的小鼠相比,青春期時生長發(fā)育遲緩,生殖能力低下[5]。
催產(chǎn)素能觸發(fā)下丘腦星形神經(jīng)膠質(zhì)細胞釋放前列腺素E2[7]。催產(chǎn)素能有效地刺激性成熟動物下丘腦外植體分泌GnRH。雌性和雄性動物性成熟后會加快GnRH的脈沖分泌。雌性大鼠發(fā)情期,下丘腦中催產(chǎn)素及其受體都會增加。但是,在青春期以前,下丘腦外植體阻止前列腺素E2合成,抑制因催產(chǎn)素引起的GnRH脈沖頻率的增加。在GnRH神經(jīng)元中并沒有發(fā)現(xiàn)催產(chǎn)素的受體[7]。但是,與GnRH神經(jīng)元相鄰的星形膠質(zhì)細胞釋放前列腺素E2,調(diào)控與表皮生長因子相關的多肽刺激催產(chǎn)素作用于GnRH神經(jīng)元。
下丘腦正中隆起中的伸長細胞是前列腺素E2的另一個來源。星形神經(jīng)膠質(zhì)細胞和伸長細胞中的erbB1配體激活erbB1/erbB2異二聚體,分泌前列腺素E2。門靜脈周圍的有孔毛細血管上皮細胞也能釋放前列腺素E2。激活內(nèi)皮型一氧化氮合酶,釋放氣態(tài)的一氧化氮。一氧化氮迅速擴散到伸長細胞,直接激活環(huán)氧合酶,促使合成前列腺素E2[8]。此外研究證明小神經(jīng)膠質(zhì)細胞靠近GnRH神經(jīng)元的側枝能表達環(huán)氧合酶,促使合成前列腺素E2,調(diào)控GnRH神經(jīng)元分泌GnRH[9]。
神經(jīng)膠質(zhì)細胞合成前列腺素E2,直接運輸?shù)紾n-RH神經(jīng)元,激活前列腺素受體[10]。分析下丘腦正中隆起外植體和分泌GnRH的細胞表明,前列腺素E2通過激活前列腺素受體和調(diào)控細胞內(nèi)外鈣的運輸來誘導神經(jīng)末梢釋放GnRH[10]。前列腺素E2被運輸?shù)紾nRH神經(jīng)元細胞體,調(diào)控神經(jīng)元的腦電活動。Clasadonte J等證明,氟乙酸或者星形神經(jīng)膠質(zhì)細胞前列腺素E2的合成受損都會抑制星形膠質(zhì)細胞的新陳代謝。由于星形神經(jīng)膠質(zhì)細胞中erbB信號缺陷,導致腦片中GnRH神經(jīng)元的自發(fā)放電活動被抑制[11]。上述結論表明前列腺素E2是重要的神經(jīng)膠質(zhì)遞質(zhì),星形膠質(zhì)細胞是調(diào)控GnRH神經(jīng)元活性的主要細胞。此外,星形膠質(zhì)細胞產(chǎn)生的前列腺素E2能夠調(diào)控γ-氨基丁酸能輸入GnRH神經(jīng)元[13]。然而,在GnRH神經(jīng)元末梢,神經(jīng)膠質(zhì)細胞通過什么機制調(diào)控GnRH神經(jīng)元的腦電活動從而影響神經(jīng)肽的分泌,這個機制還需進一步研究。
1.2神經(jīng)膠質(zhì)細胞和GnRH神經(jīng)元通過轉化生長因子β1傳遞信息
體外研究發(fā)現(xiàn),星形神經(jīng)膠質(zhì)細胞能夠合成并分泌轉化生長因子β家族,轉化生長因子β能刺激合成GnRH的細胞分泌GnRH。合成GnRH的細胞能表達轉化生長因子β受體及其下游的效應蛋白(Smad蛋白)[14]。體外研究證實,轉化生長因子β1隨著發(fā)情周期的變化而變化,并選擇性在星形膠質(zhì)細胞圍繞的GnRH神經(jīng)元中表達。在小鼠視神經(jīng)區(qū)域的GnRH神經(jīng)元胞體中有轉化生長因子β1受體和Smad蛋白的表達。GnRH神經(jīng)末梢缺乏轉化生長因子β1受體,轉化生長因子β1不能直接刺激GnRH神經(jīng)末梢釋放GnRH,而是刺激GnRH神經(jīng)元胞體,使其釋放GnRH。
2.1細胞黏附分子
對非人類的靈長類動物和實驗鼠的體內(nèi)、體外研究表明,下丘腦星形膠質(zhì)細胞和GnRH神經(jīng)元通過受體酪氨酸蛋白磷酸酶β、接觸蛋白、接觸蛋白相關蛋白1的絡合物相互黏附,而跨膜受體酪氨酸蛋白磷酸酶β、接觸蛋白和接觸蛋白相關蛋白1形成的二聚體和酪氨酸蛋白磷酸酶β共同存在于GnRH神經(jīng)元表面[15]。值得注意的是,GnRH神經(jīng)末梢表達接觸蛋白,但是GnRH核周體不表達接觸蛋白。這些黏附分子相互作用對GnRH分泌的影響還不是很清楚。但是觀察發(fā)現(xiàn),在發(fā)情前期,酪氨酸蛋白磷酸酶βmRNA在雌性大鼠下丘腦中選擇性地表達增加,在大腦皮層中卻沒有改變[15]。通過受體酪氨酸蛋白磷酸酶β、接觸蛋白、接觸蛋白相關蛋白1絡合物,增強了GnRH軸突和星形神經(jīng)膠質(zhì)細胞之間的聯(lián)系,這種交流也許是性成熟時神經(jīng)元-神經(jīng)膠質(zhì)細胞之間的通訊機制。
星形膠質(zhì)細胞和GnRH神經(jīng)元都表達的軸突細胞黏附分子1通過胞質(zhì)區(qū)域親同性結合,調(diào)控細胞之間的黏附[16]。在非人類的靈長類雌性動物發(fā)情期時,下丘腦中的軸突細胞黏附分子表達增加[17],若有選擇的破壞星形膠質(zhì)細胞中依靠軸突細胞黏附分子1的細胞外信號傳導,將會延遲青春期,擾亂發(fā)情周期,降低雌性的生殖能力[18]。下丘腦星形膠質(zhì)細胞中,突觸細胞黏附分子1和erbB4的信號通路在功能上是耦合的。erbB4受體的配體促進erbB4和突觸細胞黏附分子1通過細胞內(nèi)區(qū)域的物理作用,激活突觸細胞黏附分子1的基因轉錄,并激發(fā)其黏附反應[16,18]。突觸細胞黏附分子1是活化依靠神經(jīng)調(diào)節(jié)蛋白的erbB4所必需的,erbB4可誘導神經(jīng)末梢釋放GnRH和星形神經(jīng)膠質(zhì)細胞釋放前列腺素E2[18]。erbB和突觸細胞黏附分子1在下丘腦中形成一個信號復合體,共同調(diào)節(jié)星形神經(jīng)膠質(zhì)細胞和GnRH神經(jīng)元之間的黏附。
2.2可塑性神經(jīng)膠質(zhì)細胞覆蓋GnRH神經(jīng)元
神經(jīng)膠質(zhì)細胞在應對多種不同刺激時,形態(tài)方面發(fā)生了很大的變化[20]。超微結構顯示,在分泌少量促性腺激素的情況下,例如間情期,伸長細胞包繞分泌GnRH的神經(jīng)末梢,阻止其直接接觸血管周圍的區(qū)域。但是,這種現(xiàn)象只針對GnRH神經(jīng)元,對下丘腦中間隆起的其它神經(jīng)內(nèi)分泌細胞神經(jīng)末梢不明顯。在排卵期前的發(fā)情期,伸長細胞重塑結構,清除物理屏障以便直接接觸GnRH神經(jīng)末梢和基底層毛細血管,順利的釋放GnRH進入血液中[22]。隨著年齡的增大,大鼠的GnRH神經(jīng)末梢和神經(jīng)膠質(zhì)細胞之間的隔膜明顯減少[23],提高了中間隆起的神經(jīng)膠質(zhì)細胞結構重塑的可能性,減少生育年齡階段GnRH的分泌。
神經(jīng)膠質(zhì)細胞和GnRH神經(jīng)元之間的旁分泌因子能夠通過不同的機制調(diào)控神經(jīng)膠質(zhì)細胞在形態(tài)學上的重塑。表皮生長因子和轉化因子β的信號系統(tǒng)集中在伸長細胞,調(diào)控神經(jīng)膠質(zhì)細胞的結構重塑。伸長細胞表達erbB和轉化生長因子β的受體和配體。伸長細胞和星形膠質(zhì)細胞都能分泌轉化生長因子α,激活erbB1和erbB2的異二聚體,刺激伸長細胞分泌前列腺素E2和轉化生長因子β1,刺激GnRH神經(jīng)元分泌GnRH。但是,這個刺激只針對伸長細胞,因為,當伸長細胞分泌前列腺素E2和轉化生長因子β1的時候,下丘腦星形神經(jīng)膠質(zhì)細胞分泌的轉化生長因子α不會增加,而分泌的轉化生長因子β1會增多。伸長細胞衍生的轉化生長因子β1以自分泌的方式通過金屬蛋白酶調(diào)控細胞外基質(zhì)降解,誘導伸長細胞的回縮。
神經(jīng)解剖學的研究表明,和嚙齒動物一樣,成年人類下丘腦中GnRH神經(jīng)元的胞體、神經(jīng)末梢和神經(jīng)膠質(zhì)細胞的胞體及突起相互交流。人類下丘腦星形膠質(zhì)細胞表達具有特定功能的erbB信號系統(tǒng),提高了erbB受體被激活的可能性,人類星形神經(jīng)膠質(zhì)細胞到神經(jīng)元的信號傳遞能夠刺激GnRH神經(jīng)元[24]。
嚙齒動物星形膠質(zhì)細胞控制GnRH分泌的一些機制可能在人類中被保存下來[11,21]。神經(jīng)和激素控制排卵前期的GnRH/LH[27-28],并引起兩者分泌量升高。從分子水平上來說,即使他們表達相同的激酶受體,人下丘腦星形神經(jīng)膠質(zhì)細胞可能是通過激活erbB4/erbB2的二聚體來應答神經(jīng)調(diào)節(jié)蛋白,而嚙齒動物星形神經(jīng)膠質(zhì)細胞則是通過還原erbB4/erbB2二聚體。這些不同信號的功能還未得到證實,在以后的研究中,還有待進一步探尋人下丘腦星形神經(jīng)膠質(zhì)細胞的功能特性。
神經(jīng)膠質(zhì)細胞控制GnRH神經(jīng)元的神經(jīng)內(nèi)分泌活性和電活性。體外研究表明了神經(jīng)膠質(zhì)細胞-Gn-RH神經(jīng)元之間交流的分子機制,體內(nèi)研究則說明星形神經(jīng)膠質(zhì)細胞與生殖相關,這些結論為進一步探究神經(jīng)膠質(zhì)細胞對生殖的調(diào)控作用奠定了一定基礎,同時,隨著轉基因動物的發(fā)展,神經(jīng)膠質(zhì)細胞到GnRH神經(jīng)元之間的聯(lián)系將在時間和空間上被確定,但具體的調(diào)控機制還需要做進一步的深入研究。
參考文獻:
[1] Grosses R.Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to Gq/11proteins [J].J Biol Chem,2000,275(13):9193-9200.
[2] Prevot V,Lomniczi A,Corfas G,et al.erbB-1and erbB-4receptors act in concert to facilitate female sexual development and mature reproductive function[J].Endocrinology,2005,146:1465-1472.
[3] Prevot V,Rio C,Cho G J,et al.Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes[J].Neuroscience,2003,23:230-239.
[4] Dziedzic B,Prevot V,Lomniczi A,et al.Neuron-to-glia signaling mediated by excitatory amino acid receptorsregulates ErbB receptor function in astroglial cells of the neuroendocrine brain[J].Neuroscienec,2003,23:915-926.
[5] Lomniczi A,Cornea A,Costa M E,et al.Hypothalamic tumor necrosis actor-alpha converting enzyme mediates excitatory amino aciddependent neuron-to-glia signaling in the neuroendocrine brain[J]. Neuroscience,2006,26:51-62.
[6] Parent A S,Rasier G,Matagne V,et al.Oxytocin facilitates female sexual maturation through aglia-to-neuron signaling pathway [J].Endocrinology,2008,149:1358-1365.
[7] Prevot V,Cornea A,Mungenast A,et al.Activation of erbB-1signaling in tanycytes of the median eminence stimulates transforming growth factor beta1release via prostaglandin E2production and induces cell plasticity[J].Neuroscience,2003,23:10622-10632.
[8] De Seranno S,Estrella C,Loyens A,et al.Vascular endothelialcells promote acute plasticity in ependymoglial cells of the neuroendocrine brain[J].Neuroscience,2004,24:10353-10363.
[9] De Seranno S,Anglemont de Tassigny X,Estrella C,et al.Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence[J].Endocrinology,2010,151:1760-1772.
[10] Kuo J,Micevych P.Neuroesteroids,trigger of the LH surge[J]. Steroid Biochem Mol Biol,2012,131:57-65.
[11] Clasadonte J,Poulain P,Hanchate N K,et al.Prostaglandin E2release from astrocytes triggers gonadotropinreleasing hormone(Gn-RH)neuron firing via EP2receptor activation[J].Proc Natl Acad Sci USA,2011,108:16104-16109.
[12] 王 新,譚建華,賴小平,等.LH在體外對GnRH脈沖模式的應答[J].中國農(nóng)學通報,2011,27(03):365-368.
[13] Glanowska K M,Moenter S M.Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits[J].Neurophysiology,2011,106:3073-3081.
[14] Buchanan C D,Mahesh V B,Brann D W.Estrogen-astrocyte-luteinizing hormone-releasing hormone signaling:a role for transforming growth factor-beta(1)[J].Biol Reprod,2000,62:1710-1721.
[15] Parent A S,Mungenast A E,Lomniczi A,et al.A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophinreleasing hormoneneurones[J].Neuroendocrinology,2007,19:847-859.
[16] Sandau U S,Mungenast A E,McCarthy J,et al.The synaptic cell adhesion molecule,SynCAM1,mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus[J].Endocrinology,2011,152:2353-2363.
[17] Roth C L,Mastronardi C,Lomniczi A,et al.Expression of a tumorrelated gene network in the mammalian hypothalamus at the time of female puberty[J].Endocrinology,2007,148:5147-5161.
[18] Sandau U S,Mungenast A E,Alderman Z,et al.SynCAM1,a synaptic adhesion molecule,is expressed in astrocytes and contributes to erbB4receptor-mediated control of female sexual development [J].Endocrinology,2011,152:2364-2376.
[19] Clasadonate J,Sharif A,Baroncini M,et al.Gliotransmission by prostaglandin E(2):aprerequisite for GnRH neuronal function?[J].Front Endocrinol(Lausanne),2011,2:91.
[20] Hanchate N K,Parkash J,Bellefontaine N,et al.Kisspeptin-GPR54signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation[J].Neuroscience,2012,32:932-945.
[21] Azcoitia I,Yague J G,Garcia-Segura L M.Estradiol synthesis within the human brain[J].Neuroscience,2011,191:139-147.
[22] Yin W,Wu D,Noel M L,et al.Gonadotropin-releasing hormone neuroterminals and their microenvironment in the median eminence:effects of aging and estradiol treatment[J].Endocrinology,2009,150:5498-5508.
[23] Yin W,Mendenhall J M,Monita M,et al.Three-dimensional properties of GnRH neuroterminals in the median eminence of young and old rats[J].Comp Neurol,2009,517:284-295.
[24] Sharif A,Duhem-Tonnelle V,Allet C,et al.Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of thehuman brain[J].Glia,2009,57:362-379.
[25] Geller S,Kolasa E,Tillet Y,et al.Olfactory ensheathing cells form the microenvironment of migrating GnRH-1neurons during mouse development[J].Glia,2013,61:550-566.
專論與講座
[26] Fujioka H,Kakehashi C,F(xiàn)unabashi T,et al.Immunohistochemical evidence for the relationship between microglia and GnRH neurons in the preoptic area of ovariectomizedrats with and without steroid replacement[J].Endocrine,2013,60(2):191-196.
[27] Terasawa E,Kenealy B P.Neuroestrogen,rapid action of estradiol and GnRH neurons[J].Front Neuroendocrinol,2012,33:364-375.
[28] Plant T M.A comparison of the neuroendocrine mechanisms underlying the initiation of the prevulatory LH surge in the human,old world monkey and rodent[J].Front Neuronendocrinol,2012,33:160-168.
Progress on Modulating Mechanisms of Glial Cells to GnRH Neurons
HE Jie-yu,WU Jian-yun,LI Liang-juan,WU Xin
(College of Animal Science and Technology,Southwest University,Chongqing,400715,China)
Abstract:Gonadotropin-releasing hormone(GnRH)neurons are the final common pathway for the central control of reproduction.The coordinated and timely activation of these hypothalamic neurons determines sexual development and adult reproductive functions,lies under the tight control of a complex array of excitatory and inhibitory transsynaptic inputs.The studies performed that the major contribution of glial cells to the control of GnRH neurons.Glial cells use a variety of molecular and cellular strategies to modulate GnRH neuron functions both at the level of their cell bodies and at their nerve terminals.These mechanisms include the secretion of bioactive molecules that exert paracrine effects on GnRH neurons,juxtacrine interactions between glial cells and GnRH neurons via adhesive molecules and the morphological plasticity of the glial coverage of GnRH neurons.This thesis summarized the mechanisms used by glial cells to control GnRH neuronal activity and secretion,in order to have a better understanding on the role of glial cells in reproductive regulation.
Key words:GnRH;astrocyte;tanycyte;reproduction;neuron
作者簡介:何潔玉(1990-),女,四川綿陽人,碩士研究生,主要重事神經(jīng)內(nèi)分泌研究。
收稿日期:2014-08-06
中圖分類號:S853.54;S857.141
文獻標識碼:A
文章編號:1007-5038(2015)06-0138-04