肖詠梅,陳奎君,袁金偉,楊亮茹,毛 璞,屈凌波
(河南工業(yè)大學(xué) 化學(xué)化工學(xué)院,河南 鄭州 450001)
近幾年來,天然產(chǎn)物因其天然、低毒、具有生理活性等特點(diǎn),作為抗氧化劑、食品添加劑應(yīng)用于食品行業(yè),但大多數(shù)天然產(chǎn)物由于結(jié)構(gòu)特性導(dǎo)致其脂溶性或水溶性較差,并不能滿足生理藥理的需求,因此對(duì)其進(jìn)行結(jié)構(gòu)修飾成為當(dāng)前研究的熱點(diǎn)[1].天然產(chǎn)物結(jié)構(gòu)修飾可通過化學(xué)催化或酶催化完成.其中,酶作為催化劑,由于其區(qū)域選擇性、立體選擇性較高,相對(duì)于化學(xué)催化,可得到選擇性較高的產(chǎn)物[2].
離子液體是一種環(huán)境友好的綠色溶劑,同有機(jī)溶劑相比,具有低蒸氣壓、廣泛的液態(tài)范圍、高離子電導(dǎo)性、高熱穩(wěn)定性和可溶解大多數(shù)化合物等良好的性質(zhì),被廣泛應(yīng)用于有機(jī)合成、分離和電化學(xué)等領(lǐng)域.以離子液體作為反應(yīng)介質(zhì),用于酶催化反應(yīng),可通過調(diào)整離子液體中陰陽離子的組合以影響酶的活性、穩(wěn)定性和選擇性[3].此外,離子液體還具有可設(shè)計(jì)性,對(duì)其結(jié)構(gòu)進(jìn)行設(shè)計(jì),可構(gòu)建出適合酶促反應(yīng)的離子液體[4].筆者就離子液體中酶催化天然產(chǎn)物結(jié)構(gòu)修飾進(jìn)行如下綜述.
黃酮是一種多酚類化合物,廣泛存在于水果、茶葉、蔬菜和紅酒等飲食中,黃酮類化合物具有抗氧化、抗增殖、抗癌、抗炎等多種生物活性[5].但由于其剛性平面結(jié)構(gòu),分子間排列緊密,使大多數(shù)黃酮類天然產(chǎn)物水溶性或脂溶性較差,導(dǎo)致其生理活性利用率不高,限制了黃酮類天然產(chǎn)物的開發(fā)和應(yīng)用[6].因此,以黃酮類天然產(chǎn)物為先導(dǎo)化合物,對(duì)其進(jìn)行結(jié)構(gòu)修飾和改性引起了人們極大的興趣.目前,通過脂肪酶催化酯化/酯交換反應(yīng)對(duì)黃酮類化合物進(jìn)行修飾一般在有機(jī)溶劑中進(jìn)行.Ma,Salem,Bhullar 等[7-9]在丙酮和叔戊醇中,以Novozym 435 催化異槲皮苷與脂肪酸的酯化反應(yīng),選擇性合成了異槲皮苷-6″-O-酯基衍生物.酯化產(chǎn)物脂溶性、抗氧化性、抗增殖活性都有了很大提高.課題組以吡啶為溶劑,酶催化曲克蘆丁與不同鏈長(zhǎng)的二酸二乙烯酯反應(yīng),合成了一系列曲克蘆丁乙烯酯[10],并在此基礎(chǔ)上,酶催化曲克蘆丁乙烯酯與胺進(jìn)行?;磻?yīng),選擇性地合成了曲克蘆丁含氮衍生物[11-12].黃酮酯的生物合成中,黃酮的溶解性是影響反應(yīng)的主要因素,在這些反應(yīng)中使用離子液體作為反應(yīng)介質(zhì),可很大地提高黃酮的溶解度和反應(yīng)速率.
Katsoura 等[13]研究了離子液體中酶催化蘆丁和柚皮苷酰化反應(yīng)(圖1、圖2),研究結(jié)果表明,離子液體的使用,可大大提高反應(yīng)轉(zhuǎn)化率和酶的區(qū)域選擇性.在離子液體[BMIM][BF4]中,酰化反應(yīng)速率是有機(jī)溶劑中的4 倍,單?;制ぼ债a(chǎn)率是叔丁醇中的1.5 倍;其生成的蘆丁-4″′-O-油酸酯的抗氧化性有了很大提高.
圖1 離子液體中酶催化柚皮苷?;磻?yīng)Fig.1 Enzymatic acylation of naringin in ionic liquids
圖2 離子液體中酶催化蘆丁?;磻?yīng)Fig.2 Enzymatic acylation of rutin in ionic liquids
2007 年Katsoura 等[14]在以 [BMIM][BF4]、[BMIM][PF6]為溶劑,CAL-B 催化酚糖甙和黃酮糖甙(水楊苷、水楊醛葡糖苷、馬栗樹皮甙和柚皮苷)反應(yīng),選擇性地合成了水楊苷-6″-O-丁酸酯、水楊醛葡糖苷-6″-O-丁酸酯、馬栗樹皮甙-6″-O-丁酸酯和柚皮苷-6″-O-丁酸酯(圖3).研究發(fā)現(xiàn),對(duì)所有糖甙溶解性最好的[BMIM][BF4]為溶劑時(shí),反應(yīng)轉(zhuǎn)化率最高.同有機(jī)溶劑中反應(yīng)相比,離子液體中單酰化衍生物產(chǎn)率有了很大提高.
Theodosion 等[15]分別在有機(jī)溶劑和離子液體體系中以CAL-B 為催化劑,催化水飛薊賓與脂肪酸酯的?;磻?yīng)(圖4),?;磻?yīng)選擇性發(fā)生在伯羥基位置.以離子液體為溶劑時(shí),陰離子為BF4-時(shí)轉(zhuǎn)化率高于陰離子為PF6-的反應(yīng)體系.在陰離子為BF4-的反應(yīng)體系中,陽離子烷基鏈越長(zhǎng)反應(yīng)產(chǎn)率越高,以[OMIM][BF4]為反應(yīng)介質(zhì)產(chǎn)率最高可達(dá)到75.8%.合成的水飛薊賓衍生物抗增殖活性均高于水飛薊賓,但?;滈L(zhǎng)對(duì)其抗增殖活性影響不大.
圖3 離子液體中酶催化酚糖甙和黃酮糖甙的?;磻?yīng)Fig.3 Enzymatic acylation of phenolic and flavonoid glucosides in ionic liquids
圖4 離子液體中酶催化水飛薊賓的?;磻?yīng)Fig.4 Enzymatic acylation of silibinin in ionic liquids
Lue 等[16]以14 種室溫離子液體為溶劑、蘆丁和馬栗樹皮甙與脂肪酸為原料、在Novozym 435 的催化作用下,選擇性合成了蘆丁-4″-O-酯基和馬栗樹皮甙-6″-O-酯基衍生物(圖5、圖6),并利用高效液相色譜法對(duì)其進(jìn)行定量分析[17].在酶催化馬栗樹皮甙的?;磻?yīng)中,以陰離子為BF4-、PF6-、Tf2N-的離子液體作為反應(yīng)溶劑,均可發(fā)生反應(yīng);而當(dāng)離子液體的陰離子為Cl-、TFA-、(CN)2N-時(shí)不發(fā)生反應(yīng),這可能是由于離子液體與蛋白質(zhì)相互作用影響了酶活性[18-21].以[TOMA][Tf2N]為溶劑,反應(yīng)144 h,馬栗樹皮甙-6″-O-棕櫚酸酯產(chǎn)率可達(dá)到98%.而蘆丁由于只含有仲羥基,反應(yīng)活性比馬栗樹皮甙低,以[OMIM][BF4]為溶劑,反應(yīng)156 h,蘆丁-4″-O-棕櫚酸酯產(chǎn)率僅為42.8%.
圖5 離子液體中酶催化馬栗樹皮甙與脂肪酸的酯化反應(yīng)Fig.5 Enzymatic esterification of esculin with fatty acid in ionic liquids
圖6 離子液體中酶催化蘆丁與脂肪酸的酯化反應(yīng)Fig.6 Enzymatic esterification of rutin with fatty acid in ionic liquids
許多天然產(chǎn)物在離子液體中的溶解度比在有機(jī)溶劑中大得多,但是一些離子液體的陰離子部分會(huì)對(duì)酶的活性造成一定影響,致使酶催化反應(yīng)的選擇性或轉(zhuǎn)化率降低.因此,一些研究小組使用ILs/有機(jī)溶劑反應(yīng)體系進(jìn)行酶催化黃酮類化合物的生物轉(zhuǎn)化,期望能夠保持酶活性和提高反應(yīng)選擇性和產(chǎn)率.Hu 等[22]研究了離子液體/丙酮作為混合溶劑,Novozym 435 催化馬栗樹皮甙與軟脂酸的酯化反應(yīng)(圖7).同在單一離子液體中的反應(yīng)相比,以[TOMA][Tf2N]/丙酮作為混合溶劑,馬栗樹皮甙的溶解度、酶活性和反應(yīng)速率都有了很大提高,以[TOMA][Tf2N]/丙酮(25/75,V/V)作溶劑時(shí),馬栗樹皮甙的轉(zhuǎn)化率可達(dá)到78.02%.
圖7 離子液體/丙酮中酶催化馬栗樹皮甙與軟脂酸的酯化反應(yīng)Fig.7 Enzymatic esterification of esculin with palmitic acid in ionic liquids/acetone media
Araújo 等[23]以CAL-B 為催化劑,在[BMIM][BF4]/丙酮(8/2,V/V)中酶催化橙皮苷與癸酸進(jìn)行酯化反應(yīng)(圖8),在脂肪酶CAL-B 的催化作用下反應(yīng)選擇性發(fā)生在糖苷的C-6″′羥基位.反應(yīng)體系中水含量的增加導(dǎo)致反應(yīng)產(chǎn)率的降低,水含量由小于200×10-6增加到500×10-6時(shí),反應(yīng)產(chǎn)率由39.7%降低到14%.
圖8 離子液體/丙酮中酶催化橙皮苷與脂肪酸的酯化反應(yīng)Fig.8 Enzymatic esterification of hesperidin with fatty acid in ionic liquids/acetone media
Wang 等[24-25]研究了 [BMIM][BF4]/甘氨酸-NaOH 緩沖液中酶催化蘆丁向異槲皮苷的轉(zhuǎn)化(圖9).在[BMIM][BF4]∶甘氨酸-NaOH 緩沖液(pH=9)為9∶1 的反應(yīng)體系中,反應(yīng)3 h 后,蘆丁轉(zhuǎn)化率和異槲皮苷產(chǎn)率可分別達(dá)到99.5%和93.9%.同在有機(jī)溶劑中相比反應(yīng)時(shí)間縮短了0.33 倍,而蘆丁的轉(zhuǎn)化率和異槲皮苷的產(chǎn)率分別提高了1.67 倍和2.33 倍.
圖9 含離子液體的兩相體系中酶催化蘆丁水解合成異槲皮苷Fig.9 Enzymatic hydrolysis rutin to isoquercitrin in bi-phase system containing ionic liquid
咖啡酸是一種在植物界中天然存在的酚酸,具有抗菌、抗癌、抗氧化等多種生物活性.咖啡酸的脂溶性對(duì)其穿過細(xì)胞膜到達(dá)靶體起著至關(guān)重要的作用,但咖啡酸的脂溶性較差,因此近年來合成了很多具有良好脂溶性的咖啡酸酯[26].Kishimoto等[27]在水/乙醇體系中,以綠原酸水解酶催化5-綠原酸與2-苯乙醇的酯交換反應(yīng),合成咖啡酸苯乙酯類似物,最大產(chǎn)率僅為50%.Pang 等[28]以Novozym 435 催化咖啡酸與1-丙醇的酯化反應(yīng),咖啡酸丙酯的最大產(chǎn)率僅為41%.在常規(guī)溶劑中,酶催化合成咖啡酸酯產(chǎn)率通常很低.為了提高咖啡酸酯產(chǎn)率,Ha 等[29]研究了離子液體對(duì)酶催化咖啡酸苯乙酯合成的影響,研究表明,在疏水性離子液體中的反應(yīng)產(chǎn)率明顯高于在親水性離子液體中的產(chǎn)率.在所使用的9 種離子液體中,[EMIM][Tf2N]的反應(yīng)轉(zhuǎn)化率最高,可達(dá)到92%.Wang 等[30]在酶催化咖啡酸苯乙酯的合成反應(yīng)中(圖10),研究了16 種離子液體對(duì)咖啡酸轉(zhuǎn)化率、咖啡酸苯乙酯產(chǎn)率和反應(yīng)選擇性的影響,選擇合適的陰離子、陽離子和烷基鏈長(zhǎng)的離子液體作溶劑,可很大提高咖啡酸苯乙酯的產(chǎn)率,最終確定[EMIM][Tf2N]為最佳反應(yīng)溶劑,咖啡酸轉(zhuǎn)化率和咖啡酸苯乙酯產(chǎn)率可分別達(dá)到98.76%,63.75%.
圖10 離子液體酶催化咖啡酸苯乙酯的合成Fig.10 Enzymatic synthesis of caffeic acid phenethyl ester in ionic liquids
Kurata 等[31]以8 種離子液體為溶劑、酶催化咖啡酸甲酯進(jìn)行酯交換反應(yīng),合成咖啡酸苯乙酯類似物(圖11).以[BMIM][Tf2N]為溶劑時(shí)反應(yīng)產(chǎn)率最高,可達(dá)到97.6%.對(duì)合成的咖啡酸苯乙酯類似物進(jìn)行抗增殖活性測(cè)定發(fā)現(xiàn),2-環(huán)己基乙基咖啡酸酯和3-環(huán)己基丙基咖啡酸酯的抗增殖活性與5-氟尿嘧啶相當(dāng).
Pang 等[32]以Novozym 435 為催化劑在離子液體中合成咖啡酸丙酯(圖12).同在其他離子液體中的反應(yīng)相比,以[BMIM][CF3SO3]、[BMIM][Tf2N]和[BMIM][PF6]作為反應(yīng)介質(zhì),咖啡酸丙酯的產(chǎn)率有了很大的提高,最高產(chǎn)率可達(dá)到98.5%.
圖11 離子液體酶催化咖啡酸苯乙酯類似物的合成Fig.11 Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquids
圖12 離子液體中酶催化咖啡酸丙酯的合成Fig.12 Enzymatic synthesis of propyl caffeate in ionic liquids
Kurata 等[33]在離子液體中以咖啡酰奎寧酸為原料、在酶催化作用下合成3-環(huán)己基丙基咖啡酸酯(圖13),考察了 [BMIM][Tf2N]、[BMIM][BF4]、[BMIM][CF3SO3]、[MPPro][Tf2N]、[MPPip][Tf2N]5 種離子液體對(duì)綠原酸水解酶催化5-咖啡??鼘幩崤c甲醇醇解反應(yīng)的影響.在親水性離子液體[BMIM][BF4]、[BMIM][CF3SO3]中幾乎不發(fā)生反應(yīng),在疏水性離子液體[BMIM][Tf2N]、[MPPro][Tf2N]、[MPPip][Tf2N]中均檢測(cè)到反應(yīng)的發(fā)生,其中[BMIM][Tf2N]中反應(yīng)產(chǎn)率最高,可達(dá)到85.3%.
圖13 離子液體中酶催化3-環(huán)己基丙基咖啡酸酯的合成Fig.13 Enzymatic synthesis of 3-cyclohexylpropyl caffeate in ionic liquids
為了提高合成咖啡酸酯過程中底物在離子液體中的溶解度和減少反應(yīng)時(shí)間,Gu 等[34]以DMSO為助溶劑,在離子液體[BMIM][Tf2N]中,酶催化合成咖啡酸苯乙酯.同單一的[BMIM][Tf2N]做溶劑中相比,以2%的DMSO 為助溶劑時(shí),底物溶解度提高了6 倍,反應(yīng)時(shí)間縮短了一半.在80 ℃下反應(yīng)36 h,咖啡酸轉(zhuǎn)化率和咖啡酸苯乙酯產(chǎn)率可分別達(dá)到96.23%和79.53%.
在酶催化咖啡酸酯的研究中,以[BMIM][Tf2N]離子液體作為反應(yīng)介質(zhì),均得到較高的反應(yīng)產(chǎn)率,此離子液體有望替代有機(jī)溶劑應(yīng)用于酶催化咖啡酸酯的合成中.
阿魏酸是一種低毒的酚酸,可以很容易被人體吸收,阿魏酸作為一種抗氧化劑被廣泛應(yīng)用于食品和化妝品行業(yè).據(jù)報(bào)道阿魏酸具有抗氧化、抗菌、抗增殖、抗血栓生成、抗癌等生理活性.在阿魏酸中引入疏水基團(tuán)可有效提高其脂溶性[35].
阿魏酸甘油酯和二阿魏酸甘油酯是親脂性的阿魏酸衍生物.根據(jù)文獻(xiàn)報(bào)道有兩種合成路線,一種是通過阿魏酸和乙醇的酯化反應(yīng)合成阿魏酸乙酯,然后再與植物油進(jìn)行酯交換反應(yīng)得到[36-37];另一種是通過阿魏酸和植物油直接進(jìn)行酯交換反應(yīng)得到[38-39].但是這兩種合成路線都存在反應(yīng)產(chǎn)率低、耗時(shí)長(zhǎng)、需要特殊溶劑等缺點(diǎn).Sun 等[40]以陰離子為BF4-、PF6-、Tf2N-的咪唑類離子液體為反應(yīng)介質(zhì),Novozym 435 催化阿魏酸乙酯與甘油的酯交換反應(yīng)(圖14).以[EMIM][PF6]為溶劑,反應(yīng)10 h 后,阿魏酸的轉(zhuǎn)化率可達(dá)到100%,阿魏酸甘油酯和二阿魏酸甘油酯的產(chǎn)率分別為55%和45%.離子液體中陽離子鏈長(zhǎng)對(duì)反應(yīng)轉(zhuǎn)化率影響不大,而陰離子對(duì)反應(yīng)轉(zhuǎn)化率有著至關(guān)重要的作用,陰離子為PF6-和Tf2N-的疏水性離子液體中,反應(yīng)轉(zhuǎn)化率明顯優(yōu)于極性較大的BF4-類親水性離子液體.在PF6-和Tf2N-類離子液體中,反應(yīng)主要產(chǎn)物為阿魏酸甘油酯和二阿魏酸甘油酯,而在有機(jī)溶劑中主要產(chǎn)物為阿魏酸甘油酯.
圖14 離子液體中酶催化阿魏酸乙酯與甘油的酯交換反應(yīng)Fig.14 Enzymatic transesterification of ethyl ferulate and glycerol in ionic liquids
目前酶催化修飾阿魏酸多通過在有機(jī)溶劑中阿魏酸與短鏈或中鏈的脂肪醇的酯化反應(yīng).Chen等[35]研究了離子液體-異辛烷共溶劑體系中Novozym 435 催化阿魏酸同長(zhǎng)鏈脂肪醇(油醇)的酯化反應(yīng),考察了陰離子為BF4-、PF6-、Tf2N-的咪唑類離子液體對(duì)反應(yīng)的影響,試驗(yàn)結(jié)果顯示在PF6-、Tf2N-類疏水性離子液體中反應(yīng)產(chǎn)率最高.
糖類衍生物在醫(yī)藥、化妝品、洗滌劑、食品行業(yè)具有廣泛的應(yīng)用,這些化合物通常由化學(xué)方法合成.過去20 年許多研究表明,酶作為一種更綠色的催化劑在糖類化合物合成中得到廣泛的應(yīng)用.離子液體作為一種綠色溶劑,近年來人們對(duì)離子液體中酶催化糖類化合物的生物轉(zhuǎn)化進(jìn)行了大量的研究.
2001 年P(guān)ark 等[41]首次報(bào)道了將離子液體成功應(yīng)用于酶催化糖類化合物的合成.在Novozym 435催化D-葡萄糖的乙?;磻?yīng)中(圖15),以純離子液體作溶劑,所有使用的離子液體的反應(yīng)速率和選擇性同在丙酮或四氫呋喃中相比,均有所提高或與之相當(dāng),在[MOEMIM][BF4]中D-葡萄糖的轉(zhuǎn)換率與在四氫呋喃中相當(dāng),可達(dá)到98%,單?;a(chǎn)物產(chǎn)率可達(dá)到93%,但是在四氫呋喃中的單酰化產(chǎn)率僅為53%.
圖15 酶催化區(qū)域選擇性?;?D-葡萄糖Fig.15 Regioselective enzymatic acylation of β-D-glucose
Ganske 等[42]以PEG 修飾脂肪酶CAL-B 以提高酶在離子液體中催化合成葡萄糖酯的催化活性.若在離子液體中加入適量的叔丁醇,酶促反應(yīng)速率明顯提高,且?;磻?yīng)幾乎都發(fā)生在C6-OH 位置.Abdulmalek 等[43]以[BMIM][BF4]為溶劑,Lipozyme RM IM 催化半乳糖油酸酯的合成,以少量DMSO為助溶劑,反應(yīng)2 h 后轉(zhuǎn)換率可達(dá)到87%.
迄今為止,疏水性離子液體和親水性離子液體作為混合溶劑只在脂肪酶催化合成糖酯類化合物中有所應(yīng)用.糖類化合物在親水離子液體中具有較高的溶解性,但酶在疏水性離子液體中更穩(wěn)定.Lee 和Ha 等[44-46]以不同配比的親水性離子液體[BMIM][TFO]和疏水性離子液體[BMIM][Tf2N]、[OMIM][Tf2N]或[BMIM][PF6]作為反應(yīng)溶劑,Novozym 435 催化過飽和的葡萄糖和油酸反應(yīng)合成6-O-油酸-D-葡萄糖,期望能夠在提高糖類化合物的溶劑性的同時(shí)保持酶的穩(wěn)定性.在此酶催化反應(yīng)中,親水性離子液體 [BMIM][TFO]中反應(yīng)產(chǎn)率最高(86%),但酶穩(wěn)定性較差,Novozym 435 重復(fù)使用5次后僅保持36%的初始活性;疏水性離子液體[BMIM][Tf2N]中酶穩(wěn)定性最高,但反應(yīng)轉(zhuǎn)化率低(19%);使用混合離子液體[BMIM][TFO]/[OMIM][Tf2N]作為反應(yīng)介質(zhì),可同時(shí)保持較高的轉(zhuǎn)化率和酶穩(wěn)定性.混合離子液體 [BMIM][TFO]/[OMIM][Tf2N](1/1,V/V)中反應(yīng)轉(zhuǎn)化率可達(dá)69%,且Novozym 435 重復(fù)使用5 次后還可保持85%的初始活性.
蔗糖脂肪酸酯由于其無毒和可被生物降解的性質(zhì),被廣泛應(yīng)用于藥物、食品、化妝品等領(lǐng)域.蔗糖脂肪酸酯可通過化學(xué)催化和酶催化的方法合成.化學(xué)催化的方法反應(yīng)特異性較低,容易產(chǎn)生有害物質(zhì),而酶催化的方法因條件溫和,可減少副反應(yīng)的發(fā)生.常用于酶催化蔗糖脂肪酸酯合成的有機(jī)溶劑有DMSO、DMF、吡啶和叔戊醇等.Ashrafuzzaman 等[47]在DMF 中,固定化酶催化合成6-O-?;崽牵?0 ℃反應(yīng)96 h 后,蔗糖脂肪酸單酯產(chǎn)率可達(dá)到90%以上.Zhong 等[48]以DMSO 為溶劑、固定化酶催化蔗糖與乙酸乙烯酯進(jìn)行酯交換反應(yīng),60℃反應(yīng)16 h 后,蔗糖-6-O-乙酸酯產(chǎn)率可達(dá)到78.68%.離子液體作為一種綠色溶劑被用于蔗糖酯的合成中,例如Liu 等[49]設(shè)計(jì)合成了十幾種離子液體(圖16),并測(cè)定了蔗糖在這些離子液體中的溶解度,發(fā)現(xiàn)糖類化合物在陰離子為(CN)2N-的離子液體中的溶解度最高.60 ℃時(shí),在[BMIM][(CN)2N]中,脂肪酶Novozym 435 可以直接催化蔗糖和十二酸酯化合成蔗糖十二酸酯.
圖16 10 種離子液體的合成路線Fig.16 Synthetic routes of ten ionic liquids
目前,以離子液體作為反應(yīng)介質(zhì)酶促合成糖酯類化合物主要集中在單糖的?;希呛投嗵亲鳛轷;荏w的研究報(bào)道較少,這可能的原因是二糖和多糖在常規(guī)的ILs 中溶解性并不理想.Zhao 等[50]向分子結(jié)構(gòu)中引入乙二醇支鏈,設(shè)計(jì)合成了多種ILs(圖17),并對(duì)其生物相容性和糖類溶解性進(jìn)行測(cè)試,發(fā)現(xiàn)這類離子液體對(duì)纖維素和D-葡萄糖具有很好的溶解性,并且不會(huì)使脂肪酶CAL-B 失活.在這些ILs 中,脂肪酶CAL-B 催化D-葡萄糖和纖維素與甲基丙烯酸甲酯的酯交換反應(yīng),D-葡萄糖的轉(zhuǎn)化率可達(dá)到80%,纖維素的轉(zhuǎn)化率和產(chǎn)率可達(dá)到89%,66%.
圖17 含乙二醇鏈離子液體[Me(OEt)n-Et3N][OAc]與[Me(OEt)n-Et-Im][OAc]的合成Fig.17 Synthesis of ILs containing alkyloxyalkyl-chain [Me(OEt)n-Et3N][OAc]and [Me(OEt)n-Et-Im][OAc]
Chen 等[51]研究了在IL 和IL/t-BuOH 體系中脂肪酶催化魔芋葡甘聚糖與醋酸乙烯酯的?;磻?yīng),與t-BuOH 中得到的結(jié)果相比,在離子液體[CnMIM][BF4](n=2,4,8)和[C4MIM][PF6]中,酰化反應(yīng)表現(xiàn)出更高的取代度和熱穩(wěn)定性,使用t-BuOH作為助溶劑,取代度可進(jìn)一步提高.在所有的溶劑體系(IL,t-BuOH 和IL/t-BuOH)中,?;磻?yīng)只發(fā)生在糖單元的C6-OH 位.在文獻(xiàn)報(bào)道的4 種離子液體中,對(duì)Novozym 435 處理6 h 后,酶可保持80%、82%、86%和79%的初始活性,而在純粹的t-BuOH 中僅保持15%的初始活性.
2010 年Chen 等[52]在有機(jī)溶劑、離子液體和離子液體/有機(jī)溶劑混合體系中,固定化脂肪酶PSLC 催化百合多糖與乙酸乙烯酯的?;磻?yīng),在所用有機(jī)溶劑中2-甲基四氫呋喃是最佳的反應(yīng)溶劑.離子液體[C4MIM][BF4]作反應(yīng)溶劑時(shí)酶活性得到進(jìn)一步提高.以20%(V/V)2-甲基四氫呋喃/[C4MIM][BF4]作反應(yīng)溶劑時(shí)取代度最高(0.67),這可能是由于2-甲基四氫呋喃的加入,降低了反應(yīng)體系的黏度,使底物和產(chǎn)物可以更容易與酶的活性位點(diǎn)結(jié)合,從而加強(qiáng)了?;磻?yīng)活性.IL 中脂肪酶PSL-C催化百合多糖的酰化反應(yīng),表現(xiàn)出很強(qiáng)的區(qū)域選擇性,?;磻?yīng)僅發(fā)生在C6-OH 位.
L-抗壞血酸(維生素C)是一種天然抗氧化劑,其較高的極性限制了它在化妝品和油脂行業(yè)的應(yīng)用.L-抗壞血酸脂肪酸酯是一種兩親性化合物,也是一種抗誘變劑和抗腫瘤促進(jìn)劑,可以和一些抗氧化物質(zhì)包覆在油脂表層而防止油脂氧化.許多研究小組報(bào)道了有機(jī)溶劑中酶催化抗壞血酸脂肪酸酯的合成.如Yang 等[53]以叔丁醇為溶劑、Novozym 435 催化L-抗壞血酸與不同肉桂酸酯的酯交換反應(yīng),合成了6-O-L-抗壞血酸肉桂酸酯.Lerin 等[54]在不同有機(jī)溶劑中,以CAL-B 催化合成了L-抗壞血酸棕櫚酸酯.以叔丁醇為溶劑時(shí),70 ℃反應(yīng)17 h,L-抗壞血酸棕櫚酸酯產(chǎn)率可達(dá)到67%.
Park 等[55]使用ILs 代替常規(guī)有機(jī)溶劑、優(yōu)化了脂肪酶CAL-B 催化合成L-抗壞血酸脂肪酸酯(圖18),不僅提高了酶的活性和反應(yīng)產(chǎn)率,而且可以避免過量添加酰基供體.在離子液體[sBMIM][BF4]中,使用等量或過量20%的脂肪酸作為酰基供體時(shí),6-O-L-抗壞血酸油酸酯產(chǎn)率為61%,而在有機(jī)溶劑中,使用5~9 倍當(dāng)量的脂肪酸時(shí),6-O-L-抗壞血酸油酸酯反應(yīng)產(chǎn)率僅為40%~47%.
離子液體中的水對(duì)酶的結(jié)構(gòu)和蛋白質(zhì)的功能也起到至關(guān)重要的作用,水的存在直接影響酶的活性和穩(wěn)定性.Adamczak 等[56]利用不同的水和鹽(MgCl、CuSO4、NaI 和Na4P2O7水合物)控制ILs 的水活度,以脂肪酶CAL-B 催化合成抗壞血酸油酸酯.在空氣中放置達(dá)到飽和的 [BMIM][BF4](aw=0.11)中,抗壞血酸油酸酯產(chǎn)率為61%;而使用NaI·2H2O/NaI 控制離子液體[BMIM][BF4]的水活度為0.3 時(shí),抗壞血酸油酸酯的產(chǎn)率可達(dá)到72%.
圖18 離子液體中酶催化L-抗壞血酸與油酸或棕櫚酸的酯化反應(yīng)Fig.18 Enzymatic esterification of L-ascorbic acid with palmitic acid or oleic acid in ionic liquids
植物甾醇酯具有良好的酯溶性和降低膽固醇的特性,通過化學(xué)方法合成時(shí),存在能耗高、容易形成副產(chǎn)物3,5-二烯甾體衍生物和產(chǎn)物著色等缺點(diǎn).因此,一些研究小組通過酶催化植物甾醇與脂肪酸的酯化反應(yīng)合成植物甾醇酯[57].Pan 等[58]以固定化脂肪酶催化油酸與植物甾醇的酯化反應(yīng).45℃反應(yīng)24 h,植物甾醇的轉(zhuǎn)化率可達(dá)到93.4%.酶重復(fù)使用13 次后轉(zhuǎn)化率還可保持86.6%.Zheng等[59]在超聲條件下,脂肪酶催化合成植物甾醇酯.超聲有效減少了反應(yīng)時(shí)間,在35 kHz,200 W 超聲條件下反應(yīng)8 h,植物甾醇轉(zhuǎn)化率可達(dá)到85.7%,而振蕩條件下反應(yīng)16 h,轉(zhuǎn)化率僅為76.1%.為尋找可替代有機(jī)溶劑的綠色反應(yīng)體系,Zeng 等[60]以[BMIM][PF6]/H2O 微乳液為反應(yīng)介質(zhì),脂肪酶CRL催化植物甾醇與脂肪酸的酯化反應(yīng),反應(yīng)48 h 后,植物甾醇的轉(zhuǎn)化率可達(dá)到95.1%.用正己烷對(duì)產(chǎn)物植物甾醇油酸酯進(jìn)行提取后,[BMIM][PF6]/H2O微乳液和酶可重復(fù)使用,使用7 次之后,植物甾醇的轉(zhuǎn)化率還可達(dá)到82.5%.
離子液體作為反應(yīng)介質(zhì),為酶催化天然產(chǎn)物改性提供了一種新的途徑,特別是近年來功能化離子液體的合成和應(yīng)用研究不斷深入,為解決酶促反應(yīng)的一些不足(酶易失活、反應(yīng)周期長(zhǎng))提供了重要的參考.盡管如此,離子液體中酶催化天然產(chǎn)物結(jié)構(gòu)修飾仍存在一些問題有待解決.首先,現(xiàn)階段離子液體中的酶促反應(yīng),主要通過經(jīng)驗(yàn)選擇幾種離子液體進(jìn)行嘗試,缺乏系統(tǒng)的篩選和設(shè)計(jì)合成;對(duì)離子液體與酶的相互作用機(jī)理也需深入研究.其次,離子液體被稱為綠色溶劑,主要是因?yàn)槠湔魵鈮旱?,不?huì)通過揮發(fā)釋放到大氣中.但一些離子液體的降解周期較長(zhǎng),容易在土壤和水中累積.因此,新型低毒、可生物降解的離子液體的合成及應(yīng)用于天然產(chǎn)物的改性也是進(jìn)一步研究的方向.
[1]郭宗儒.天然產(chǎn)物的結(jié)構(gòu)改造[J].藥學(xué)學(xué)報(bào),2012,47(2):144-157.
[2]Lambusta D,Nicolosi G,Patti A,et al.Application of lipase catalysis in organic solvents for selective protection-deprotection of bioactive compounds[J].Journal of Molecular Catalysis B:Enzymatic,2003,22(5):271-277.
[3]Pereira S C,Bussamara R,Marin G,et al.Enzymatic synthesis of amoxicillin by penicillin G acylase in the presence of ionic liquids[J].Green Chemistry,2012,14(11):3146-3156.
[4]Bi Y H,Duan Z Q,Li X Q,et al.Introducing bio -based ionic liquids as the non -aqueous media for enzymatic synthesis of phosphatidylserine [J].Journal of Agricultural and Food Chemistry,2015,63(5):1558-1561.
[5]Chen A Y,Chen Y C.A review of the dietary flavonoid,kaempferol on human health and cancer chemoprevention[J].Food Chemistry,2013,138(4):2099-2107.
[6]延璽,劉會(huì)青,鄒永青,等.黃酮類化合物生理活性及合成研究進(jìn)展[J].有機(jī)化學(xué),2008,28(9):1534-1544.
[7]Ma X,Yan R,Yu S,et al.Enzymatic acylation of isoorientin and isovitexin from bamboo-leaf extracts with fatty acids and antiradical activity of the acylated derivatives [J].Journal of Agricultural and Food Chemistry,2012,60(43):10844-10849.
[8]Salem J H,Humeau C,Chevalot I,et al.Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters[J].Process Biochemistry,2010,45(3):382-389.
[9]Bhullar K S,Warnakulasuriya S N,Rupasinghe H V.Biocatalytic synthesis,structural elucidation,antioxidant capacity and tyrosinase inhibition activity of long chain fatty acid acylated derivatives of phloridzin and isoquercitrin[J].Bioorganic and Medicinal Chemistry,2013,21(3):684-692.
[10]肖詠梅,栗俊田,毛璞,等.非水介質(zhì)中曲克蘆丁乙烯酯的酶促合成[J].有機(jī)化學(xué),2010,30(4):551-557.
[11]王宏雁,楊亮茹,肖詠梅,等.有機(jī)介質(zhì)中脂肪酶催化N-丙基曲克蘆丁酰胺類似物的合成研究[J].有機(jī)化學(xué),2014,34(2):355-361.
[12]Xiao Y,Zhu X,Yang L,et al.Enzymatic synthesis of novel N -heterocycle -containing troxerutin derivatives[J].Journal of Molecular Catalysis B:Enzymatic,2013,97:297-302.
[13]Katsoura M H,Polydera A C,Tsironis L,et al.Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency [J].Journal of Biotechnology,2006,123(4):491-503.
[14]Katsoura M H,Polydera A C,Katapodis P,et al.Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids[J].Process Biochemistry,2007,42(9):1326-1334.
[15]Theodosiou E,Katsoura M H,Loutrari H,et al.Enzymatic preparation of acylated derivatives of silybin in organic and ionic liquid media and evaluation of their antitumor proliferative activity[J].Biocatalysis and Biotransformation,2009,27(3):161-169.
[16]Lue B M,Guo Z,Xu X.Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids[J].Process Biochemistry,2010,45(8):1375-1382.
[17]Lue B,Guo Z,Xu X.High-performance liquid chromatography analysis methods developed for quantifying enzymatic esterification of flavonoids in ionic liquids[J].Journal of Chromatography A,2008,1198-1199:107-114.
[18]Yang Z,Pan W.Ionic liquids:green solvents for nonaqueous biocatalysis [J].Enzyme and Microbial Technology,2005,37:19-28.
[19]Sheldon R A,Lau R M,Sorgedrager M J,et al.Biocatalysis in ionic liquids [J].Green Chemistry,2002,4:147-151.
[20]Vidya P,Chadha A.The role of different anions in ionic liquids on Pseudomonas cepacia lipase catalyzed transesterification and hydrolysis[J].Journal of Molecular Catalysis B:Enzymatic,2009,57:145-148.
[21]Lau R M,Sorgedrager M J,Carrea G,et al.Dissolution of Candida antarctica lipase B in ionic liquids:effects on structure and activity[J].Green Chemistry,2004,6:483-487.
[22]Hu Y,Guo Z,Lue B M,et al.Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents[J].Journal of Agricultural and Food Chemistry,2009,57(9):3845-3852.
[23]Araújo M E M B,Contesini F J,F(xiàn)ranco Y E M,et al.Optimized enzymatic synthesis of hesperidin fatty acid esters in a two -phase system containing ionic liquid[J].Molecules,2011,16(8):7171-7182.
[24]Wang J,Sun G,Yu L,et al.Enhancement of the selective enzymatic biotransformation of rutin to isoquercitrin using an ionic liquid as a co-solvent[J].Bioresource Technology 2013,128:156-163.
[25]Wang J,Gong A,Yang C F,et al.An effective biphase system accelerates hesperidinasecatalyzed conversion of rutin to isoquercitrin[J].Scientific Reports,2015,5:8682-8689.
[26]Wang J,Gu S S,Cui H S,et al.Rapid synthesis of propyl caffeate in ionic liquid using a packed bed enzyme microreactor under continuous -flow conditions [J].Bioresource Technology,2013,149:367-374.
[27]Kishimoto N,Kakino Y,Iwai K,et al.Chlorogenate hydrolase-catalyzed synthesis of hydroxycinnamic acid ester derivatives by transesterification,substitution of bromine,and condensation reactions [J].Applied Microbiology and Biotechnology,2005,68(2):198-202.
[28]Pang N,Wang F Q,Cui H S,et al.Lipasecatalyzed synthesis of caffeic acid propyl ester in ionic liquid [J].Advanced Materials Research,2013,634:555-558.
[29]Ha S H,van Anh T,Lee S H,et al.Effect of ionic liquids on enzymatic synthesis of caffeic acid phenethyl ester [J].Bioprocess and Biosystems Engineering,2012,35(1-2):235-240.
[30]Wang J,Li J,Zhang L,et al.Lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids:effect of specific ions and reaction parameters [J].Chinese Journal of Chemical Engineering,2013,21(12):1376-1385.
[31]Kurata A,Kitamura Y,Irie S,et al.Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid [J].Journal of Biotechnology,2010,148(2):133-138.
[32]Pang N,Gu S S,Wang J,et al.A novel chemoenzymatic synthesis of propyl caffeate using lipase -catalyzed transesterification in ionic liquid [J].Bioresource Technology,2013,139:337-342.
[33]Kurata A,Takemoto S,F(xiàn)ujita T,et al.Synthesis of 3-cyclohexylpropyl caffeate from 5-caffeoylquinic acid with consecutive enzymatic conversions in ionic liquid [J].Journal of Molecular Catalysis B:Enzymatic,2011,69(3):161-167.
[34]Gu S,Wang J,Wei X,et al.Enhancement of lipase -catalyzed synthesis of caffeic acid phenethyl ester in ionic liquid with DMSO cosolvent [J].Chinese Journal of Chemical Engineering,2014,22(11):1314-1321.
[35]Chen B,Liu H,Guo Z,et al.Lipase-catalyzed esterification of ferulic acid with oleyl alcohol in ionic liquid/isooctane binary systems[J].Journal of Agricultural and Food Chemistry,2011,59:1256-1263.
[36]Xin J,Zhang L,Chen L,et al.Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium[J].Food Chemistry,2009,112(3):640-645.
[37]Zheng Y,Quan J,Zhu L M,et al.Optimization of selective lipase-catalyzed feruloylated monoacylglycerols by response surface methodology[J].Journal of the American Oil Chemists'Society,2008,85(7):635-639.
[38]Karboune S,Safari M,Lue B M,et al.Lipasecatalyzed biosynthesis of cinnamoylated lipids in a selected organic solvent medium[J].Journal of Biotechnology,2005,119(3):281-290.
[39]Sabally K,Karboune S,St -Louis R,et al.Lipase-catalyzed transesterification of trilinolein or trilinolenin with selected phenolic acids[J].Journal of the American Oil Chemists' Society,2006,83(2):101-107.
[40]Sun S,Qin F,Bi Y,et al.Enhanced transesterification of ethyl ferulate with glycerol for preparing glyceryl diferulate using a lipase in ionic liquids as reaction medium [J].Biotechnology Letters,2013,35(9):1449-1454.
[41]Park S,Kazlauskas R J.Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations[J].The Journal of Organic Chemistry,2001,66(25):8395-8401.
[42]Ganske F,Bornscheuer U T.Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids [J].Organic Letters,2005,7(14):3097-3098.
[43]Abdulmalek E,Saupi H S M,Tejo B A,et al.Improved enzymatic galactose oleate ester synthesis in ionic liquids[J].Journal of Molecular Catalysis B:Enzymatic,2012,76:37-43.
[44]Ha S H,Hiep N M,Koo Y M.Enhanced production of fructose palmitate by lipase -catalyzed esterification in ionic liquids[J].Biotechnology and Bioprocess Engineering,2010,15(1):126-130.
[45]Lee S H,Ha S H,Hiep N M,et al.Lipasecatalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures [J].Journal of Biotechnology,2008,133(4):486-489.
[46]Ha S H,Hiep N M,Lee S H,et al.Optimization of lipase -catalyzed glucose ester synthesis in ionic liquids[J].Bioprocess and Biosystems Engineering,2010,33(1):63-70.
[47]Ashrafuzzaman M,Pyo J I,Cheong C S.Sucrose derivatives preparation using Thermomyces lanuginosus lipase and their application[J].Bulletin of The Korean Chemical Society,2014,35(2):477.
[48]Zhong X,Qian J,Guo H,et al.Biosynthesis of sucrose -6 -acetate catalyzed by surfactant -coated Candida rugosa lipase immobilized on sol-gel supports[J].Bioprocess and Biosystems Engineering,2014,37(5):813-818.
[49]Liu Q,Janssen M H A,van Rantwijk F,et al.Room -temperature ionic liquids that dissolve carbohydrates in high concentrations[J].Green Chemistry,2005,7(1):39-42.
[50]Zhao H,Baker G A,Song Z,et al.Designing enzyme -compatible ionic liquids that can dissolve carbohydrates [J].Green Chemistry,2008,10(6):696-705.
[51]Chen Z G,Zong M H,Li G J.Lipase-catalyzed acylation of konjac glucomannan in ionic liquids [J].Journal of Chemical Technology and Biotechnology,2006,81(7):1225-1231.
[52]Chen Z G,Zhang D N,Han Y B.Lipase-catalyzed acylation of lily polysaccharide in ionic liquid-containing systems[J].Process Biochemistry,2013,48(4):620-624.
[53]Yang Y H,Raku T,Song E,et al.Lipase catalyzed reaction of L -ascorbic acid with cinnamic acid esters and substituted cinnamic acids [J].Biotechnology and Bioprocess Engineering,2012,17(1):50-54.
[54]Lerin L A,Richetti A,Dallago R,et al.Enzymatic synthesis of ascorbyl palmitate in organic solvents:Process optimization and kinetic evaluation [J].Food and Bioprocess Technology,2012,5(3):1068-1076.
[55]Park S,Viklund F,Hult K,et al.Vacuumdriven lipase -catalysed direct condensation of L -ascorbic acid and fatty acids in ionic liquids:synthesis of a natural surface active antioxidant [J].Green Chemistry,2003,5(6):715-719.
[56]Adamczak M,Bornscheuer U T.Improving ascorbyl oleate synthesis catalyzed by Candida antarctica lipase B in ionic liquids and water activity control by salt hydrates [J].Process Biochemistry,2009,44(3):257-261.
[57]Sengupta A,Pal M,SilRoy S,et al.Comparative study of sterol ester synthesis using Thermomyces lanuginosus lipase in stirred tank and packed-bed bioreactors[J].Journal of the American Oil Chemists' Society,2010,87(9):1019-1025.
[58]Pan X,Chen B,Wang J,et al.Enzymatic synthesizing of phytosterol oleic esters[J].Applied Biochemistry and Biotechnology,2012,168(1):68-77.
[59]Zheng M M,Wang L,Huang F H,et al.Ultrasonic pretreatment for lipase-catalyzed synthesis of phytosterol esters with different acyl donors[J].Ultrasonics Sonochemistry,2012,19(5):1015-1020.
[60]Zeng C,Qi S,Li Z,et al.Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim]PF6 microemulsion [J].Bioprocess and Biosystems Engineering,2015,38(5):939-946.