• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      植物無(wú)融合生殖研究進(jìn)展

      2015-04-09 01:30:20賈寧唐研耀曾燕如趙國(guó)淼徐亞楠
      生物技術(shù)通報(bào) 2015年12期
      關(guān)鍵詞:生殖遺傳位點(diǎn)

      賈寧 唐研耀 曾燕如 趙國(guó)淼 徐亞楠

      (浙江農(nóng)林大學(xué) 浙江省亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,臨安 311300)

      植物無(wú)融合生殖研究進(jìn)展

      賈寧 唐研耀 曾燕如 趙國(guó)淼 徐亞楠

      (浙江農(nóng)林大學(xué) 浙江省亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,臨安 311300)

      無(wú)融合生殖是一種不發(fā)生雌雄配子核融合而產(chǎn)生種子的一種無(wú)性繁殖過(guò)程。有些無(wú)融合生殖產(chǎn)生的種子是其母本的克隆,可以保留母本的基因型,因此無(wú)融合生殖可用于雜種優(yōu)勢(shì)的固定。盡管無(wú)融合生殖具有潛在的應(yīng)用價(jià)值,但其形成機(jī)理十分復(fù)雜,表現(xiàn)在無(wú)融合生殖有多種表現(xiàn)形式,且受控的途徑多樣,遺傳機(jī)制復(fù)雜,至今尚無(wú)定論,研究方法也多種多樣。對(duì)近年來(lái)無(wú)融合生殖研究方面取得的進(jìn)展進(jìn)行了概述,旨在為深入研究無(wú)融合生殖提供參考。

      無(wú)融合生殖;遺傳控制;表觀遺傳

      無(wú)融合生殖是不發(fā)生雌雄配子核融合而產(chǎn)生種子的一種無(wú)性繁殖過(guò)程。無(wú)融合生殖可視為有性生殖過(guò)程在時(shí)空上的短路,從而導(dǎo)致某些細(xì)胞命運(yùn)的改變和有性生殖過(guò)程關(guān)鍵步驟(如減數(shù)分裂和受精)的中止[1-3]。在無(wú)融合生殖植物中,種子的形成沒(méi)有經(jīng)歷減數(shù)分裂中的交換或者受精,結(jié)果其子代在遺傳上是其母本的克隆,保留著母本的基因型[2-5]。因此,無(wú)論性狀在遺傳上有多復(fù)雜,無(wú)融合生殖植物均能通過(guò)種子繁殖,永久地保存感興趣的基因型,這在雜種優(yōu)勢(shì)的保存方面起著極大的作用。當(dāng)然,只有核遺傳的專性無(wú)融合生殖才能在雜種固定上有意義[6]。

      目前,已在40余科400余種開(kāi)花植物中發(fā)現(xiàn)存在無(wú)融合生殖現(xiàn)象,且預(yù)計(jì)實(shí)際遠(yuǎn)不止這些,在具有代表性的單子葉植物及雙子葉植物中都存在這一現(xiàn)象[7],甚至在地中海柏樹(shù)(Cupressus dupreziana)中發(fā)現(xiàn)了父本起源的無(wú)融合生殖[8,9]。無(wú)融合生殖中存在兼性無(wú)融合生殖現(xiàn)象,且常伴隨著多倍體現(xiàn)象,而其同種或相近物種有性繁殖的個(gè)體通常是二倍體[10,11],如蘋果屬(Malus)植物中二倍體的種一般不具有無(wú)融合生殖能力,而多倍體種多具有較強(qiáng)的無(wú)融合生殖能力[12]。同一種植物可以在某一地區(qū)進(jìn)行有性生殖,而在世界其它地區(qū)進(jìn)行無(wú)融合生殖[13]。許多研究表明,無(wú)融合生殖是循環(huán)雜交的產(chǎn)物,或者在某種情況下是通過(guò)自動(dòng)多倍體化產(chǎn)生的[14]。但Lovell等[15]對(duì)擬南芥(Arabidopsis thaliana)近親Boechera屬二倍體和三倍體無(wú)融合生殖家系的遺傳模式及其產(chǎn)生的有性后代進(jìn)行研究發(fā)現(xiàn),多倍體現(xiàn)象和雜交過(guò)程只是和Boechera屬的配子體無(wú)融合生殖相關(guān),但并不是決定因素,而是遺傳因子的控制起著決定作用。無(wú)融合生殖植物具有功能性的花粉,通過(guò)授粉,控制無(wú)融合生殖的遺傳因子可傳遞到同屬的有性群體中,而有性的個(gè)體不會(huì)對(duì)卵細(xì)胞未經(jīng)受精而產(chǎn)生種子的無(wú)融合生殖植物進(jìn)行受精[16,17]。

      無(wú)融合生殖機(jī)理極其復(fù)雜,但各國(guó)研究人員針對(duì)不同物種中發(fā)現(xiàn)的無(wú)融合生殖展開(kāi)了研究。盡管研究角度及研究程度有所不同,但都取得了一定的進(jìn)展。近年來(lái),我們研究小組從連鎖分析的角度對(duì)山核桃(Carya cathayensis)無(wú)融合生殖開(kāi)展了研究。本文就無(wú)融合生殖研究進(jìn)展進(jìn)行了綜述,以期為我們深入研究這一現(xiàn)象背后的機(jī)理提供參考。

      1 無(wú)融合生殖胚囊形成早期階段的調(diào)控

      最近,不少學(xué)者研究了無(wú)融合生殖胚囊形成早期階段調(diào)控的生物學(xué)機(jī)理,而研究無(wú)融合生殖的分子機(jī)理主要研究胚囊早期的發(fā)育過(guò)程以及胚是如何逃避受精而形成種子的[2-4]。Koltunow等[2]早在2003年就提出,無(wú)融合生殖始于一種在某一步驟或某些步驟脫調(diào)節(jié)的有性生殖形式。

      玉米中發(fā)現(xiàn)了一種突變體,突變位點(diǎn)編碼AGO104,導(dǎo)致減數(shù)分裂時(shí)染色質(zhì)不能螺旋化縮短,進(jìn)而導(dǎo)致染色體不能分離和功能性未減數(shù)配子的形成[18],而AGO104所屬的蛋白家族ARGONAUTE蛋白是RNA沉默復(fù)合體的關(guān)健組分[19],說(shuō)明RNA沉默在此過(guò)程中發(fā)揮著作用。此外,AGO104專門在性母細(xì)胞周圍的體細(xì)胞中積累,說(shuō)明它是一個(gè)移動(dòng)信號(hào),而不是對(duì)性母細(xì)胞中轉(zhuǎn)錄的細(xì)胞自主調(diào)控[20]。

      Koltunow等[5]發(fā)現(xiàn),需要有性繁殖刺激胚珠內(nèi)的無(wú)孢子生殖,啟動(dòng)顯性位點(diǎn)LOSS OF APOMEIOSIS(LOA)的功能,由此促進(jìn)有性進(jìn)程(性)細(xì)胞(Sexually programmed cell)附近體細(xì)胞無(wú)孢子生殖起始(Aposporous initial,AI)細(xì)胞的分化,并抑制毗鄰的有性生殖途徑;無(wú)孢子胚囊中的LOSS OF PARTHENOGENESIS(LOP)位點(diǎn)使不依賴于受精的胚及胚乳能夠發(fā)育;在Hieracium caespitosum的無(wú)融合生殖中,這2個(gè)位點(diǎn)是獨(dú)立分離的[21];去除這2個(gè)位點(diǎn)中任何一個(gè)位點(diǎn)會(huì)導(dǎo)致部分回復(fù)到有性生殖,而二位點(diǎn)功能的喪失會(huì)導(dǎo)致有性發(fā)育的回復(fù);因而在無(wú)融合生殖物種中,無(wú)融合生殖與有性生殖可以互不排斥地共存,如果有性生殖的發(fā)生途徑失敗,則會(huì)啟動(dòng)無(wú)融合生殖基因的表達(dá),而后者是有性生殖的改變形式;這些位點(diǎn)不可能編碼對(duì)有性生殖而言關(guān)鍵的因子,但可借用有性途徑使無(wú)融合生殖成為可能;這些顯性位點(diǎn)的功能性滲透有可能導(dǎo)致產(chǎn)生稀有的源自兼性無(wú)融合生殖植物的有性子代[5]。進(jìn)一步研究發(fā)現(xiàn),LOA位點(diǎn)兩側(cè)具有豐富復(fù)雜的重復(fù)與轉(zhuǎn)座子序列,且在單雙子葉無(wú)融合生殖植物中具有趨同進(jìn)化的現(xiàn)象,說(shuō)明該位點(diǎn)是無(wú)融合生殖性狀功能發(fā)揮及維持所必需的[22]。

      研究表明,在有性生殖物種減數(shù)分裂前的胚珠內(nèi)來(lái)自孢子體胚珠(Sporophytic ovule,SO)細(xì)胞的信號(hào)對(duì)某些造孢細(xì)胞的數(shù)量有抑制和促進(jìn)作用,這些造孢細(xì)胞具有起始雌配子體發(fā)育的潛力[23,24]。對(duì)擬南芥、玉米(Zea mays)、水稻(Oryza sativa)的研究表明,當(dāng)減數(shù)分裂前胚珠中孢子體組織涉及的某些信號(hào)如富亮氨酸受體樣激酶(Leu-rich receptorlike kinases)、ARGONAUTE蛋白、小RNA、和DNA甲基化酶的路徑遭到破壞時(shí),可以導(dǎo)致大孢子母細(xì)胞(Megaspore mother cell,MMC)的敗育[25-29]。例如,玉米SO組織中ARGONAUTE蛋白功能的失??梢愿淖僊MC的命運(yùn),使其繞過(guò)減數(shù)分裂過(guò)程直接形成一個(gè)二倍體胚囊[18]。最近,Tucker[30]和Okada等[31]基于對(duì)無(wú)融合Hieracium的研究,提出來(lái)自SO細(xì)胞的信號(hào)可以啟動(dòng)LOA位點(diǎn)的表達(dá),從而影響AI細(xì)胞的起始和無(wú)孢子胚囊的發(fā)育。此外,激素在植物生長(zhǎng)、雌配子體發(fā)育和胚的形成中起著非常重要的作用[32-34]。Tucker 等[30]發(fā)現(xiàn),Hieracium屬中無(wú)融合生殖起始的時(shí)間和進(jìn)度受植物激素和LOA位點(diǎn)調(diào)控,植物激素可能作用于LOA位點(diǎn)的上游或者它們同時(shí)調(diào)控?zé)o融合生殖。

      比較擬南芥近親Boechera屬二倍體有性生殖與二倍體無(wú)融合生殖物種大胞子母細(xì)胞階段微型解剖胚珠之間的差異表達(dá)基因標(biāo)簽發(fā)現(xiàn),無(wú)融合生殖基因表達(dá)方面的異時(shí)性[35-38]、基因組復(fù)制及古老雜交事件影響的證據(jù)[36,37];無(wú)融合生殖胚珠在發(fā)育的早期與有性胚珠相比,在基因表達(dá)上表現(xiàn)為下調(diào),且與甲基化途徑有關(guān)[39],而在受精胚珠的階段,無(wú)融合生殖胚珠基因表達(dá)相對(duì)于有性胚珠又表現(xiàn)為上調(diào)[11,36,37,39]。

      2 植物無(wú)融合生殖的遺傳機(jī)制研究

      關(guān)于控制無(wú)融合的生殖遺傳機(jī)制,諸如基因數(shù)量及其顯隱性等問(wèn)題,在不同的植物甚至在同一植物中得到了不同的結(jié)果[40-42];即使在同一物種中也發(fā)現(xiàn)存在不同位點(diǎn)控制不同形式的無(wú)融合生殖現(xiàn)象[21]。一般來(lái)說(shuō)專性無(wú)融合生殖是由單基因或少數(shù)基因控制的,且常表現(xiàn)為顯性,而兼性無(wú)融合生殖的遺傳基礎(chǔ)表現(xiàn)較為復(fù)雜,是受微效多基因和環(huán)境因素同時(shí)控制的,從而形成一種兼有無(wú)融合生殖和有性生殖兩種方式的遺傳平衡體系[43];有些與無(wú)融合生殖有關(guān)的特定區(qū)域在不同物種中是高度保守的[9,44]。研究Pennisetum squamulatum 及Cenchrus ciliaris中配子體無(wú)融合生殖,發(fā)現(xiàn)其受到單顯性位點(diǎn)無(wú)孢子生殖特有基因組區(qū)(Apospory-specific genomic region,ASGR)的控制,該基因組區(qū)在這些物種中高度保守,含有數(shù)個(gè)在無(wú)融合生殖發(fā)育過(guò)程中起作用的基因,且有多類轉(zhuǎn)座因子,跨度達(dá)15-40 cM以上[45-48];有趣的是,這些區(qū)域似乎是雜合的[48,49]。Grossniklaus等[49-51]早在2001年就提出,無(wú)融合生殖由單一的主基因控制或由多個(gè)緊密連鎖的基因復(fù)合體控制,它們位于減數(shù)分裂染色單體交換受抑制的區(qū)域。同樣的現(xiàn)象在水稻[8,50]、玉米[51]、Paspalum simplex[52]、 摩 擦 禾(Tripsacum dactyloides)[53]等單、雙子葉物種也存在,且相對(duì)有性生殖的近親,無(wú)融合生殖物種中共分離的片段長(zhǎng)度達(dá)15-40 cM[50],可以把它們當(dāng)作單一的孟德?tīng)栠z傳性狀來(lái)看待[1,54]。這說(shuō)明無(wú)融合生殖物種中存在大片段連鎖的現(xiàn)象或同一染色體中連鎖及非連鎖的片段同時(shí)存在?;谶@些發(fā)現(xiàn),在Hieracium caespitosum的無(wú)融合生殖研究中采用了缺失作圖的方法來(lái)定位與無(wú)融合生殖有關(guān)的片段[21],但還是無(wú)法對(duì)實(shí)際存在的緊密連鎖大片段中的基因進(jìn)行作圖/定位。此外,也有不連鎖多基因、單基因控制無(wú)融合生殖的研究報(bào)道[48,55,56]。對(duì)于不連鎖多基因控制的無(wú)融合生殖,基因間通過(guò)表達(dá)量的變化及互作來(lái)實(shí)現(xiàn)生殖模式的變化[56]。在所有生物中先發(fā)現(xiàn)無(wú)融合生殖由單基因控制,后又發(fā)現(xiàn)是由多基因控制的[21]。研究發(fā)現(xiàn),平邑甜茶(Malus hepehensis var. pingyiensis)的無(wú)融合生殖以顯性單基因質(zhì)量性狀為主,也有數(shù)量性狀效應(yīng)[57]。

      3 無(wú)融合生殖的表觀遺傳調(diào)控研究

      3.1 無(wú)融合生殖的表觀遺傳模型

      研究表明,有性生殖過(guò)程可能受表觀遺傳學(xué)調(diào)控的某些突變或下調(diào)基因控制而導(dǎo)致無(wú)融合生殖[2,50,58],并將其稱之為表觀遺傳模型。表觀遺傳模型可以解釋無(wú)融合生殖發(fā)育過(guò)程中,不利于植物發(fā)育的無(wú)融合非減數(shù)分裂、單性生殖和假受精誘導(dǎo)自發(fā)胚乳形成3個(gè)過(guò)程同時(shí)共存的現(xiàn)象。因此表觀遺傳對(duì)無(wú)融合生殖的調(diào)控是宏觀的,可以同時(shí)對(duì)上述過(guò)程和多個(gè)位點(diǎn)進(jìn)行調(diào)控。另外,表觀遺傳模型也可解釋無(wú)融合生殖的起源問(wèn)題。目前一些學(xué)者認(rèn)為,無(wú)融合生殖的起源是不同程度的突變累加的結(jié)果,但這一觀點(diǎn)遭到多數(shù)學(xué)者的反對(duì),因?yàn)檫@些效應(yīng)同時(shí)出現(xiàn)的可能性不大,只有表觀遺傳的突變或者調(diào)控才會(huì)導(dǎo)致大規(guī)?;虻谋磉_(dá)變化,因此利用表觀遺傳模型解釋無(wú)融合生殖的起源更具有說(shuō)服力[2]。

      3.2 無(wú)融合生殖表觀遺傳調(diào)控的分子機(jī)制

      目前對(duì)無(wú)融合生殖的表觀遺傳調(diào)控分子機(jī)制的研究主要集中在基因組印記和染色體水平的修飾兩個(gè)方面。被子植物的基因組印記主要發(fā)生在胚乳中。在假配合無(wú)融合生殖中,胚的發(fā)育無(wú)需父本的貢獻(xiàn),而胚乳受精是必需的,以獲得正確的2m∶1p比,其背景正是通過(guò)基因組印跡使父母本基因組在表觀遺傳學(xué)上表現(xiàn)不同[59]。DNA甲基化修飾可以使基因組印記發(fā)生改變從而導(dǎo)致胚乳的自主發(fā)育[58]。Aguilar等[39,60]發(fā)現(xiàn),在玉米胚珠中,基因組中的低甲基化可以誘導(dǎo)類似于無(wú)融合生殖的表型。在早期擬南芥的研究中發(fā)現(xiàn),某些基因組的甲基化程度也與胚乳自主發(fā)育有關(guān)?;虮磉_(dá)的活性主要受染色體狀態(tài)決定,染色體水平上的表觀遺傳調(diào)控使?fàn)I養(yǎng)生長(zhǎng)向生殖生長(zhǎng)轉(zhuǎn)變的機(jī)制尚不清楚。在對(duì)擬南芥ago 9突變體的研究發(fā)現(xiàn),ARGONAUTE 9在胚珠體細(xì)胞中表達(dá)并調(diào)控配子體的分化過(guò)程,該突變體的胚珠可以形成多個(gè)類似于無(wú)孢子體類型的孢子,表明染色體水平上的修飾對(duì)無(wú)融合生殖的產(chǎn)生起著十分重要的作用[28]。此外,Ravi等[61]發(fā)現(xiàn)擬南芥中著絲粒特異表達(dá)組蛋白CENH3過(guò)量表達(dá)會(huì)產(chǎn)生單性生殖現(xiàn)象。

      4 控制無(wú)融合生殖的基因研究

      無(wú)融合生殖是由遺傳基因控制的[41],并陸續(xù)發(fā)現(xiàn)了無(wú)融合生殖相關(guān)的基因[59,62-66],其中一些與無(wú)融合生殖胚乳形成有關(guān),如FIS類基因、MSI1基因[59,62,67,68];一些與胚的形成有關(guān),如rolB 基因、PGA6/WUS基因、BBM基因、SERK類基因和LEC類基因[63-65];還有一些與減數(shù)分裂相關(guān),如SWI1基因、SPL/NZZ基因[69,70],但這些基因在不同物種中并不是等效的,如與胚形成有關(guān)的SERK基因在平邑甜茶和四倍性后代花前各試材的表達(dá)差異大于花后時(shí)期,但表達(dá)強(qiáng)度與胚胎發(fā)育時(shí)期和無(wú)融合生殖率高低沒(méi)有確切關(guān)系[71]。Marimuthu等[72]通過(guò)擬南芥MiMe與dyad突變體雜交,獲得了34%無(wú)性雌性或雄性配子轉(zhuǎn)化成無(wú)融合合成的種子的子代個(gè)體,它們是其親本的克隆,表明通過(guò)對(duì)有性植物中2-4個(gè)保守基因的操作,可以實(shí)現(xiàn)通過(guò)種子的無(wú)性繁殖。由于進(jìn)行無(wú)融合生殖的植物大多數(shù)是多倍體,而且存在兼性無(wú)融合生殖,突變重組體很難得到,也不易進(jìn)行分析,且無(wú)融合生殖類型多,過(guò)程和機(jī)制也不盡相同,所以從無(wú)融合生殖材料中克隆那些控制有性生殖途徑和無(wú)融合生殖途徑基因是很難的[70],但也有利用SCAR標(biāo)記等分離無(wú)融合生殖基因[21]、轉(zhuǎn)基因[73]的報(bào)道。

      5 分子標(biāo)記與遺傳定位在無(wú)融合生殖研究中的應(yīng)用

      事實(shí)上,無(wú)融合生殖研究至今尚未確定其核心遺傳元件[39],未分離到相關(guān)的基因[74]。同時(shí)人們對(duì)基因如何控制無(wú)融合生殖,這些基因在整個(gè)基因組的分布及具體位置,在植物育種中如何整合這些基因的作用所知甚少。

      已經(jīng)證明,遺傳定位是解決這些問(wèn)題強(qiáng)有力的方法,它旨在將復(fù)雜的表型解析成各個(gè)對(duì)表型發(fā)生作用的稱之為數(shù)量性狀位點(diǎn)(Quantitative trait locus,QTL)的基因[75]。遺傳定位方法的原理是連鎖分析,即在減數(shù)分裂中兩同源染色體間的交換產(chǎn)生重組的配子,通過(guò)計(jì)算重組配子占總配子數(shù)量的比率來(lái)量化并檢測(cè)基因間的連鎖程度[76-78]。分子標(biāo)記技術(shù)的發(fā)展為連鎖分析打開(kāi)了方便之門,而連鎖分析的最終目的是在構(gòu)建遺傳圖譜的基礎(chǔ)上定位與標(biāo)記相連鎖的基因/數(shù)量性狀位點(diǎn)。Noyes等[79]利用AFLP標(biāo)記曾經(jīng)對(duì)Erigeron屬一個(gè)三倍體無(wú)融合生殖物種與一個(gè)二倍體有性生殖物種的雜交子代群體進(jìn)行分析,定位出2個(gè)獨(dú)立的控制無(wú)融合生殖的位點(diǎn),表明不完全減數(shù)分裂與孤雌生殖是非連鎖獨(dú)立遺傳的。以無(wú)融合山核桃(Carya cathayensis Sarg.)[80]、美國(guó)山核桃(Carya illinoensis)為研究材料,我們?cè)诨旌夏P偷目蚣軆?nèi),在連鎖分析的模型中整合了無(wú)融合生殖;新模型不但能準(zhǔn)確地對(duì)標(biāo)記的連鎖進(jìn)行估計(jì),且能檢測(cè)無(wú)融合生殖比率及減數(shù)分裂過(guò)程中遺傳干擾的程度[81]。此外,我們還發(fā)展了利用連鎖分析來(lái)分析基因型到物種無(wú)融合現(xiàn)象多樣化的模型[82],無(wú)融合生殖物種中定位QTL的模型[83],說(shuō)明連鎖分析可用于無(wú)融合生殖的研究。事實(shí)上,我們的研究表明,山核桃中存在印跡QTL[84],而印跡效應(yīng)多與甲基化有關(guān),進(jìn)而產(chǎn)生表觀遺傳學(xué)的效應(yīng)。

      此外,自1993年分子標(biāo)記首次用于無(wú)融合生殖研究以來(lái)[85],分子標(biāo)記(RAPD、SCAR、AFLP、SSR)已在多種植物中用于區(qū)分同一物種中的無(wú)融合生殖與有性生殖[86-91]、無(wú)融合生殖個(gè)體的同一性鑒定(RAPD)[92],以及以無(wú)融合生殖個(gè)體為親本的雜種后代鑒定(RAPD、RFLP)[93,94]與親子代分析(SSR、RAPD)[95,96],或發(fā)現(xiàn)與無(wú)融合生殖基因連鎖的標(biāo)記[48,97]。Ruiz等[90]以柑橘(Citrus reticulata)為材料的研究結(jié)果表明,利用同工酶在有些群體中未能揭示出無(wú)融合生殖個(gè)體與有性生殖個(gè)體的差異,而利用 SSR 就可揭示出兩者之間的差異;劉麗等[98]在龍須草(Eulaliopsis binata)中開(kāi)發(fā)了SSR引物,并證明開(kāi)發(fā)的SSR引物可揭示龍須草生殖方式的復(fù)雜性,適用于龍須草遺傳分析及親緣關(guān)系鑒定。但其中生殖方式的區(qū)分往往是在已知有性與無(wú)融合生殖方式的前提下進(jìn)行,并在此基礎(chǔ)上進(jìn)行mRNA、cDNA差顯分析,不同程度地獲得了一些與無(wú)融合生殖相關(guān)或無(wú)融合生殖特有的片段[44,48,99-103]。例如,利用cDNA-AFLP對(duì)Paspalum simplex無(wú)融合生殖與有性生殖基因型進(jìn)行轉(zhuǎn)錄組比較,發(fā)現(xiàn)了無(wú)融合生殖花發(fā)育特定階段位于控制無(wú)融合生殖位點(diǎn)的擴(kuò)增子[38]。

      6 植物無(wú)融合生殖的研究方法

      實(shí)際上目前有多種方法可以研究植物無(wú)融合生殖,主要的方法有形態(tài)觀察法、顯微觀察法(胚胎學(xué)觀察[104]、胼胝質(zhì)的沉積觀察、染色體數(shù)目觀察)、生化鑒定法(包括化學(xué)成分分析與同功酶分析)、分子生物學(xué)方法(包括分子標(biāo)記及無(wú)融合生殖相關(guān)基因的篩選和鑒定)[42]、去雄套袋法、生長(zhǎng)素測(cè)試法、測(cè)定無(wú)融合生殖植物中有性和無(wú)融合生殖發(fā)生比例的流式細(xì)胞種子篩選技術(shù)(尤其適用于鑒定需要假受精的無(wú)融合生殖種類方面)、外源標(biāo)記基因轉(zhuǎn)入法[105]等。

      形態(tài)學(xué)觀察法中有包括異花授粉植物中產(chǎn)生整齊一致的后代或典型的母本后代、一籽多苗(多胚)現(xiàn)象等在內(nèi)的7種可作為初步識(shí)別植物無(wú)融合生殖的形態(tài)特征[106,107],但其要求親本形態(tài)性狀在某些方面要有顯著差異,且該性狀在雜種一代須表現(xiàn)為顯性,這樣可用的遺傳性狀并不多[42,105],且有時(shí)形態(tài)性狀與無(wú)融合生殖并無(wú)關(guān)系,如苧麻(Boehmeria nivea)的多胚現(xiàn)象[108]。

      流式細(xì)胞儀主要用于無(wú)融合生殖植物中有性和無(wú)融合生殖發(fā)生比例的鑒定[75],可以鑒定體細(xì)胞染色體倍性[57],因?yàn)橛醒芯堪l(fā)現(xiàn),無(wú)融合生殖能力與倍性存在一定的相關(guān)性[16],同時(shí),流式細(xì)胞儀還可以用于無(wú)融合生殖方式的鑒定,如有性生殖的種子胚乳與胚的倍性比為1.5∶1,不需要假受精的無(wú)融合生殖種子胚乳與胚的倍性比為2∶1,需要假受精的無(wú)融合種子胚乳與胚的倍性比為 2.5∶1;如果同時(shí)出現(xiàn)胚乳與胚的倍性比為1.5∶1及2∶1,則既進(jìn)行了有性生殖,又進(jìn)行了不需要假受精的無(wú)融合生殖[109,110]。

      同功酶法主要用一些同功酶來(lái)判斷無(wú)融合生殖個(gè)體其同功酶的一致性/整齊度[111,112]及區(qū)分有性生殖與無(wú)融合生殖,但同工酶分析法要求親本在酶譜上有差異。在植物的群體研究中,僅有10-20 種同工酶表現(xiàn)出位點(diǎn)的多態(tài)性,且目前還沒(méi)有發(fā)現(xiàn)與無(wú)融合生殖緊密連鎖的酶[42]。

      最近,Tucker和Okada等[30,31]使用激光捕獲顯微切割(Laser capture microdissection,LCM)技術(shù)分離出無(wú)融合生殖Hieracium 屬胚囊形成早期階段的3種細(xì)胞類型(SO細(xì)胞、AI細(xì)胞、早期無(wú)孢子生殖胚囊細(xì)胞),并從這3種細(xì)胞類型中分別提取RNA來(lái)研究無(wú)孢子生殖胚囊形成過(guò)程中的基因表達(dá)調(diào)控。研究發(fā)現(xiàn),AI細(xì)胞和EAE的轉(zhuǎn)錄組十分相似,證明AI細(xì)胞在進(jìn)行有絲分裂之前就已經(jīng)轉(zhuǎn)化成了一個(gè)無(wú)孢子生殖胚囊[31]。

      綜上所述,形成無(wú)融合生殖的途徑有多種,機(jī)理也很復(fù)雜。在對(duì)Hieracium屬植物無(wú)融合生殖研究中發(fā)現(xiàn)了3條偏離有性生殖而發(fā)生的無(wú)融合生殖途徑;在Hieracium caespitosum中有2個(gè)DNA區(qū)域共同控制2種無(wú)融合生殖途徑[21]。因此,對(duì)于無(wú)融合生殖的鑒定與研究,單從一個(gè)方面的研究來(lái)下結(jié)論可能會(huì)有較大的差別,所以要結(jié)合胚胎學(xué)、細(xì)胞學(xué)、遺傳學(xué)、分子生物學(xué)等多種方法對(duì)無(wú)融合生殖進(jìn)行客觀的分析。

      [1]Nogler GA. Genetics of apospory in apomictic Ranunculus auricomus. V:Conclusion[J]. Botanica Helvetica, 1984, 94(2):411-422.

      [2]Koltunow AM, Grossniklaus U. Apomixis:a developmental perspective[J]. Annual Review of Plant Biology, 2003, 54(1):547-574.

      [3]Biknell RA, Koltunow AM. Understanding apomixis:recent advances and remaining conundrums[J]. The Plant Cell Online,2004, 16(suppl 1):S228-S245.

      [4]Tucker MR, Koltunow AM. Sexual and asexual(apomictic)seed development in flowering plants:molecular, morphological and evolutionary relationships[J]. Functional Plant Biology, 2009, 36(6):490-504.

      [5]Koltunow AM, Johnson SD, Okada T. Apomixis in hawkweed:Mendel’s experimental nemesis[J]. Journal of ExperimentalBotany, 2011, 62(5):1699-1707.

      [6]陳庭木, 谷長(zhǎng)先, 遲銘. 水稻無(wú)融合生殖與早代穩(wěn)定遺傳判定方法研究[J]. 種子, 2010, 11:95-96.

      [7]Carman JG. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony[J]. Biological Journal of the Linnean Society, 1997,61(1):51-94.

      [8]Pupilli F, Labombarda P, Caceres ME, et al. The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12[J]. Molecular Breeding, 2001, 8(1):53-61.

      [9] Pupilli F, Martinez EJ, Busti A, et al. Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp[J]. Molecular Genetics and Genomics, 2004, 270(6):539-548.

      [10] Asker S, Jerling L. Apomixis in plants[M]. Boca Raton:CRC press, 1992.

      [11] Hofmann NR. Apomixis and gene expression in Boechera[J]. The Plant Cell Online, 2010, 22(3):539-539.

      [12] 毛寶琴, 李純凡, 羅世科, 等. 蘋果屬植物雜交親和性研究[J].西南農(nóng)業(yè)大學(xué)學(xué)報(bào), 1996, 18(4):311-315.

      [13]Cosendai AC, H?randl E. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi(Ranunculaceae)[J]. Annals of Botany, 2010, 105(3):457-470.

      [14] Cosendai AC, Rodewald J, H?randl E. Origin and distribution of autopolyploids via apomixis in the alpine species Ranunculus kuepferi(Ranunculaceae)[J]. Taxon, 2011, 60(2):355-364.

      [15]Lovell JT, Aliyu OM, Mau M, et al. On the origin and evolution of apomixis in Boechera[J]. Plant Reproduction, 2013, 26(4):309-315.

      [16]H?randl E, Temsch EM. Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex[J]. Annals of Botany, 2009, 104(1):81-89.

      [17]Chemisquy MA, Giussani LM, Scataglini MA, et al. Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum(Poaceae):a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus[J]. Annals of botany, 2010, 106(1):107-130.

      [18] Singh M, Goel S, Meeley RB, et al. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein[J]. The Plant Cell Online, 2011, 23(2):443-458.

      [19] Mallory A, Vaucheret H. Form, function, and regulation of ARGONAUTE proteins[J]. The Plant Cell Online, 2010, 22(12):3879-3889.

      [20]Eckardt NA. A role for ARGONAUTE in apomixis[J]. The Plant Cell Online, 2011, 23(2):430.

      [21] Catanach AS, Erasmuson SK, Podivinsky E, et al. Deletion mapping of genetic regions associated with apomixis in Hieracium[J]. Proceedings of the National Academy of Sciences, 2006, 103(49):18650-18655.

      [22] Okada T, Ito K, Johnson SD, et al. Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts[J]. Plant Physiology, 2011, 157(3):1327-1341.

      [23]ArmentA-Medina A, Demesa-Arévalo E, Vielle-Calzada JP. Epigenetic control of cell specification during female gametogenesis[J]. Sexual Plant Reproduction, 2011, 24(2):137-147.

      [24] Bencivenga S, Colombo L, Masiero S. Cross talk between the sporophyte and the megagametophyte during ovule development[J]. Sexual Plant Reproduction, 2011, 24(2):113-121.

      [25] Nonomura KI, Nakano M, Murata K, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Molecular Genetics and Genomics, 2004, 271(2):121-129.

      [26] Nonomura KI, Morohoshi A, Nakano M, et al. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice[J]. The Plant Cell Online, 2007, 19(8):2583-2594.

      [27] Zhang S, Cao J, Kong YM, et al. GO-Bayes:Gene Ontology-based overrepresentation analysis using a Bayesian approach[J]. Bioinformatics, 2010, 26(7):905-911.

      [28]Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, et al. Control of female gamete formation by a small RNA pathway in Arabidopsis[J]. Nature, 2010, 464(7288):628-632.

      [29] Tucker MR, Okada T, Hu Y, et al. Somatic small RNA pathways promote the mitotic events of megagametogenesis during femalereproductive development in Arabidopsis[J]. Development,2012, 139(8):1399-1404.

      [30] Tucker MR, Okada T, Johnson SD, et al. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium[J]. Journal of Experimental Botany, 2012, 63(8):3229-3241.

      [31] Okada T, Hu Y, Tucker MR, et al. Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis[J]. Plant Physiology, 2013,163(1):216-231.

      [32] Nemhauser JL, Mockler TC, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis[J]. PLoS Biology, 2004, 2(9):e258.

      [33] Weijers D, Schlereth A, Ehrismann JS, et al. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis[J]. Developmental Cell, 2006, 10(2):265-270.

      [34] Pagnussat GC, Alandete-Saez M, Bowman JL, et al. Auxindependent patterning and gamete specification in the Arabidopsis female gametophyte[J]. Science, 2009, 324(5935):1684-1689.

      [35] Albertini E, Marconi G, Barcaccia G, et al. Isolation of candidate genes for apomixis in Poa pratensis L.[J]. Plant Molecular Biology, 2004, 56(6):879-894.

      [36] Sharbel TF, Voigt ML, Corral JM, et al. Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex[J]. The Plant Journal, 2009, 58(5):870-882.

      [37] Sharbel TF, Voigt ML, Corral JM, et al. Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns[J]. The Plant Cell Online, 2010, 22(3):655-671.

      [38] Polegri L, Calderini O, Arcioni S, et al. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers[J]. Journal of Experimental Botany, 2010, 61(6):1869-1883.

      [39] Garcia-Aguilar M, Michaud C, Leblanc O, et al. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes[J]. The Plant Cell Online, 2010, 22(10):3249-3267.

      [40]賀鳳麗, 馬三梅. 植物無(wú)融合生殖研究新進(jìn)展[J]. 生命科學(xué),2009(1):139-144.

      [41]吳曼, 王蓓, 董彥, 等. 蘋果屬植物無(wú)融合生殖研究進(jìn)展[J].山東農(nóng)業(yè)科學(xué), 2010(7):24-28.

      [42]馬三梅, 王永飛. 單子葉植物無(wú)融合生殖的研究進(jìn)展[J]. 植物學(xué)通報(bào), 2002, 19(5):530-537.

      [43]Barcaccia G, Albertini E. Apomixis in plant reproduction:a novel perspective on an old dilemma[J]. Plant Reproduction, 2013, 26(3):159-179.

      [44] Roche D, Cong P, Chen Z, et al. An apospory-specific genomic region is conserved between Buffelgrass(Cenchrus ciliaris L. )and Pennisetum squamulatum Fresen[J]. The Plant Journal,1999, 19(2):203-208.

      [45] Conner JA, Goel S, Gunawan G, et al. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus[J]. Plant Physiology, 2008,147(3):1396-1411.

      [46] Akiyama Y, Conner JA, Goel S, et al. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis[J]. Plant Physiology, 2004, 134(4):1733-1741.

      [47] Roche D, Chen Z, Hanna WW, et al. Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet(Pennisetum glaucum)and an apomictic F1(P. glaucum× P. squamulatum)[J]. Sexual Plant Reproduction, 2001, 13(4):217-223.

      [48] Ozias-Akins P, Roche D, Hanna WW. Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes[J]. Proceedings of the National Academy of Sciences, 1998, 95(9):5127-5132.

      [49] Labombarda P, Busti A, Caceres ME, et al. An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex[J]. Genome,2002, 45(3):513-519.

      [50] Grossniklaus U, Nogler GA, Vandijk PJ. How to avoid sex the genetic control of gametophytic apomixis[J]. The Plant Cell Online, 2001, 13(7):1491-1498.

      [51] Roche D, Hanna WW, Ozias-Akins P. Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants?[J].Sexual Plant Reproduction, 2001, 13(6):343-349.

      [52]Cáceres ME, Matzk F, Busti A, et al. Apomixis and sexuality in Paspalum simplex:characterization of the mode of reproduction in segregating progenies by different methods[J]. Sexual Plant Reproduction, 2001, 14(4):201-206.

      [53] Deleón G. Mapping diplosporous apomixis in tetraploid Tripsacum:one gene or several genes?[J]. Heredity, 1998, 80(1):33-39.

      [54] Bicknell RA, Borst NK, Koltunow AM. Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms[J]. Heredity, 2000, 84(2):228-237.

      [55]郭德棟, 康傳紅, 劉麗萍, 等. 借助于單體附加系傳遞率分析進(jìn)行無(wú)融合生殖基因定位[J]. 云南大學(xué)學(xué)報(bào):自然科學(xué)版,1999(3):179-180.

      [56] Matzk F, Prodanovic S, B?umlein H, et al. The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance[J]. The Plant Cell Online, 2005, 17(1):13-24.

      [57]楊鋒, 伊凱, 吳雅琴, 等. 平邑甜茶無(wú)融合生殖基因型分析及雌配子發(fā)育模式研究[J]. 果樹(shù)學(xué)報(bào), 2012, 29(4):536-543.

      [58]Spillane C, Steimer A, Grossniklaus U. Apomixis in agriculture:the quest for clonal seeds[J]. Sexual Plant Reproduction, 2001,14(4):179-187.

      [59] Vinkenoog R, Scott RJ. Autonomous endosperm development in flowering plants:how to overcome the imprinting problem?[J]. Sexual Plant Reproduction, 2001, 14(4):189-194.

      [60] Vinkenoog R, Spielman M, Adams S, et al. Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants[J]. The Plant Cell Online, 2000, 12(11):2271-2282.

      [61] Ravi M, Chan SWL. Haploid plants produced by centromeremediated genome elimination[J]. Nature, 2010, 464(7288):615-618.

      [62]Eckardt NA. Patterns of gene expression in apomixis[J]. The Plant Cell Online, 2003, 15(7):1499-1501.

      [63] Koltunow AM, Johnson SD, Lynch M, et al. Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency[J]. Planta, 2001, 214(2):196-205.

      [64]Boutilier K, OffringAR, Sharma VK, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. The Plant Cell Online, 2002, 14(8):1737-1749.

      [65] Tucker MR, Araujo ACG, Paech NA, et al. Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways[J]. The Plant Cell Online,2003, 15(7):1524-1537.

      [66]Hecht V, Vielle-Calzada JP, Hartog MV, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture[J]. Plant Physiology, 2001,127(3):803-816.

      [67] Luo M, Bilodeau P, Dennis ES, et al. Expression and parent-oforigin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds[J]. Proceedings of the National Academy of Sciences, 2000, 97(19):10637-10642.

      [68] Ohad N, Margossian L, Hsu YC, et al. A mutation that allows endosperm development without fertilization[J]. Proceedings of the National Academy of Sciences, 1996, 93(11):5319-5324.

      [69]胡龍興, 王兆龍. 植物無(wú)融合生殖相關(guān)基因研究進(jìn)展[J]. 遺傳, 2008, 30(2):155-163.

      [70]馬三梅, 王永飛. 植物無(wú)融合生殖相關(guān)基因的研究進(jìn)展[J].種子, 2006, 24(10):42-43.

      [71]甄睿, 張麗杰, 梁敏, 等. SERK 基因片段在平邑甜茶和四倍性后代花期前后的表達(dá)特性研究[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2011,27(15):239-244.

      [72]Marimuthu MPA, Jolivet S, Ravi M, et al. Synthetic clonal reproduction through seeds[J]. Science, 2011, 331(6019):876.

      [73] Kantama L, Lambert Y, Hu H, et al. Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population[J]. Sexual Plant Reproduction,2006, 19(2):73-82.

      [74] Ozias-Akins P, van Dijk PJ. Mendelian genetics of apomixis in plants[J]. Annu Rev Genet, 2007, 41:509-537.

      [75] Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989,121(1):185-199.

      [76] Lathrop GM, Lalouel JM, Julier C, et al. Strategies for multilocus linkage analysis in humans[J]. Proceedings of the National Academy of Sciences, 1984, 81(11):3443-3446.

      [77]Lu Q, Cui Y, Wu R. A multilocus likelihood approach to joint modeling of linkage, parental diplotype and gene order in a full-sib family[J]. BMC Genetics, 2004, 5(1):20.

      [78] WU R, Casella G, Ma CX. Linkage analysis and map construction[M]. Statistical Genetics of Quantitative Traits:Linkage, Maps, and QTL, 2007:43-75.

      [79] Noyes RD, Rieseberg LH. Two independent loci control agamospermy(apomixis)in the triploid flowering plant Erigeron annuus[J]. Genetics, 2000, 155(1):379-390.

      [80] Zhang B, Wang ZJ, Jin SH, et, al A pattern of unique embryogenesis occurring via apomixis in hickory(Carya cathayensis)[J]. Biologia Plantarum, 2012, 56:620-627.

      [81] Hou W, Lin S, Li Y, et al. A model for linkage analysis with apomixis[J]. Theoretical and Applied Genetics, 2011, 123(5):681-691.

      [82]Zeng Y, Hou W, Song S, et al. A statistical design for testing apomictic diversification through linkage analysis[J]. Briefings in Bioinformatics, 2014, 15(2):306-318.

      [83]Yin D, Zeng YR, Jiang L, et al. A reciprocal cross design to map the genetic architecture of complex traits in apomictic plants[J]. New Phytologist, 2015, 205(3):1360-1367.

      [84]宋雙. 基于顯性標(biāo)記的無(wú)融合生殖物種山核桃的連鎖分析與及苗期生長(zhǎng)性狀相關(guān)的QTL定位[D]. 臨安:浙江農(nóng)林大學(xué),2012.

      [85]Ozias-Akins P, Lubbers EL, Hanna WW, et al. Transmission of the apomictic mode of reproduction in Pennisetum:co-inheritance of the trait and molecular markers[J]. Theoretical and Applied Genetics, 1993, 85(5):632-638.

      [86]Ebina M, Nakagawa H. RAPD analysis of apomictic and sexual lines in guineagrass(Panicum maximum Jacq. )[J]. Journal of Japanese Society of Grassland Science(Japan), 2001, 47(3):251- 255.

      [87]Ortiz JPA, Pessino SC, Leblanc O, et al. Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass[J]. Theoretical and Applied Genetics, 1997, 95(5-6):850-856.

      [88] Albertini E, Barcaccia G, Porceddu A, et al. Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties[J]. Molecular Breeding, 2001, 7(4):293-300.

      [89] Amsellem L, Noyer JL, Hossaert-Mckey M. Evidence for a switch in the reproductive biology of Rubus alceifolius(Rosaceae)towards apomixis, between its native range and its area of introduction[J]. American Journal of Botany, 2001, 88(12):2243-2251.

      [90] Ruiz C, Breto MP, Asins MJ. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers[J]. Euphytica, 2000, 112(1):89-94.

      [91]Barcaccia G, Mazzucato A, Belardinelli A, et al. Inheritance of parental genomes in progenies of Poa pratensis L. from sexual and apomictic genotypes as assessed by RAPD markers and flow cytometry[J]. Theoretical and Applied Genetics, 1997, 95(4):516-524.

      [92]康傳紅, 韓曉云. 利用 RAPD 標(biāo)記鑒定甜菜無(wú)融合生殖的同一性[J]. 生物技術(shù), 2002, 12(4):9-11.

      [93]栗茂騰. 小麥和無(wú)融合生殖披堿草雜交后代(BC2F2)的無(wú)融合生殖及胚胎發(fā)育過(guò)程中的異?,F(xiàn)象研究[J]. 植物學(xué)通報(bào),2002, 19(2):201-207.

      [94]Leblanc O, Grimanelli D, Gonzalez-De-Leon D, et al. Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers[J]. Theoretical and Applied Genetics, 1995, 90(7-8):1198-1203.

      [95]Grouh MSH, Vahdati K, Lotfi M, et al. Production of haploids in persian walnut through parthenogenesis induced by gammairradiated pollen[J]. Journal of the American Society for Horticultural Science, 2011, 136(3):198-204.

      [96]王國(guó)安, 虎海防, 張強(qiáng). 利用孤雌生殖對(duì)核桃進(jìn)行遺傳純化初探[J]. 經(jīng)濟(jì)林研究, 2009, 27(2):88-92.

      [97]Albertini E, Barcaccia G, Veronesi F, et al. Parthenogenesis induction in diplosporic tetraploidized alfalfa. In:Lucerne and medics for the XXI Century[C]. Proceedings XIII Eucarpia Medicago spp. Group Meeting, Perugia, Italy, Universita di Perugia,2000:68-74.

      [98]劉麗, 張金智, 梅麗, 等. 兼性無(wú)融合生殖龍須草SSR引物開(kāi)發(fā)及雜交后代的檢測(cè)[J]. 西北植物學(xué)報(bào), 2008, 28(10):1947-1953.

      [99]Vielle-Calzada JP, Nuccio ML, Budiman MA, et al. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare(L. )Link[J]. Plant Molecular Biology, 1996, 32(6):1085-1092.

      [100] 于冰, 張紹軍, 李海英, 等. 甜菜無(wú)融合生殖系花期表達(dá)基因的差異分析[J]. 中國(guó)糖料, 2003(1):14-17.

      [101] Chen L, Miyazaki C, Kojimai A, et al. Isolation and characterization of a gene expressed during early embryo sac development in apomictic guinea grass(Panicum maximum)[J]. Journal of Plant Physiology, 1999, 154(1):55-62.

      [102] Pessino SC, Espinoza F, Martinez EJ, et al. Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum[J]. Hereditas, 2001, 134(1):35-42.

      [103] Pessino SC, Ortiz JPA, Leblanc O, et al. Identification of a maize linkage group related to apomixis in Brachiaria[J]. Theoretical and Applied Genetics, 1997, 94(3-4):439-444.

      [104] 張波, 吳志剛, 劉文毅, 等. 蒲公英無(wú)融合生殖特性初探[J].沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 42(4):475-478.

      [105] 郝建華, 沈宗根. 植物無(wú)融合生殖的篩選和鑒定研究進(jìn)展[J]. 西北植物學(xué)報(bào), 2009, 29(10):2128-2136.

      [106] Hanna WW. Use of apomixis in cultivar development[J]. Advances in Agronomy, 1995, 59:333-350.

      [107] 高建偉, 李忠德, 孫其信, 等. 植物無(wú)融合生殖研究進(jìn)展[J].生物工程進(jìn)展, 2000, 20(5):43-47.

      [108] 溫嵐, 喻春明, 王延周, 等. 苧麻多胚苗遺傳多樣性的 SRAP標(biāo)記分析[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版, 2011, 37(3):243-247.

      [109]Matzk F, Meister A, Schubert I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots[J]. The Plant Journal, 2000, 21(1):97-108.

      [110] Matzk F, Meister A, Brutovska R, et al. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis[J]. The Plant Journal, 2001, 26(3):275-282.

      [111] 劉捍中, 蒲富慎, 任慶棉, 等. 無(wú)融合生殖蘋果屬植物的某些特性[J]. 園藝學(xué)報(bào), 1989, 16(1):1-4.

      [112] Elisiario PJ, Santos GG, Guerreiro AR, et al. Isozyme analysis revealed that the Portuguese mandarin’Carvalhais’ originated as a single clone[J]. Scientia Horticulturae, 1999, 82(1):145-152.

      (責(zé)任編輯 狄艷紅)

      Research Progress on Apomixis in Plants

      Jia Ning Tang Yanyao Zeng Yanru Zhao Guomiao Xu Ya’nan
      (The Nurturing Station for the State Key Laboratory of Subtropical Silviculture,Zhejiang A & F University,Lin’an 311300)

      Apomixis is an asexual propagation through seeds in which embryo is formed without the nuclear fusion of male and female gametes. Since some resultant seeds of apomixis are clones of their maternal parent, they are identical to their maternal parent in genotype. Therefore, apomixis could be used in the fixation of heterosis. Apomixes has abundant potential application values, however, the mechanism for apomictic formation is very complicated, which was represented by multi-forms of apomixis that are controlled by varied pathways, the complicated genetic mechanism that has not been determined and finalized, and diverse methods of studying it. In recent years, apomixis has been studied in terms of linkage analysis. This paper outlines research progress on apomixis, aiming at providing

      for in-depth study.

      apomixis;genetic control;epigenetics

      10.13560/j.cnki.biotech.bull.1985.2015.12.003

      2015-01-25

      國(guó)家自然科學(xué)基金資助項(xiàng)目(31370678)

      賈寧,男,碩士研究生,研究方向:林木重要經(jīng)濟(jì)性狀的遺傳規(guī)律與種質(zhì)創(chuàng)新;E-mail:981183096@qq.com

      曾燕如,博士,教授,研究方向:林木重要經(jīng)濟(jì)性狀的遺傳規(guī)律與種質(zhì)創(chuàng)新;E-mail:yrzeng@zafu.edu.cn

      猜你喜歡
      生殖遺傳位點(diǎn)
      非遺傳承
      鎳基單晶高溫合金多組元置換的第一性原理研究
      上海金屬(2021年6期)2021-12-02 10:47:20
      CLOCK基因rs4580704多態(tài)性位點(diǎn)與2型糖尿病和睡眠質(zhì)量的相關(guān)性
      愿人人享有生殖健康
      生殖健康的春天來(lái)到了
      還有什么會(huì)遺傳?
      還有什么會(huì)遺傳
      還有什么會(huì)遺傳?
      二項(xiàng)式通項(xiàng)公式在遺傳學(xué)計(jì)算中的運(yùn)用*
      讓生殖健康咨詢師走近你我身邊
      邢台市| 扶沟县| 宣恩县| 南汇区| 平泉县| 莱芜市| 安新县| 昭觉县| 秦皇岛市| 延边| 德江县| 延川县| 内丘县| 肇源县| 石嘴山市| 嘉定区| 曲松县| 宽甸| 锡林浩特市| 松溪县| 遵义市| 察雅县| 莱芜市| 苏尼特右旗| 宣武区| 伊宁市| 上思县| 拉萨市| 罗田县| 涟源市| 遂宁市| 新乡县| 利津县| 蕉岭县| 衡山县| 通山县| 富顺县| 崇信县| 盈江县| 湖州市| 阿拉善盟|