• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      我國(guó)養(yǎng)豬業(yè)廢棄物中四環(huán)素類、磺胺類抗生素及相關(guān)抗性基因污染研究進(jìn)展

      2015-04-09 00:51:11王健賁偉偉強(qiáng)志民潘尋
      生態(tài)毒理學(xué)報(bào) 2015年5期
      關(guān)鍵詞:養(yǎng)豬業(yè)抗性廢棄物

      王健,賁偉偉,*,強(qiáng)志民,潘尋

      1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心 中國(guó)科學(xué)院飲用水科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100085 2. 環(huán)境保護(hù)部環(huán)境保護(hù)對(duì)外合作中心,北京 100035

      我國(guó)養(yǎng)豬業(yè)廢棄物中四環(huán)素類、磺胺類抗生素及相關(guān)抗性基因污染研究進(jìn)展

      王健1,賁偉偉1,*,強(qiáng)志民1,潘尋2

      1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心 中國(guó)科學(xué)院飲用水科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100085 2. 環(huán)境保護(hù)部環(huán)境保護(hù)對(duì)外合作中心,北京 100035

      我國(guó)是世界養(yǎng)豬第一大國(guó),生豬飼養(yǎng)量和豬肉產(chǎn)量均位居世界第一。養(yǎng)豬業(yè)每年所產(chǎn)生的糞便、廢水中含有大量畜用抗生素及其代謝產(chǎn)物,使養(yǎng)豬業(yè)廢棄物成為環(huán)境中重要的抗生素污染源之一,隨之產(chǎn)生的抗性基因污染及傳播問(wèn)題也不容忽視。本文結(jié)合近年來(lái)國(guó)內(nèi)外的研究數(shù)據(jù),對(duì)我國(guó)養(yǎng)豬業(yè)廢棄物中四環(huán)素類、磺胺類抗生素及其相關(guān)抗性基因的檢測(cè)方法、污染狀況及影響抗性基因傳播的因素進(jìn)行了分析,并基于控制我國(guó)養(yǎng)豬行業(yè)抗生素及抗性基因污染的目的,提出了今后的研究重點(diǎn)。

      抗生素;抗性基因;四環(huán)素;磺胺;豬糞;養(yǎng)豬廢水

      基于預(yù)防疾病和促進(jìn)生長(zhǎng)的目的,抗生素被大量應(yīng)用于動(dòng)物養(yǎng)殖業(yè)中。在我國(guó),抗生素的過(guò)量使用在養(yǎng)殖業(yè)中普遍存在[1]。據(jù)報(bào)道,2013年我國(guó)抗生素使用量在16.2萬(wàn)t以上,其中有52%用于畜禽養(yǎng)殖業(yè)[2]。我國(guó)是全世界最大的豬肉生產(chǎn)國(guó),2014年我國(guó)豬肉產(chǎn)量5 671萬(wàn)t,占我國(guó)所有肉類總產(chǎn)量的66.4%,養(yǎng)豬業(yè)也成為抗生素的“使用大戶”。然而,經(jīng)口服或注射所施用的抗生素僅有小部分能被動(dòng)物吸收代謝,而約有30%~90%以原形態(tài)或絡(luò)合物形態(tài)隨動(dòng)物排泄物排出,使得養(yǎng)豬業(yè)廢棄物成為環(huán)境中抗生素污染的重要來(lái)源[3]。排放到環(huán)境中的抗生素除對(duì)動(dòng)、植物體存在直接的生物毒性外[4],還將給環(huán)境中的細(xì)菌帶來(lái)選擇壓力,造成抗性細(xì)菌的積累及抗性基因(antibiotic resistance genes, ARGs)的傳播。攜帶有ARGs的細(xì)菌最終可能通過(guò)食物鏈進(jìn)入人體,引發(fā)難以治愈的細(xì)菌性疾病,給人類健康帶來(lái)嚴(yán)重威脅。近年來(lái),我國(guó)養(yǎng)豬業(yè)中抗生素及ARGs的污染及其對(duì)周邊土壤、水體環(huán)境的影響日益受到關(guān)注。本文根據(jù)國(guó)內(nèi)外最新的研究進(jìn)展及我國(guó)養(yǎng)豬業(yè)現(xiàn)狀,以最常用的四環(huán)素類和磺胺類抗生素及其ARGs為分析和總結(jié)對(duì)象,對(duì)我國(guó)養(yǎng)豬業(yè)廢棄物中抗生素及ARGs的檢測(cè)、污染狀況及傳播進(jìn)行了綜述,并指出今后的研究重點(diǎn)和方向。

      1 養(yǎng)豬業(yè)廢棄物中抗生素及ARGs的檢測(cè)方法(Methods for detection of antibiotics and ARGs in swine waste)

      養(yǎng)豬業(yè)廢棄物(糞便、廢水)成分復(fù)雜、干擾物質(zhì)多,加大了抗生素的檢測(cè)難度。因此通常采用一系列的前處理步驟,最大程度地去除基質(zhì)中的干擾物質(zhì),同時(shí)保證抗生素的萃取效率及有效富集。這使得前處理成為養(yǎng)殖廢棄物中抗生素檢測(cè)的關(guān)鍵步驟,對(duì)于最終結(jié)果的準(zhǔn)確性及靈敏度至關(guān)重要。對(duì)于廢水樣本,通常采用固相萃取技術(shù)(solid phase extraction, SPE),將廢水通過(guò)吸附小柱,采用一系列清洗、選擇性洗脫的方式達(dá)到富集、分離和純化樣本中抗生素的目的[5]。對(duì)于糞便及土壤樣本,首先需要采用機(jī)械振蕩、超聲等方式使基質(zhì)中有機(jī)質(zhì)充分解離釋放,再采用SPE進(jìn)行抗生素的富集[6]。樣本通過(guò)前處理之后,所得到的含有抗生素的富集溶液即可通過(guò)儀器進(jìn)行檢測(cè)。為達(dá)到多種抗生素同步檢測(cè)的目的,最常采用高效液相色譜(high performance liquid chromatography, HPLC)對(duì)抗生素進(jìn)行分離,檢測(cè)器多采用靈敏度和選擇性較高的質(zhì)譜(mass spectrometry, MS)及串聯(lián)質(zhì)譜(MS/MS)[7-9]。作者通過(guò)改進(jìn)的SPE-HPLC/MS方法,成功檢測(cè)出養(yǎng)豬廢水中9種常見(jiàn)的抗生素[10],并通過(guò)溶劑萃取、超聲等前處理方法,對(duì)養(yǎng)豬廢水固相、豬糞中抗生素的提取過(guò)程進(jìn)行了優(yōu)化,使回收率達(dá)到了理想范圍,構(gòu)建了一套適用于養(yǎng)豬業(yè)廢棄物中抗生素的定性、定量檢測(cè)方法體系[6,11]。

      同抗生素的檢測(cè)方法類似,ARGs的檢測(cè)也需要首先對(duì)其進(jìn)行富集。所采用的富集方法通常分為傳統(tǒng)的依賴細(xì)菌培養(yǎng)和不依賴細(xì)菌培養(yǎng)的方法,二者各有優(yōu)缺點(diǎn)。依賴細(xì)菌培養(yǎng)的方法采用含有抗生素的培養(yǎng)基選擇性純化培養(yǎng)帶有抗生素抗性的細(xì)菌,再通過(guò)分子生物學(xué)方法分析菌株中的ARGs的基因型及其定位,該方法優(yōu)勢(shì)在于可以直接得到特定菌株的抗性基因型信息[12-14],但自然界中只有少數(shù)細(xì)菌生物是可培養(yǎng)的,因此導(dǎo)致依賴細(xì)菌培養(yǎng)的檢測(cè)方法具有很大的局限性[15]。不依賴于細(xì)菌培養(yǎng)的方法,即通過(guò)直接提取環(huán)境樣本中的DNA[16-19],或者通過(guò)細(xì)菌篩選富集獲得細(xì)菌群體[20],再以分子生物學(xué)方法對(duì)樣本進(jìn)行分析,這一方法雖然無(wú)法得知ARGs的具體宿主來(lái)源,但由于可以獲得樣本的總體數(shù)據(jù),因此目前被廣泛應(yīng)用于環(huán)境樣本中ARGs的定性和定量檢測(cè)。由于養(yǎng)豬糞便、廢水中含有大量未消化的有機(jī)質(zhì),故需采用有效的方法予以去除,否則會(huì)嚴(yán)重影響后續(xù)的生物學(xué)分析。因此,在提取樣本總DNA時(shí),多采用針對(duì)性強(qiáng)的DNA提取試劑盒來(lái)獲得高純度的樣本總DNA[16,21-23];對(duì)于細(xì)胞篩選,則應(yīng)首先采用恰當(dāng)方法對(duì)環(huán)境樣本中的細(xì)菌進(jìn)行分離純化后用于下一步分析[20]。而檢測(cè)ARGs所常用的分子生物學(xué)方法包括有聚合酶鏈反應(yīng)(polymerase chain reaction, PCR)、探針雜交、實(shí)時(shí)熒光定量PCR及新一代DNA測(cè)序技術(shù)等。

      1.1 PCR、Southern blot和DNA芯片技術(shù)

      PCR技術(shù)以其簡(jiǎn)便快速、特異性強(qiáng)等特點(diǎn),在ARGs的定性檢測(cè)方面得到了廣泛應(yīng)用[24-25]。Wu等[16]使用PCR方法在我國(guó)北京、天津、浙江等地的9家養(yǎng)豬場(chǎng)周邊土壤中檢出了15種常見(jiàn)的四環(huán)素類抗性基因(tetracycline resistance genes, TRGs);Barkovskii和Bridges[26]使用PCR方法在美國(guó)3家養(yǎng)豬場(chǎng)的糞便、土壤、廢水樣本中檢出了14種TRGs。此外,改進(jìn)的PCR方法,如multiplex PCR、nested-PCR等,能夠大幅度提高PCR的使用范圍和精確度,達(dá)到快速定性檢測(cè)ARGs的目的[27-28],因此也被用于畜禽養(yǎng)殖相關(guān)樣本中ARGs的檢測(cè)。Garofalo等[29]利用nested-PCR技術(shù),直接檢測(cè)了雞肉、豬肉及動(dòng)物糞便中的11種ARGs;Khan等[30]利用multiplex PCR技術(shù),在從牛奶、雞舍廢物中分離得到的腸球菌中檢出了萬(wàn)古霉素類ARG(vanC1)。

      具有一定同源性的核苷酸序列在一定條件下可以按堿基互補(bǔ)配對(duì)原則特異性地雜交形成雙鏈,Southern blot即是基于這一原理,通過(guò)設(shè)計(jì)并合成特異性DNA探針,可以定性地檢測(cè)與探針DNA序列互補(bǔ)的片斷。將Southern blot技術(shù)配合PCR方法使用,可使得到的結(jié)果可信度更高。Heuer和Smalla[19]采用該方法在豬糞施肥土壤中檢出了3種磺胺類抗性基因(sulfonamide resistance genes, SRGs);Moura等[31]通過(guò)此方法檢測(cè)了屠宰場(chǎng)污水處理系統(tǒng)中的整合子(integrons)相關(guān)基因。

      DNA芯片技術(shù)(DNA microarray)是高密度、高通量的分子雜交檢測(cè)技術(shù),其克服了傳統(tǒng)Southern blot操作繁瑣、耗時(shí)長(zhǎng)的缺點(diǎn),可以在短時(shí)間內(nèi)同時(shí)檢測(cè)多種基因。Perreten等[32]通過(guò)微陣列技術(shù)成功檢測(cè)了革蘭氏陽(yáng)性菌中90種ARGs;Frye等[33]則更進(jìn)一步,將該技術(shù)擴(kuò)展到了革蘭氏陰性菌,并認(rèn)為通過(guò)該技術(shù)可以檢測(cè)所有抗性細(xì)菌的ARGs。綜上所述,PCR結(jié)合相關(guān)DNA同源性雜交檢測(cè)技術(shù)可以達(dá)到對(duì)于基因的準(zhǔn)確定性,但不能對(duì)序列同源性較近的基因進(jìn)行準(zhǔn)確的區(qū)分,只能進(jìn)行粗略的半定量,因此在大多數(shù)情況下只能作為快速定性的方法。

      1.2 實(shí)時(shí)熒光定量PCR技術(shù)

      實(shí)時(shí)熒光定量PCR技術(shù)(Real-time PCR)是一種在普通PCR反應(yīng)體系中加入熒光基團(tuán),利用熒光信號(hào)積累實(shí)時(shí)監(jiān)控整個(gè)PCR進(jìn)程,最后通過(guò)內(nèi)參基因或標(biāo)準(zhǔn)曲線對(duì)未知模板進(jìn)行定量分析的方法,它不僅實(shí)現(xiàn)了對(duì)DNA模板的定量,而且靈敏度更高、特異性和可靠性更強(qiáng),使之在ARGs的定量檢測(cè)方面得到廣泛使用。國(guó)內(nèi)外學(xué)者采用該方法,對(duì)豬、牛、雞等多類畜禽養(yǎng)殖相關(guān)樣本(包括養(yǎng)殖廢水、厭氧塘沉積物、糞便、堆肥以及施肥土壤等)中的TRGs和SRGs的分布進(jìn)行了定量檢測(cè)[16-18,23,34]。

      1.3 新一代DNA測(cè)序技術(shù)

      近年來(lái),基于焦磷酸測(cè)序技術(shù)[35-36]及循環(huán)芯片測(cè)序策略(cyclic-array sequencing)的新一代DNA測(cè)序技術(shù)趨于成熟[37]。該技術(shù)通過(guò)在芯片上同時(shí)運(yùn)行的數(shù)百萬(wàn)個(gè)測(cè)序反應(yīng),得到大量的長(zhǎng)度在幾十到幾百個(gè)堿基對(duì)范圍的短序列,再將短序列拼接組裝從而得到完整的樣本基因組序列信息。與傳統(tǒng)Sanger測(cè)序技術(shù)相比,新一代測(cè)序技術(shù)具有成本更低、數(shù)據(jù)量更大、信息更全面等優(yōu)點(diǎn),在ARGs的定性、定量檢測(cè)方面已有一些應(yīng)用[38-41]。同時(shí),定性、定量PCR及探針雜交方法僅能檢測(cè)已知ARGs,而新一代測(cè)序技術(shù)則能通過(guò)功能宏基因組學(xué)分析尋找到新的潛在ARGs[42]。因此,新一代測(cè)序技術(shù)將會(huì)在未來(lái)ARGs的分析研究中發(fā)揮重要作用。

      2 我國(guó)養(yǎng)豬業(yè)廢棄物中四環(huán)素類及磺胺類抗生素的污染現(xiàn)狀(Contamination of tetracyclines and sulfonamides in the waste from Chinese pig industry)

      有關(guān)檢測(cè)數(shù)據(jù)顯示,我國(guó)豬糞樣本中四環(huán)素類抗生素的檢出濃度多在1~100 mg·kg-1濃度范圍[43-47],與奧地利、丹麥等歐洲國(guó)家豬糞樣本中的檢出值(<46 mg·kg-1)相比稍高[48-49];磺胺類抗生素的檢出濃度范圍多在0.1~10 mg·kg-1濃度范圍[50-51],同國(guó)外檢出數(shù)據(jù)基本持平[49,52]。山東是我國(guó)養(yǎng)殖業(yè)規(guī)模較大的省份,Pan等[11]選取了山東21家典型集約化養(yǎng)豬場(chǎng),采集并分析了126個(gè)豬糞樣本的抗生素濃度,發(fā)現(xiàn)四環(huán)素類檢出值和檢出率均高于其他種類抗生素,檢出率在84.9%~96.8%之間,其中金霉素的檢出濃度最高,達(dá)到了764.4 mg·kg-1,是目前為止四環(huán)素類抗生素在豬糞中檢測(cè)到的最高濃度;磺胺類抗生素的檢出率在0.9%~51.6%之間,其中磺胺二甲嘧啶檢出濃度最高,達(dá)到28.7 mg·kg-1。

      由于我國(guó)養(yǎng)豬場(chǎng)多采用水沖糞工藝,致使養(yǎng)豬場(chǎng)廢水中抗生素的檢出率和檢出濃度也較高,并可隨廢水排放遷移至鄰近地表水中。Wei等[53]對(duì)江蘇省21家養(yǎng)豬場(chǎng)的廢水及鄰近河流水進(jìn)行了分析,發(fā)現(xiàn)在廢水中四環(huán)素類和磺胺類是檢出率最高的抗生素,最高濃度分別達(dá)到了在72.9 μg·L-1(土霉素)和211 μg·L-1(磺胺二甲嘧啶),在河流水中2類抗生素的最高檢出濃度也分別達(dá)到了2.42 μg·L-1(金霉素)和4.66 μg·L-1(磺胺二甲嘧啶)。Tong等[54]檢測(cè)了武漢市2家養(yǎng)豬場(chǎng)廢水中的四環(huán)素類、磺胺類抗生素,發(fā)現(xiàn)磺胺甲嘧啶和土霉素的濃度較高,最高檢出濃度均超過(guò)10 μg·L-1。Ben等[10,55]對(duì)北京、山東共20余家養(yǎng)豬場(chǎng)的廢水進(jìn)行了常用抗生素的濃度測(cè)定,結(jié)果顯示北京地區(qū)樣本中磺胺類和四環(huán)素類的最高檢出濃度分別達(dá)到14.05 μg·L-1(磺胺間二甲氧嘧啶)和32.67 μg·L-1(金霉素),在山東地區(qū)的樣本中,磺胺二甲嘧啶、土霉素和金霉素的濃度較高,三者的檢出中值濃度分別為14.56、8.05和6.01 μg·L-1,其中土霉素的最高檢出濃度達(dá)到了2.02 mg·L-1。以上數(shù)據(jù)同國(guó)外檢出數(shù)據(jù)相比,大致處于同一數(shù)量級(jí)[56-57]。

      養(yǎng)豬業(yè)所產(chǎn)生的糞便和廢水中殘留的抗生素可通過(guò)施肥、灌溉、非人為擴(kuò)散等多種方式向土壤中遷移。四環(huán)素類及磺胺類抗生素在我國(guó)土壤中的殘留現(xiàn)象較為普遍。在我國(guó)北方采集的施肥土壤樣本中,2類抗生素的最高檢出濃度分別為2 683和32.7 μg·kg-1,同時(shí)研究顯示,由于施肥多在冬季進(jìn)行,導(dǎo)致冬季土壤中的抗生素檢出濃度遠(yuǎn)高于夏季[58]。在珠江三角洲地區(qū)采用豬糞施肥的菜田土壤中,2類抗生素的最高檢出濃度分別為242.6和321.4 μg·kg-1[59];在從福建沿海多個(gè)城市農(nóng)田土壤中的濃度分析結(jié)果顯示,四環(huán)素類抗生素的最高檢出濃度也達(dá)到了2 669 μg·kg-1[60]。以上報(bào)道所調(diào)查的濃度數(shù)據(jù)同國(guó)外數(shù)據(jù)相比處于同一水平,但最高檢出濃度略高于國(guó)外[61-62]。

      3 我國(guó)養(yǎng)豬業(yè)廢棄物中TRGs和SRGs的污染特征、傳播及影響因素(Contamination and dissemination of TRGs and SRGs and related impact factors in the waste from Chinese pig industry)

      細(xì)菌對(duì)四環(huán)素類抗生素的抗性機(jī)制主要分為3種[63-65]:核糖體保護(hù)機(jī)制(ribosomal protection proteins, RPP),如tetM、O、Q、S、T、W等;外排泵機(jī)制(efflux pumps proteins, EFP),如tetA、B、C、G、K、L等;酶學(xué)修飾機(jī)制(enzymatic inactivation, EI),如tetX等。細(xì)菌對(duì)磺胺類抗生素的抗性機(jī)制主要是靠獲得表達(dá)產(chǎn)物可以避免磺胺類抗生素侵害的二氫葉酸合成酶(dihydropteroate synthase, DHPS)突變基因,主要指sul1、sul2和sul3,其中sul1和sul2是環(huán)境中存在最為普遍、豐度較高的SRGs[64]。

      近年來(lái)關(guān)于我國(guó)養(yǎng)豬廢棄物中ARGs的污染情況也有所報(bào)道。從現(xiàn)有調(diào)查數(shù)據(jù)可知,豬糞、廢水中含有較高濃度的TRGs和SRGs,且不同地域間的差別較小。各類TRGs的相對(duì)豐度(ARG與16s rDNA豐度的比值)略有差異,糞便中RPP-TRGs和EI-TRGs通常較高,約在10-4~10-1之間,EFP-TRGs則相對(duì)較低,相對(duì)豐度約在10-5~10-3左右[34,66];廢水中3種TRGs的水平基本持平,均在10-4~10-1范圍[34]。SRGs(sul1和sul2)在糞便中的相對(duì)豐度在10-4~10-3左右,而廢水中的豐度可達(dá)10-2~10-1[34]。在土壤中,TRGs和SRGs豐度約在10-5~10-2范圍波動(dòng),與養(yǎng)豬廢棄物的施用方式密切相關(guān)[16,67]。

      ARGs在環(huán)境中的傳播擴(kuò)散除靠抗性細(xì)菌的自身繁殖外,還借助于各種基因水平轉(zhuǎn)移方式,包括細(xì)菌之間的質(zhì)粒接合轉(zhuǎn)移、噬菌體介導(dǎo)的轉(zhuǎn)導(dǎo)作用、及細(xì)菌直接攝取裸露DNA從而獲得ARGs的自然轉(zhuǎn)化作用[68-70]。這3種方式中,噬菌體轉(zhuǎn)導(dǎo)具有高度的宿主特異性,使ARGs的轉(zhuǎn)移限制于同種細(xì)菌間;自然轉(zhuǎn)化作用在環(huán)境中的發(fā)生具有一定的隨機(jī)性,需要依靠具有天然轉(zhuǎn)化能力的受體細(xì)菌,而此類細(xì)菌種類稀少,同時(shí)游離DNA穩(wěn)定性差,增加了ARGs通過(guò)自然轉(zhuǎn)化作用傳播的局限性;相比而言,質(zhì)粒的宿主范圍廣,通常含有多種ARGs,并且質(zhì)粒的接合轉(zhuǎn)移是細(xì)菌之間基因交流的主動(dòng)方式,加之質(zhì)粒中通常含有其他能夠介導(dǎo)基因獲取及轉(zhuǎn)移的相關(guān)基因元件從而促進(jìn)ARGs的傳播,使之成為環(huán)境中介導(dǎo)ARGs水平轉(zhuǎn)移的主要方式[71-72]。豬糞、養(yǎng)豬廢水是抗性質(zhì)粒的重要載體,已有研究報(bào)道表明其中含有多種類型的、可在細(xì)菌間傳播的抗性質(zhì)粒[73-74]。當(dāng)這些廢棄物通過(guò)排放、灌溉、施肥等不同途徑與環(huán)境水體或土壤接觸時(shí),會(huì)將攜帶有ARGs的抗性細(xì)菌帶入這些環(huán)境介質(zhì)中,并通過(guò)質(zhì)粒及其他基因元件如整合子[19,34]、轉(zhuǎn)座子[17,75]等,促進(jìn)其中ARGs的擴(kuò)散[76-78]。

      養(yǎng)豬業(yè)廢棄物(糞便、廢水)通常存在較高濃度的抗生素殘留,并且由于持續(xù)排放,使其在被污染的土壤、水體中逐漸累積,直接造成抗性選擇壓力導(dǎo)致環(huán)境中相關(guān)抗性細(xì)菌及ARGs的增殖。Heuer和Smalla[19]將含有磺胺嘧啶的豬糞施肥于土壤,發(fā)現(xiàn)其中sul1基因的豐度在至少2個(gè)月內(nèi)有所上升;在畜禽廢水中,SRGs的相對(duì)豐度與磺胺類抗生素的殘留濃度呈現(xiàn)較強(qiáng)的相關(guān)性[18];我國(guó)學(xué)者對(duì)浙江、北京、天津、福建沿海等地養(yǎng)豬場(chǎng)周邊的土壤樣本的分析結(jié)果顯示,其中所含有TRGs的相對(duì)豐度與四環(huán)素類抗生素的殘留濃度也存在著顯著正相關(guān)性[16,60]。同時(shí),一種抗生素的存在也可以影響其他非針對(duì)于此抗生素的ARGs[18],這可能與細(xì)菌多重抗藥性相關(guān)[41]。除抗生素之外,糞便、廢水中含有的常規(guī)污染物,如COD、氮、磷等,也對(duì)于ARGs的積累有促進(jìn)作用[18,79];一些重金屬元素與抗生素存在抗性共選擇效應(yīng),因此這些金屬元素的存在也對(duì)于ARGs的積累起到了促進(jìn)作用[17-18]。水分是維持細(xì)菌生命活動(dòng)正常進(jìn)行的最根本條件,干燥條件會(huì)使攜帶有ARGs的細(xì)菌失水死亡[80]。溫度也對(duì)ARGs有一定影響,低溫(0~5 °C)可顯著延長(zhǎng)攜帶有ARGs的細(xì)菌在環(huán)境中的存活時(shí)間從而有利于ARGs的駐留[80];高溫則有助于消減ARGs,例如高溫堆肥不僅可以消減糞便中的抗生素[81-87],對(duì)ARGs也有較為明顯的消減效果[21,88-89]。另外,日照也是影響ARGs豐度水平的因素之一,據(jù)報(bào)道在養(yǎng)殖廢水處理塘中,日照時(shí)間與其中的TRGs豐度呈現(xiàn)負(fù)相關(guān)[23,90]。

      4 結(jié)論與展望(Conclusions and prospects)

      由于技術(shù)、經(jīng)濟(jì)和管理等的局限性,我國(guó)大多數(shù)養(yǎng)豬場(chǎng)廢棄物并未得到妥善處理,廢水目前仍以直排為主,而糞便則多采用簡(jiǎn)單室內(nèi)堆放風(fēng)干處理,僅少數(shù)進(jìn)行堆肥或發(fā)酵處理。鑒于養(yǎng)豬廢棄物所造成的抗生素及ARGs污染十分值得關(guān)注,針對(duì)此問(wèn)題,本文提出如下建議:

      (1)應(yīng)針對(duì)污染物從養(yǎng)殖源(動(dòng)物腸道、糞便、養(yǎng)殖廢水等)到環(huán)境介質(zhì)(土壤、水體等)的排放途徑,深入研究抗生素的環(huán)境行為、降解途徑、機(jī)理及產(chǎn)物,以及ARGs的演化、擴(kuò)散規(guī)律及關(guān)鍵影響因素。

      (2)通過(guò)對(duì)養(yǎng)豬糞便、廢水及施肥土壤中ARGs的種類分布與豐度的調(diào)查,得到ARGs的生態(tài)毒理基礎(chǔ)數(shù)據(jù),結(jié)合目前一些已知有效的控制抗生素及ARGs的方法,建立起一套適應(yīng)我國(guó)國(guó)情的養(yǎng)豬廢棄物控制策略,從而更好的控制ARGs在環(huán)境中的擴(kuò)散,促進(jìn)我國(guó)養(yǎng)豬業(yè)合理、健康的發(fā)展。

      [1] 李振, 王云建. 畜禽養(yǎng)殖中抗生素使用的現(xiàn)狀、問(wèn)題及對(duì)策[J]. 今日畜牧獸醫(yī), 2009(8): 1-3

      [2] Zhang Q Q, Ying G G, Pan C G, et al. A comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modelling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782

      [3] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759

      [4] 周啟星, 羅義, 王美娥. 抗生素的環(huán)境殘留、生態(tài)毒性及抗性基因污染[J]. 生態(tài)毒理學(xué)報(bào), 2007, 2(3): 243-251

      Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution: A review [J]. Asian Journal of Ecotoxicology, 2007, 2(3): 243-251 (in Chinese)

      [5] Díaz-Cruz M S, García-Galán M J, Barceló D. Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry [J]. Journal of Chromatography A, 2008, 1193(1): 50-59

      [6] Pan X, Qiang Z M, Ben W W, et al. Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry [J]. Journal of Environmental Sciences, 2011, 23(10): 1729-1737

      [7] Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process [J]. Environmental Science & Technology, 2005, 39(15): 5816-5823

      [8] Tagiri-Endo M, Suzuki S, Nakamura T, et al. Rapid determination of five antibiotic residues in swine wastewater by online solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2009, 393(4): 1367-1375

      [9] Jacobsen A M, Halling-S?rensen B, Ingerslev F, et al. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2004, 1038(1): 157-170

      [10] Ben W W, Qiang Z M, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry [J]. Journal of Chromatography A, 2008, 1202(2): 173-180

      [11] Pan X, Qiang Z M, Ben W W, et al. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China [J]. Chemosphere, 2011, 84(5): 695-700

      [12] Lu L M, Dai L, Wang Y, et al. Characterization of antimicrobial resistance and integrons among Escherichia coli isolated from animal farms in Eastern China [J]. Acta Tropica, 2010, 113(1): 20-25

      [13] Zhang X Y, Ding L J, Yue J. Occurrence and characteristics of class 1 and class 2 integrons in resistant Escherichia coli isolates from animals and farm workers in Northeastern China [J]. Microbial Drug Resistance, 2009, 15(4): 323-328

      [14] Srinivasan V, Nam H M, Sawant A, et al. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils [J]. Microbial Ecology, 2008, 55(2): 184-193

      [15] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews, 1995, 59(1): 143-169

      [16] Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China [J]. Environmental Science & Technology, 2010, 44(18): 6933-6939

      [17] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3435-3440

      [18] Mckinney C W, Loftin K A, Meyer M T, et al. tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence [J]. Environmental Science & Technology, 2010, 44(16): 6102-6109

      [19] Heuer H, Smalla K. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months [J]. Environmental Microbiology, 2007, 9(3): 657-666

      [20] Musovic S, Oregaard G, Kroer N, et al. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere [J]. Applied and Environmental Microbiology, 2006, 72(10): 6687-6692

      [21] Selvam A, Xu D L, Zhao Z Y, et al. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure [J]. Bioresource Technology, 2012, 126: 383-390

      [22] Barkovskii A L, Manoylov K M, Bridges C. Positive and negative selection towards tetracycline resistance genes in manure treatment lagoons [J]. Journal of Applied Microbiology, 2012, 112(5): 907-919

      [23] Peak N, Knapp C W, Yang R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies [J]. Environmental Microbiology, 2007, 9(1): 143-151

      [24] Aminov R I, Garrigues-Jeanjean N, Mackie R I. Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins [J]. Applied and Environmental Microbiology, 2001, 67(1): 22-32

      [25] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44(19): 7220-7225

      [26] Barkovskii A, Bridges C. Persistence and profiles of tetracycline resistance genes in swine farms and impact of operational practices on their occurrence in farms' vicinities [J]. Water, Air, & Soil Pollution, 2012, 223(1): 49-62

      [27] Zhang X X, Zhang T, Fang H. Antibiotic resistance genes in water environment [J]. Applied Microbiology and Biotechnology, 2009, 82(3): 397-414

      [28] Ng L K, Martin I, Alfa M, et al. Multiplex PCR for the detection of tetracycline resistant genes [J]. Molecular and Cellular Probes, 2001, 15(4): 209-215

      [29] Garofalo C, Vignaroli C, Zandri G, et al. Direct detection of antibiotic resistance genes in specimens of chicken and pork meat [J]. International Journal of Food Microbiology, 2007, 113(1): 75-83

      [30] Khan S A, Nawaz M S, Khan A A, et al. Molecular characterization of multidrug-resistant Enterococcus spp. from poultry and dairy farms: Detection of virulence and vancomycin resistance gene markers by PCR [J]. Molecular and Cellular Probes, 2005, 19(1): 27-34

      [31] Moura A, Henriques I, Ribeiro R, et al. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant [J]. Journal of Antimicrobial Chemotherapy, 2007, 60(6): 1243-1250

      [32] Perreten V, Vorlet-Fawer L, Slickers P, et al. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria [J]. Journal of Clinical Microbiology, 2005, 43(5): 2291-2302

      [33] Frye J G, Jesse T, Long F, et al. DNA microarray detection of antimicrobial resistance genes in diverse bacteria [J]. International Journal of Antimicrobial Agents, 2006, 27(2): 138-151

      [34] Cheng W X, Chen H, Su C, et al. Abundance and persistence of antibiotic resistance genes in livestock farms: A comprehensive investigation in Eastern China [J]. Environment International, 2013, 61: 1-7

      [35] Nyrén P, Karamohamed S, Ronaghi M. Detection of single-base changes using a biolumino-metric primer extension assay [J]. Analytical Biochemistry, 1997, 244(2): 367-373

      [36] Ronaghi M, Karamohamed S, Pettersson B, et al. Real-time DNA sequencing using detection of pyrophosphate release [J]. Analytical Biochemistry, 1996, 242(1): 84-89

      [37] Shendure J, Ji H. Next-generation DNA sequencing [J]. Nature Biotechnology, 2008, 26(10): 1135-1145

      [38] Allen H K. Antibiotic resistance gene discovery in food-producing animals [J]. Current Opinion in Microbiology, 2014, 19: 25-29

      [39] Christgen B, Yang Y, Ahammad S Z, et al. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater [J]. Environmental Science & Technology, 2015, 49(4): 2577-2584

      [40] Yang Y, Li B, Ju F, et al. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach [J]. Environmental Science & Technology, 2013, 47(18): 10197-10205

      [41] Sydenham T V, Sóki J, Hasman H, et al. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing [J]. Anaerobe, 2015, 31: 59-64

      [42] Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches [J]. Future Microbiology, 2011, 7(1): 73-89

      [43] 張慧敏, 章明奎, 顧國(guó)平. 浙北地區(qū)畜禽糞便和農(nóng)田土壤中四環(huán)素類抗生素殘留[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2008, 24(3): 69-73

      Zhang H M, Zhang M K, Gu G P. Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province [J]. Journal of Ecology and Rural Environment, 2008, 24(3): 69-73 (in Chinese)

      [44] 張樹(shù)清, 張夫道, 劉秀梅, 等. 規(guī)?;B(yǎng)殖畜禽糞主要有害成分測(cè)定分析研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(6): 822-829

      Zhang S Q, Zhang F D, Liu X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots [J]. Plant Nutrition and Fertilizer Science, 2005, 11(6): 822-829 (in Chinese)

      [45] 劉新程, 董元華, 王輝. 江蘇省集約化養(yǎng)殖畜禽排泄物中四環(huán)素類抗生素殘留調(diào)查[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2008, 27(3): 1177-1182

      Liu X C, Dong Y H, Wang H. Residues of tetracyclines in animal manure from intensive farm in Jiangsu Province [J]. Journal of Agro-Environment Science, 2008, 27(3): 1177-1182 (in Chinese)

      [46] 魏瑞成, 王冉, 李維, 等. 豬糞中金霉素殘留的測(cè)定方法[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2008, 20(4): 291-295

      Wei R C, Wang R, Li W, et al. Determination method of chlortetracycline residues in pig faeces [J]. Acta Agriculturae Zhejiangensis, 2008, 20(4): 291-295 (in Chinese)

      [47] Hu X G, Luo Y, Zhou Q X, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography [J]. Chinese Journal of Analytical Chemistry, 2008, 36(9): 1162-1166

      [48] Martínez-Carballo E, González-Barreiro C, Scharf S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environmental Pollution, 2007, 148(2): 570-579

      [49] Jacobsen A M, Halling-S?rensen B. Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2006, 384(5): 1164-1174

      [50] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China [J]. Science of the Total Environment, 2010, 408(5): 1069-1075

      [51] 胡獻(xiàn)剛, 羅義, 周啟星, 等. 固相萃取-高效液相色譜法測(cè)定畜牧糞便中13種抗生素藥物殘留[J]. 分析化學(xué), 2008, 36(9): 1162-1166

      Hu X G, Luo Y, Zhou Q X, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography [J]. Chinese Journal of Analytical Chemistry,2008, 36(9): 1162-1166 (in Chinese)

      [52] Haller M Y, Müller S R, Mcardell C S, et al. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry [J]. Journal of Chromatography A, 2002, 952(1-2): 111-120

      [53] Wei R C, Ge F, Huang S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China [J]. Chemosphere, 2011, 82(10): 1408-1414

      [54] Tong L, Li P, Wang Y X, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74(8): 1090-1097

      [55] Ben W W, Pan X, Qiang Z M. Occurrence and partition of antibiotics in the liquid and solid phases of swine wastewater from concentrated animal feeding operations in Shandong Province, China [J]. Environmental Science: Processes & Impacts, 2013, 15(4): 870-875

      [56] Campagnolo E R, Johnson K R, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations [J]. Science of the Total Environment, 2002, 299(1-3): 89-95

      [57] Malintan N T, Mohd M A. Determination of sulfonamides in selected Malaysian swine wastewater by high-performance liquid chromatography [J]. Journal of Chromatography A, 2006, 1127(1-2): 154-160

      [58] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998

      [59] Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China [J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276

      [60] Huang X, Liu C X, Li K, et al. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China [J]. Environmental Science and Pollution Research, 2013, 20(12): 9066-9074

      [61] Pawelzick H, Hoper H, Nau H, et al. A survey of the occurrence of various tetracyclines and sulfamethazine in sandy soils in Northwestern Germany fertilized with liquid manure [C]. SETAC Euro 14th Annual Meeting, Prague: Czech Republic, 2004: 18-22

      [62] Hamscher G, Sczesny S, H?per H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry [J]. Analytical Chemistry, 2002, 74(7): 1509-1518

      [63] Thaker M, Spanogiannopoulos P, Wright G. The tetracycline resistome [J]. Cellular and Molecular Life Sciences, 2010, 67(3): 419-431

      [64] Sk?ld O. Sulfonamide resistance: Mechanisms and trends [J]. Drug Resistance Updates, 2000, 3(3): 155-160

      [65] Roberts M C. Update on acquired tetracycline resistance genes [J]. FEMS Microbiology Letters, 2005, 245(2): 195-203

      [66] Mu Q H, Li J, Sun Y X, et al. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone-and macrolide-resistance genes in livestock feedlots in Northern China [J]. Environmental Science and Pollution Research, 2014, 22(9): 1-9

      [67] Peng S, Wang Y M, Zhou B B, et al. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of Eastern China [J]. Science of the Total Environment, 2015, 506-507: 279-286

      [68] Miller R. Environmental bacteriophage-host interactions: Factors contribution to natural transduction [J]. Antonie Van Leeuwenhoek, 2001, 79(2): 141-147

      [69] Thomas C M, Nielsen K M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria [J]. Nature Reviews Microbiology, 2005, 3(9): 711-721

      [70] Frost L S, Leplae R, Summers A O, et al. Mobile genetic elements: The agents of open source evolution [J]. Nature Reviews Microbiology, 2005, 3(9): 722-732

      [71] Norman A, Hansen L H, S?rensen S J. Conjugative plasmids: Vessels of the communal gene pool [J]. Philosophical Transactions of the Royal Society B, 2009, 364(1527): 2275-2289

      [72] Bennett P M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria [J]. British Journal of Pharmacology, 2008, 153(S1): S347-S357

      [73] Binh C T T, Heuer H, Kaupenjohann M, et al. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids [J]. FEMS Microbiology Ecology, 2008, 66(1): 25-37

      [74] Smalla K, Heuer H, Gotz A, et al. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids [J]. Applied and Environmental Microbiology, 2000, 66(11): 4854-4862

      [75] Liu M M, Zhang Y, Yang M, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system [J]. Environmental Science & Technology, 2012, 46(14): 7551-7557

      [76] Koike S, Krapac I G, Oliver H D, et al. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period [J]. Applied and Environmental Microbiology, 2007, 73(15): 4813-4823

      [77] Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields [J]. Current Opinion in Microbiology, 2011, 14(3): 236-243

      [78] Musovic S, Klümper U, Dechesne A, et al. Long-term manure exposure increases soil bacterial community potential for plasmid uptake [J]. Environmental Microbiology Reports, 2014, 6(2): 125-130

      [79] Séveno N A, Kallifidas D, Smalla K, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment [J]. Reviews in Medical Microbiology, 2002, 13(1): 15-27

      [80] Chee-Sanford J C, Mackie R I, Koike S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste [J]. Journal of Environmental Quality, 2009, 38(3): 1086-1108

      [81] Selvam A, Zhao Z, Li Y C, et al. Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust [J]. Environmental Technology, 2013, 34(16): 1-9

      [82] Selvam A, Zhao Z Y, Wong J W C. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin [J]. Bioresource Technology, 2012, 126: 412-417

      [83] Wu X F, Wei Y S, Zheng J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting [J]. Bioresource Technology, 2011, 102(10): 5924-5931

      [84] Arikan O A, Mulbry W, Rice C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals [J]. Journal of Hazardous materials, 2009, 164(2-3): 483-489

      [85] Dolliver H, Gupta S, Noll S. Antibiotic degradation during manure composting [J]. Journal of Environmental Quality, 2008, 37(3): 1245-1253

      [86] Arikan O A, Sikora L J, Mulbry W, et al. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves [J]. Bioresource Technology, 2007, 98(1): 169-176

      [87] 潘尋, 強(qiáng)志民, 賁偉偉. 高溫堆肥對(duì)豬糞中多類抗生素的去除效果[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2013, 29(1): 64-69

      Pan X, Qiang Z M, Ben W W. Effects of high-temperature composting on degradation of antibiotics in swine manure [J]. Journal of Ecology and Rural Environment, 2013, 29(1): 64-69 (in Chinese)

      [88] Wang L L, Oda Y, Grewal S, et al. Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments [J]. Microbial Ecology, 2012, 63(1): 32-40

      [89] Yu Z T, Michel F C, Hansen G, et al. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance [J]. Applied and Environmental Microbiology, 2005, 71(11): 6926-6933

      [90] Engemann C A, Keen P L, Knapp C W, et al. Fate of tetracycline resistance genes in aquatic systems: Migration from the water column to peripheral biofilms [J]. Environmental Science & Technology, 2008, 42(14): 5131-5136

      Contamination of Tetracyclines, Sulfonamides and Corresponding Resistance Genes in the Waste from Chinese Pig Industry

      Wang Jian1, Ben Weiwei1,*, Qiang Zhimin1, Pan Xun2

      1. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China2. Foreign Economic Cooperation Office, Ministry of Environmental Protection of Peoples' Republic of China, Beijing 100035, ChinaReceived 29 May 2015 accepted 6 July 2015

      China has the world’s largest pig industry in the number of hogs and the amount of pork production. The swine manure and wastewater produced from the pig industry contain a number of veterinary antibiotics and their metabolites, which make the swine waste an important pollution source of antibiotics to the environment. The subsequent contamination and dissemination of antibiotic resistance genes (ARGs) cannot be overlooked. Based on the research data in recent years, the detection methods and pollution status of tetracyclines, sulfonamides and the corresponding ARGs, as well as the impact factors on the dissemination of ARGs in the Chinese pig industry, were summarized in this paper. Moreover, the focus of further research is also proposed for the purpose of controlling the contamination of antibiotics and ARGs caused by the Chinese pig industry.

      antibiotics; antibiotic resistance genes (ARGs); tetracyclines; sulfonamides; swine manure; swine wastewater

      國(guó)家自然科學(xué)基金項(xiàng)目(21107127)

      王健(1985-),男,博士研究生,研究方向?yàn)樾滦臀廴疚锟刂?,E-mail: tingwj110@163.com;

      *通訊作者(Corresponding author), E-mail: wwben@rcees.ac.cn

      10.7524/AJE.1673-5897.20150529001

      2015-05-29錄用日期:2015-07-06

      1673-5897(2015)5-002-09

      X171.5

      A

      賁偉偉(1982-),女,環(huán)境工程博士,助理研究員,主要研究方向環(huán)境微量污染物控制。

      王健, 賁偉偉,強(qiáng)志民,等. 我國(guó)養(yǎng)豬業(yè)廢棄物中四環(huán)素類、磺胺類抗生素及相關(guān)抗性基因污染研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2015, 10(5): 2-10

      Wang J, Ben W W, Qiang Z M, et al. Contamination of tetracyclines, sulfonamides and corresponding resistance genes in the waste from Chinese pig industry [J]. Asian Journal of Ecotoxicology, 2015, 10(5): 2-10 (in Chinese)

      猜你喜歡
      養(yǎng)豬業(yè)抗性廢棄物
      制造了全世界三分之一廢棄物的產(chǎn)業(yè)
      2022年養(yǎng)豬業(yè)或?qū)⒂瓉?lái)“大變局”
      2020年養(yǎng)豬業(yè)盤點(diǎn)
      一個(gè)控制超強(qiáng)電離輻射抗性開(kāi)關(guān)基因的研究進(jìn)展
      新型醫(yī)療廢棄物焚化艙
      電子廢棄物
      世界博覽(2020年19期)2020-10-30 10:02:46
      “中美貿(mào)易戰(zhàn)”養(yǎng)豬業(yè)可能發(fā)生的事
      甲基對(duì)硫磷抗性菌的篩選及特性研究
      “廢棄物”中有孩子的快樂(lè)
      微生物發(fā)酵飼料在養(yǎng)豬業(yè)的應(yīng)用
      廣東飼料(2016年1期)2016-12-01 03:43:02
      广丰县| 昌都县| 广州市| 通江县| 山阴县| 潜山县| 凤阳县| 寻乌县| 千阳县| 石狮市| 武功县| 龙海市| 通州市| 斗六市| 太保市| 南阳市| 永寿县| 徐闻县| 手游| 繁峙县| 堆龙德庆县| 中西区| 孝义市| 江口县| 怀来县| 班戈县| 凯里市| 天长市| 威远县| 阿鲁科尔沁旗| 苏州市| 辉南县| 准格尔旗| 西平县| 辰溪县| 佛冈县| 安岳县| 潜山县| 绿春县| 南川市| 进贤县|