解放軍總醫(yī)院,北京 00853;第四軍醫(yī)大學(xué)西京醫(yī)院 骨科,陜西西安 7003
模擬失重對(duì)雄性大鼠背根神經(jīng)節(jié)尼氏小體形態(tài)和膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子的影響
任寧濤1,張 恒1,李 潔1,雷 偉2,劉 寧2,畢 龍2,吳子祥2,張 然1,張永剛1,崔 賡1
1解放軍總醫(yī)院,北京 100853;2第四軍醫(yī)大學(xué)西京醫(yī)院 骨科,陜西西安 710032
目的探討模擬失重對(duì)背根神經(jīng)節(jié)(dorsal root ganglia,DRG)及膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(glial cell line-derived neurotrophic factor,GDNF)的影響。方法健康雄性SD大鼠80只,隨機(jī)分為尾部懸吊(HU)組(n=40)和正常對(duì)照(NC)組(n=40),4周后處死各組大鼠,取腰5背根神經(jīng)節(jié),甲苯氨蘭染色觀察背根神經(jīng)節(jié)內(nèi)尼氏小體變化,免疫組化觀察GDNF的變化,Western-blot方法檢測(cè)GDNF的蛋白表達(dá),實(shí)時(shí)PCR檢測(cè)GDNF mRNA表達(dá)情況。結(jié)果與NC組相比,HU組尼氏體染色淺,尼氏體變小,彌散分布。免疫組化結(jié)果顯示,與NC組比較,HU組GDNF量及積分光密度(integral optical density,IOD)值減少(P<0.05)。Western-blot結(jié)果顯示,HU組較NC組GDNF蛋白表達(dá)減少(P<0.05)。實(shí)時(shí)PCR結(jié)果顯示,與NC組相比,HU組GDNF mRNA表達(dá)降低(P<0.05)。結(jié)論4周模擬失重可導(dǎo)致DRG內(nèi)尼氏小體形態(tài)發(fā)生變化,GDNF數(shù)量減少,GDNF蛋白表達(dá)及mRNA表達(dá)降低,推測(cè)失重狀態(tài)下可引起大鼠背根神經(jīng)節(jié)發(fā)生損傷。
模擬失重;背根神經(jīng)節(jié);動(dòng)物模型
地球上一切生命都在重力環(huán)境中,當(dāng)各種生命體離開(kāi)地球重力環(huán)境進(jìn)入太空后,他們的生理功能將受到不同程度的影響[1-5],如骨質(zhì)疏松[6-8]、心血管功能紊亂[9-12]、肌肉萎縮[13]、脊髓方面相關(guān)改變[14-16]等。但由于空間搭載實(shí)驗(yàn)的機(jī)會(huì)較少,且成本較高,Morey-Holton和Globus[17]提出了通過(guò)尾部懸吊來(lái)模擬失重狀態(tài),有學(xué)者通過(guò)此模型發(fā)現(xiàn)模擬失重下可引起大鼠L5背根神經(jīng)節(jié)(dorsal root ganglia,DRG)動(dòng)作電位傳導(dǎo)速度下降,髓鞘呈退變性改變[18],但未深入研究。膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(glial cell line-derived neurotrophic factor,GDNF)作為多巴胺能神經(jīng)營(yíng)養(yǎng)因子,對(duì)神經(jīng)元有強(qiáng)大的神經(jīng)營(yíng)養(yǎng)作用,能夠抑制其發(fā)生退變[19],而DRG作為功能性脊柱單位的“大腦”,與腰背痛和根性痛有著密切的關(guān)系,因此本研究旨在通過(guò)建立大鼠尾部懸吊模型,從背根神經(jīng)節(jié)內(nèi)尼氏小體的形態(tài)及神經(jīng)營(yíng)因子GDNF的改變來(lái)探討失重狀態(tài)下是否可引起大鼠背根神經(jīng)節(jié)損傷,進(jìn)一步完善失重下引起背根神經(jīng)節(jié)損傷的原因。
1實(shí)驗(yàn)動(dòng)物及模擬失重模型制備 選用鼠齡為12 ~ 14周(體質(zhì)量約300 g)健康雄性SD大鼠80只(由解放軍總醫(yī)院實(shí)驗(yàn)動(dòng)物中心提供),隨機(jī)分為尾部懸吊(HU)組(n=40)和正常對(duì)照(NC)組(n=40),各組大鼠按照標(biāo)準(zhǔn)條件單籠飼養(yǎng)。參照Morey-Holton和Globus[17]方法制備模擬失重模型。
2背根神經(jīng)節(jié)采集及制備 尾部懸吊4周后,各組大鼠腹腔內(nèi)注射戊巴比妥鈉(45 mg/kg)進(jìn)行麻醉。將其俯臥于平板上固定,去除背部皮膚,消毒皮膚,后正中切口,顯露椎板,在手術(shù)顯微鏡下,用蚊鉗咬去椎板,顯露背根神經(jīng)節(jié),NC組和HU組各取右側(cè)L5背根神經(jīng)節(jié)40個(gè),NC組和HU組各取20個(gè)背根神經(jīng)節(jié)放入含4%多聚甲醛的磷酸鹽緩沖液(phosphate buffer,PB)中后固定4 ~ 6 h (4℃),再移入30%蔗糖的PB中4℃過(guò)夜,沉底,OCT膠包埋,垂直DRG長(zhǎng)軸行橫斷切片,片厚4 ~ 5 μ m,其余40個(gè)(NC組20個(gè),HU組20個(gè)) DRG用于Western-blot及實(shí)時(shí)PCR檢測(cè)。
3甲苯氨蘭染色觀察DRG內(nèi)尼氏小體形態(tài)變化取DRG冷凍切片20個(gè),NC組和HU組各10個(gè),室溫放置1 h,PBS洗滌3次,染色,75%乙醇分色,丙酮脫水,封片,鏡下觀察結(jié)果。
4GDNF免疫組化染色 取DRG冷凍切片20個(gè),NC組和HU組各10個(gè),室溫放置30 min后,入4℃丙酮固定10 min,PBS洗,用3%過(guò)氧化氫溶液孵育5 ~ 10 min,PBS洗,5% ~ 10%正常山羊血清(PBS稀釋)封閉,室溫孵育10 min。滴加一抗:多克隆的兔抗鼠GDNF抗體,37℃孵育2 h。PBS沖洗,滴加二抗:Cy-3;驢抗兔抗體;(1∶200;Jackson Immuno Research,PA,USA and DyLight488;),37℃孵育30 min,PBS沖洗,滴加辣根酶標(biāo)記鏈霉卵白素,37℃孵育30 min,PBS沖洗,封片,觀測(cè),測(cè)定比較各組積分光密度(integral optical density,IOD)值。
5Western-blot檢測(cè)GDNF蛋白表達(dá) 取右側(cè)L5背根神經(jīng)節(jié)樣本20個(gè),NC組和HU組各10個(gè),進(jìn)行低溫勻漿,在4℃ 800 g條件下離心15 min,取上清液,4℃ 105 g條件下離心1 h。離心沉淀后,加入勻漿液,待沉淀充分溶解后,重新在4℃ 105 g條件下離心1 h,上清即為胞膜蛋白。測(cè)定樣本蛋白濃度后,加入1/4體積的5倍樣本緩沖液,于95℃水浴中變性5 min。取等量的40μ g蛋白樣本放置在12% SDS-聚丙烯酰胺凝膠上恒壓電泳,然后濕轉(zhuǎn)法轉(zhuǎn)移至硝酸纖維素膜。分別加入一抗(1∶200兔抗鼠GDNF,Santa Cruz公司),室溫孵育4 h,后濾膜漂洗3次,每次10 min。再加入小??雇枚?1∶500,SantaCruz公司),于37℃條件下平緩搖動(dòng)溫育1 h。增強(qiáng)化學(xué)發(fā)光法檢測(cè)信號(hào),拍攝并掃描照片。反應(yīng)條帶做半定量分析。
6實(shí)時(shí)PCR檢測(cè)GDNF mRNA表達(dá) 用總RNA抽提試劑盒(Invitrogen life technologies,美國(guó))提取腰5 DRG總RNA。逆轉(zhuǎn)錄合成cDNA:RNA 2 μ g,加無(wú)RNA酶的H2O至總體積10 μ l;加10 μ l的RT反應(yīng)液到10 μ l退火混合物中,37℃水浴60 min,95℃變性5 min,得到的RT終溶液即為cDNA溶液。實(shí)時(shí)定量PCR擴(kuò)增:25 μ l反應(yīng)體系,在Rotor-Gene 3 000 Realtime PCR儀中擴(kuò)增。引物用Primer 5.0軟件設(shè)計(jì),GDNF上游引物5-'CAGAG GGAAAGGTCGCAGAG-3',下游引物5-'TCGTAGC CCAAACCCAAGTC-3',PCR產(chǎn)物長(zhǎng)度96 bp。
7統(tǒng)計(jì)學(xué)處理 采用SPSS17.0軟件處理所得數(shù)據(jù),計(jì)量資料以表示,組間比較采用t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義,
1各組大鼠背根神經(jīng)節(jié)切片甲苯氨蘭染色分析與NC組相比,HU組尼氏體染色淺,尼氏體變小,彌散分布。見(jiàn)圖1。
2各組大鼠背根神經(jīng)節(jié)內(nèi)GDNF免疫組化分析免疫組化結(jié)果顯示,與NC組相比,HU組背根神經(jīng)節(jié)內(nèi)GDNF數(shù)量減少(圖2),IOD值降低(P<0.05)。
3各組大鼠背根神經(jīng)節(jié)GDNF蛋白表達(dá) HU組背根神經(jīng)節(jié)內(nèi)GDNF蛋白表達(dá)較NC組減少(P<0.05)。見(jiàn)圖3。
4各組大鼠背根神經(jīng)節(jié)GDNF mRNA表達(dá) HU組GDNF mRNA表達(dá)量明顯低于NC組(P<0.05)。見(jiàn)圖4。
圖 1 與NC組相比,HU組尼氏體染色淺,尼氏體變小,彌散分布(甲苯氨蘭染色×100)Fig. 1 Nissl bodies were stained light, smaller and scattering distribution in HU group (×100)
圖 2 HU組背根神經(jīng)節(jié)內(nèi)GDNF數(shù)量較NC組減少(免疫組化×200)Fig. 2 Number of GDNF in DRG detected by immunohistochemistry (×200). In HU group, the number of GDNF and IOD were signifi cantly lower than that of NC group
圖 3 各組大鼠脊髓背根神經(jīng)節(jié)內(nèi)GDNF蛋白表達(dá) (aP<0.05)Fig. 3 Protein expression of GDNF in DRG of rats in different treatment group (aP<0.05)
圖 4 HU組GDNF mRNA表達(dá)量較NC組降低 (aP<0.05)Fig. 4 HU group displayed lower expression of mRNA of GDNF than that of NC group (aP<0.05)
尼氏小體可合成神經(jīng)元所需的蛋白,尼氏小體的形態(tài)可反應(yīng)神經(jīng)元的功能活性。本實(shí)驗(yàn)結(jié)果示,經(jīng)4周的模擬失重, HU組尼氏體較NC組染色淺,尼氏體變小,彌散分布。模擬失重后DRG內(nèi)尼氏小體形態(tài)的改變驗(yàn)證了模擬失重狀態(tài)下可引起大鼠背根神經(jīng)節(jié)發(fā)生損傷,與其他學(xué)者研究結(jié)果類似。
GDNF由Lin等[20]從大鼠神經(jīng)膠質(zhì)細(xì)胞系B49的培養(yǎng)液中首先純化并命名,GDNF對(duì)神經(jīng)元有強(qiáng)大的神經(jīng)營(yíng)養(yǎng)作用,抑制其發(fā)生退變[19],當(dāng)神經(jīng)受損后,GDNF含量或蛋白表達(dá)會(huì)出現(xiàn)異常。本實(shí)驗(yàn)免疫組化、Wester-blot及實(shí)時(shí)PCR結(jié)果示,與NC組相比,HU組大鼠腰5背根神經(jīng)節(jié)中GDNF數(shù)量、蛋白表達(dá)減少,GDNF mRNA表達(dá)量降低。GDNF作為神經(jīng)營(yíng)養(yǎng)因子,其含量的減少可導(dǎo)致神經(jīng)失營(yíng)養(yǎng),進(jìn)而引起神經(jīng)的損傷。
此實(shí)驗(yàn)結(jié)果與前期其他學(xué)者研究結(jié)果相一致,但在失重后神經(jīng)營(yíng)養(yǎng)方面的研究卻較少,本實(shí)驗(yàn)從神經(jīng)營(yíng)養(yǎng)方面分析了背根神經(jīng)節(jié)損傷的原因,結(jié)果顯示,失重可引起神經(jīng)營(yíng)養(yǎng)因子GDNF減少,背根神經(jīng)節(jié)失去營(yíng)養(yǎng)導(dǎo)致?lián)p傷,為后期預(yù)防和治療提供了一定的理論基礎(chǔ)。
綜上所述,4周的模擬失重可以引起大鼠DRG發(fā)生損傷性變化,但模擬失重后引起DRG損傷是否具有性別差異、失重條件去除后損傷是否可逆、損傷機(jī)制及防治方法還有待于后期進(jìn)一步研究。
1 Blaber E, Mar?al H, Burns BP. Bioastronautics: the influence of microgravity on astronaut health[J]. Astrobiology, 2010, 10(5):463-473.
2 Buckey JC Jr. Preparing for Mars: the physiologic and medical challenges[J]. Eur J Med Res, 1999, 4(9):353-356.
3 Williams DR. Bioastronautics: optimizing human performance through research and medical innovations[J]. Nutrition, 2002,18(10):794-796.
4 Clement G, Slenzka K. Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space[M]. New York: Springer,2006:51-80.
5 Kalb R, Solomon D. Space exploration, Mars, and the nervous system[J]. Arch Neurol, 2007, 64(4):485-490.
6 LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight[J]. J Musculoskelet Neuronal Interact, 2000, 1(2):157-160.
7 劉寧,崔賡,雷偉,等.尾部懸吊大鼠骨質(zhì)疏松模型骨的微觀結(jié)構(gòu)及力學(xué)性能變化的研究[J].中國(guó)骨與關(guān)節(jié)雜志,2012,1(2):169-173.
8 劉寧,雷偉,崔賡,等. 尾部懸吊模擬失重大鼠模型骨密度測(cè)量與骨折風(fēng)險(xiǎn)預(yù)測(cè)[D]. 西安:第四軍醫(yī)大學(xué),2012.
9 Zhang R, Ran HH, Cai LL, et al. Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries[J]. FASEB J,2014, 28(6):2715-2724.
10 Zhang R, Ran HH, Peng L, et al. Mitochondrial regulation of NADPH oxidase in hindlimb unweighting rat cerebral arteries[J]. PLoS One, 2014, 9(4):e95916.
11 Zhang R, Jia G, Bao J, et al. Increased vascular cell adhesion molecule-1 was associated with impaired endothelium-dependent relaxation of cerebral and carotid arteries in simulated microgravity rats[J]. J Physiol Sci, 2008, 58(1):67-73.
12 Zhang R, Ran HH, Gao YL, et al. Differential vascular cell adhesion molecule-1 expression and superoxide production in simulated microgravity rat vasculature[J]. EXCLI J, 2010, 9:195-204.
13 Kawano F, Nomura T, Ishihara A, et al. Afferent input-associated reduction of muscle activity in microgravity environment[J]. Neuroscience, 2002, 114(4):1133-1138.
14 Sayson JV, Lotz J, Parazynski S, et al. Back pain in space and postflight spine injury: Mechanisms and countermeasure development[J]. Acta Astronautica, 2013, 86: 24-38.
15 Islamov RR, Rizvanov AA, Tyapkina OV, et al. Genomic study of gene expression in the mouse lumbar spinal cord under the conditions of simulated microgravity[J]. Dokl Biol Sci, 2011, 439:197-200.
16 Jiang B, Roy RR, Polyakov IV, et al. Ventral horn cell responses to spaceflight and hindlimb suspension[J]. J Appl Physiol, 1992, 73(S2):S107-S111.
17 Morey-Holton ER, Globus RK. Hindlimb unloading rodent model:technical aspects[J]. J Appl Physiol, 2002, 92(4): 1367-1377.
18 Ren JC, Fan XL, Song XA, et al. Prolonged hindlimb unloading leads to changes in electrophysiological properties of L5 dorsal root ganglion neurons in rats after 14 days[J]. Muscle Nerve, 2012,45(1): 65-69.
19 H?ke A, Ho T, Crawford TO, et al. Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers[J]. J Neurosci, 2003,23(2):561-567.
20 Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell linederived neurotrophic factor for midbrain dopaminergic neurons[J]. Science, 1993, 260(5111):1130-1132.
Effects of simulated weightlessness on Nissl body morphology and GDNF in DRG of male rats
REN Ningtao1, ZHANG Heng1, LI Jie1, LEI Wei2, LIU Ning2, BI Long2, WU Zixiang2, ZHANG Ran1, ZHANG Yonggang1, CUI Geng1
1Chinese PLA General Hospital, Beijing 100853, China;2Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
CUI Geng. Email: cuigeng@aliyun.com
Objective To investigate the effect of simulated weightlessness on dorsal root ganglia (DRG) and GDNF in rat model. Methods Eighty male Sprague-Dawley rats were randomly divided into HU group (n=40) and normal control (NC) group (n=40). The experiment lasted for 4 weeks, then L5 DRG was excised, toluidine blue staining was used to detect the changes of nissl body morphology, and GDNF was detected using immunohistochemistry method. GDNF protein expression was measured by Westernblot and GDNF mRNA expression was measured by RT-PCR. Results Nissl body staining showed that, compared with NC group, nissl bodies were stained light, smaller and scattering distribution in HU group. Immunohistochemistry revealed that the number of GDNF and IOD value reduced significantly in HU group (P<0.05). Western-blot showed that GDNF protein expression in HU group were significantly lower than NC group (P<0.05). mRNA expression of GDNF decreased significantly in HU group (P<0.05). Conclusion Four weeks of stimulated weightlessness can cause damaged changes in DRG nissl body morphology and reduction of the number, protein expression and mRNA expression of GDNF, which suggests that simulated weightlessness can cause damage changes in rat dorsal root ganglion.
simulated weightlessness; dorsal root ganglia; animal model
R 856
A
2095-5227(2015)05-0502-04
10.3969/j.issn.2095-5227.2015.05.024
時(shí)間:2015-02-04 10:50
http://www.cnki.net/kcms/detail/11.3275.R.20150204.1050.003.html
2014-11-17
任寧濤,男,碩士,研究方向:脊柱外科。Email: ning taoren@163.com
崔賡,男,副主任醫(yī)師,副教授。Email: cuigeng@aliyun. com