• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Influence of Composition on Mechanical Properties of Fuel-rich Composite Propellants

    2015-05-10 02:34:30,-
    含能材料 2015年8期

    , -

    (School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)

    1 Introduction

    Fuel-rich propellants are typically used for ramjet-rocket motors[1]. Fuel-rich propellants are classified into metal-loaded compositions with high smoke levels, carbon compositions with moderate smoke levels and hydrocarbon-fueled compositions with low smoke level. The major components of hydrocarbon-fueled compositions are a binder, an oxidizer, and sometimes a hydrocarbon filler[2]. The propellant grain must withstand the stresses and strains imposed on it during handling, ignition, and firing of rocket[3]. The mechanical properties are so essential for the propellant to be measured to ensure its capability for storage, transportation, aging, and operating under the combustion loads[4].

    For the composite solid rocket propellants, tensile mechanical tests are often applied. With elastic materials, stresses and strains are essentially proportional to each other and independent of time[5]. Temperature variations during storage are found to be the main reason for the propellant strain and stress leading to decreasing quality[6].

    The variation of performance parameters with variation in formulation cannot yet be presented by mathematical models exactly. Many studies have been reported previously to correlate the individual performance properties with the formulation parameters. Marsh[7]studied the polymer parameters for formulation design and quality control, and a general correlation of mechanical properties. He concluded that there is a correlation of propellant elongation with polymer network parameter, while tensile capacity becomes a useful formulation characteristic. Hill[8]studied the effect of the plasticizer to improve the elastomeric properties of binders and hence the mechanical properties. Nian[9]studied the effect of the functionality group of hydroxyl-terminated polybutadiene pre-polymer (HTPB) on the binder network and its correlation with the mechanical properties. Keizers[10]made studies on ammonium perchlorate AP/HTPB propellants to predict some of the important parameters by developing computer model.

    According to binder base, composite propellants are characterized by their excellent tensile mechanical properties, strength at maximum in the range of 5-35 kg·cm-2and strain at maximum in the range of 25%-120% at normal temperature[11].

    The objective of the present experimental investigation in the paper was to determine the effect of solid fillers, such as oxidizer solid loading and oxidizer particle size distribution, on the mechanical properties of the fuel-rich composite propellant. The mechanical properties (tensile strength, strain, and Young′s modulus) were measured and analyzed for different formulations.

    2 Experimental Method

    2.1 Propellant formulations

    The formulations studied in this work were formulated on the basis of HTPB as a binder and AP as an oxidizer. Further investigation includes system in which fuel, aluminum (Al), and burning rate accelerator, copper chromite (CC), added at the expense of the binder.

    The compositions of all tested propellant formulations presented in Table 1. The propellant binder was composed of 85.7% HTPB as a main backbone, 12.3% hexa-methylene di-isocianate (HMDI) as a cross-linking agent and 2.0% methyl aziridinyl phosphine oxide (MAPO) as a bonding agent[12]. All propellant compositions contained 0.5%carbon black (CB) with 10 μm particle size as an opacifier which was found to be very important to apply the black body role[2]. The base line propellant formulation A3 consisted of 45% AP with 9.0 μm particles and the particle size variations were investigated through a bi-modal system with AP (64.0 μm)[13]. The AP average particle size in formulation B1 is 44.5 μm and in formulation B2 is 55.9 μm.

    Table1The fuel-rich formulations

    batchbinder/%AP(9μm)/%AP(64μm)/%Al/%CC/%CB/%A174.525.00.00.00.00.5A264.535.00.00.00.00.5A354.545.00.00.00.00.5B154.530.015.00.00.00.5B254.515.030.00.00.00.5C144.545.00.010.00.00.5C234.545.00.020.00.00.5D151.545.00.00.03.00.5D248.545.00.00.06.00.5E141.545.00.010.03.00.5E238.545.00.010.06.00.5

    Preparation of the propellants for the test program was made by using a heavy-duty mixer (9×10-3m3capacity) with weight of 10 kg per formulation to guarantee the slurry homogeneity. Propellant slurry casting was applied in special molds with standard dimensions l5 cm×15 cm×15 cm under vacuum and vibration. The molds are placed in a curing oven at 55 ℃, for a total curing time of 240 h. Curing temperature is selected to accelerate the cross linking reactions. After curing the molds are cut into sheets with uniform thickness of 1.2 cm.

    Test specimens were produced according to Joint Army-Navy-NASA-Air Force Propulsion Committee (JANNAF) standard[14].

    Fig.1 shows the produced specimens which checked for voids (e.g. air bubbles-cracks-porosities-foreign matter) by X-Ray. After that, the accepted specimens are stored at ambient temperature in dry place.

    Fig.1X-Ray film for JANNAF specimens

    2.2 Apparatuses

    The Zwick Z050 universal test machine was used in carrying out all the mechanical tests. The machine can do seven different mechanical tests (tensile, compression, bending, peeling, creep, relaxation, and low cycle fatigue tests). The machine is provided with 3 different load cells (2.5 kN, 10 kN, and 50 kN) to cover wide ranges of measurements and applications. The machine is supported with a temperature chamber which allow for performing tests under desired temperature.

    The Shore hardness(A) was measured using the hardness tester Zwick (model 3102) at 25 ℃.

    2.3 Measurement methods

    Tensile tests are used to determine a certain number of parameters, as shown in figure 2 that allow for better representation of propellant behavior. These parameters include: Young′s modulus (E),maximum strength (σm),maximum strain (εm) corresponding to maximum strength, break stress,break strain.

    Young′s modulus is determined from the linear part of the stress- strain curve. JANNAF specimens were tested at tensile rate of 50 mm/min and temperature 25 ℃. The tensile test was carried out for at least five samples for each prepared formulation and then the mean value of the obtained results was recorded.

    3 Results and Discussion

    3.1 Result

    In this work the regression line is calculated in the range from begin of Young′s Modulus determination to the end of Young′s Modulus determination (see Fig.2) that indicates the parameters which can be identified from the tensile test.

    Fig.2General tensile behavior of solid propellant

    The mechanical properties of the tested propellant formulations were independent on the curative ratio (NCO/OH ratio of HMDI and HTPB) in this program where NCO/OH ratio was 2.0 in all formulations (this high ratio was verified practically by preparation of different binder formulations with ratio from 0.5 to 3 then test them which lead to this value). The results of these mechanical properties with different compositions are given in Table 2.

    Table2Results of mechanical properties at 25 ℃

    batchbinder/%σm/kg·cm-2εm/%E/kg·cm-2AA174.522.5198.0846.6656.00A264.524.6390.9957.5057.50A354.527.9275.3263.1961.25B154.520.0578.3353.3353.50B254.515.6485.3044.2450.50C144.531.2270.0167.5264.00C234.535.0736.0773.5272.25D151.528.9973.2265.2263.00D248.530.0170.0966.0163.50E141.532.0148.5468.7766.75E238.533.8237.0071.0568.00

    3.3 Effect of binder content on the mechanical properties

    According to Fig.3, Fig.4 and Fig.5 increasing the binder percentage (from 34.5% to 74.5%) in group A, C, D, and E make decreasing of the maximum strength (from 35.07 kg·cm-2to 22.51 kg·cm2with a percentage of about 35.8%), Young′s modulus (from 73.52 kg·cm-2to 46.66 kg·cm-2with a percentage of about 36.5%) and hardness (A) (from 72 to 56 with a percentage of about 22.2%) respectively. That because of decreasing binder by increasing the fillers percentage leads to increase the filling coefficient in the binder matrix which strengthens it and increasing the maximum strength and hardness. Also increasing the solid loading leads to formation of additional crosslinks between the solid particles and the network chains of the binder matrix.

    Fig.3Effect of the binder content on the propellant maximum strength

    Fig.4Effect of the binder content on the propellant Young′s modulus

    Fig.5Effect of the binder content on the propellant Shore hardness(A)

    Fig. 6 shows the trend of increasing the maximum strain (from 37.07% to 98.08% with a percentage of about 164.8%) when increasing the binder percentage (from 34.5% to 74.5%) in group A, C, D, and E. It is observed that although the binder decreased 4% from E2 to C2 and from D2 to C1 but the effect in maximum strain is negligible. It is clear that incorporate 10% of Al instead of 6% of CC has no effect on the maximum strain.

    It is clear that the maximum strain of the composite propellant samples decreases with decreasing the binder content and increasing the solid loading. This effect may arise from the reduced volume fraction of the binder matrix due to the increasing volume fraction of solid particles. When the sample of composite propellant is subjected to uniaxial tensile stresses, the total deformation is accommodated only by the binder matrix because aluminum and ammonium perchlorate particles are hard and possess very high elastic modulus compared to the binder matrix.

    Fig.6Effect of the binder content on the propellant maximum strain

    Group B has the same binder content as A3 (55%) but with different AP average diameter and this factor has a great effect on the mechanical properties. This will be discussed in the next part separately.

    3.2 Effect of the oxidizer particle size on the mechanical properties

    Fig.7 and Fig.8 present the effect of the oxidizer particle size on the maximum strength and hardness (A) respectively. The larger particle size of AP (9 μm in A3, then 44.5 μm in B1, finally 55.9 μm in B2) without changing the propellant composition, the lower the maximum strength (27.92 kg·cm-2, 20.05 kg·cm-2, 15.64 kg·cm-2) and the lower the hardness (A) (61.25, 53.5, 50.5). This is because the small particle sizes of AP act as active fillers and enhance the mechanical strength of the propellant matrix.

    Fig.7Effect of the oxidizer particle size on the propellant maximum strength

    Fig.8Effect of the oxidizer particle size on the propellant Shore hardness(A)

    The polymer system filled with coarse particles starts dewetting at a smaller stress compared to a system containing fine particles. Thus the strength increases with the increasing content of fine particles in the polymer matrix system.

    According to Fig.9 the same trend is found. Young′s modulus is decreased (63.19 kg·cm-2, 53.33 kg·cm-2, 44.24 kg·cm-2) with increasing the particle size of AP.

    Fig.9Effect of the oxidizer particle size on the propellant Young′s modulus

    Fig. 10 shows the relation between the oxidizer particle size and the maximum strain. The results show that increasing AP particle size within the same binder percentage leads to increase the maximum strain (75.32%, 78.33%, 85.3%) because with increasing the particle size of the oxidizer the apparent volume will be decreased and the distances between the particles will be increased.

    Fig.10Effect of the oxidizer particle size on the propellant maximum strain

    Increasing volume fraction of fine fillers reduces the elongation capability of the composite propellant. This behavior caused by different dewetting nature of large and small particles. Vacuoles (vacuum-holes) occur between solid particle and binder phase when the propellant sample dewets. If the load on the sample is maintained, vacuoles enlarge and eventually combine with each other. The volume of the propellant increases during tensile testing due to the presence of vacuoles and due to its combine with each other[15]. This means that these vacuoles contribute to the total elongation after dewetting occurs. Formation of vacuoles in the propellants containing a larger quantity of fine AP is less than that in propellants containing coarse particles. Thus, increasing fine AP fraction decreases the maximum strain.

    4 Conclusion

    The mechanical properties are so essential for the propellant to be measured to ensure its capability for storage, transportation, aging, and operating under the combustion loads. In this work the effect of solid loading of the fillers in the fuel-rich composite propellants on the mechanical properties was studied. It is observed that as the solid loading increase and the binder percentage decrease from 74.5% to 34.5% the tensile strength increase from 22.51 kg·cm-2to 35.07 kg·cm-2and the strain decrease from 98.08% to 36.07% due to formation of additional crosslinks between the solid particles and the network chains of the binder matrix.

    The mechanical properties of composite propellants are also strongly affected by the particle size of the ammonium perchlorate. With increasing the oxidizer average particle size (9 μm, 44.5 μm and 55.9 μm) the maximum strength decreases (27.92 kg·cm-2, 20.05 kg·cm-2, 15.64 kg·cm-2) and the maximum strain increases (75.32%, 78.33%, 85.30%) because the apparent volume decreased and the distances between the particles increased.

    Much further work is required in this direction to study the effect of AP particle size variations through tri-model systems on the mechanical properties of the composite propellants.

    [1] Shalom Abraham, Gany Alon. Flammability Limits and Ballistic Properties of Fuel-Rich Propellants [J].Propellants,Explosives,Pyrotechnics, 1991, 16: 59-64.

    [2] Davenas Alain. Solid Rocket Propulsion Technology [M]. First English Edition, New Work: Pergamon Press, 1993, Chapter 12.

    [3] Structural assessment of solid propellant grain [R]. Advisory Group for Aerospace Research and Development, (AGARD). 7 Rue Ancelle, 92200 Neuilly-Sur-Seine, France, Report No. AGARD-AR-350, 1997.

    [4] Amtower Paul K. Propellant Formulation: US 7011722[P], 2006.

    [5] GEORGE P Sutton. Rocket Propulsion Elements [M]. Sixth Edition, New York: John Wiley & Sons, Inc., 1992, Chapter 12.

    [7] Harold E Marsh Jr. Formulation and Quality Control of Polyurethane Propellants [J].JournalofIndustrialandEngineeringChemistry, 1960, 52(9): 768-771.

    [8] Hill M E, Coon C L, Ross D L. Structure Property Relationships in Propellant Ingredients [C]∥AIAA Paper 78-119, 16th Aerospace Science Meeting, 1978.

    [9] Ninan K N, BalagandadharanV P, Katherine K B. Studies on the functionality distribution of htpb and correlation with mechanical properties[J].JournalofPolymer, 1991, 32(4): 628-635.

    [10] Keizers H L J , Hordijik AC, Van Vilet LD, et al. Modeling of Composite Propellant Properties[C]∥36th AIAA/ASME/SAE /ASEE Joint Propulsion conference and Exhibit, Huntsville, Alabama, 2000.

    [11] Timnat Y M. Advanced Chemical Rocket Propulsion [M]. London: Academic Press, 1987.

    [12] Alain Davenas. Solid Rocket Propulsion Technology [M]. First English Edition, New Work: Pergamon Press, 1993.

    [13] Makoto Kohga. Burning rate characteristic of AP-based composite propellant using bimodal AP [J].JournalofPropulsionandPower, 2008, 24(3): 499-506.

    [14] Neviere R. An Extension of the Time-Temperature Superposition Principal to non-linear Viscoelastic Solids [J].IntJournalofSolidsandStructures, 2006, 43:5295-5306.

    [15] Yilmazer U Farris R J. Mechanical behavior and dilatation of particulate-filled thermosets in the rubbery state [J].JournalofAppliedPolymerScience, 1983, 28(11): 3369-3386.

    97在线人人人人妻| 七月丁香在线播放| 亚洲午夜精品一区,二区,三区| 国产日韩一区二区三区精品不卡| 啦啦啦视频在线资源免费观看| 欧美中文综合在线视频| 人人妻人人添人人爽欧美一区卜| 一本大道久久a久久精品| a级毛片黄视频| 99热全是精品| 国产欧美日韩一区二区三区在线| 九色亚洲精品在线播放| 丁香六月欧美| 国产日韩欧美视频二区| 一二三四在线观看免费中文在| 99热全是精品| 一个人免费看片子| 熟女av电影| 成年动漫av网址| 丝袜美腿诱惑在线| 国产一区二区激情短视频 | 亚洲av美国av| 夫妻性生交免费视频一级片| 在线观看免费日韩欧美大片| 亚洲国产欧美在线一区| 久久综合国产亚洲精品| 国产在视频线精品| 国产精品一二三区在线看| 亚洲国产精品国产精品| 国产又爽黄色视频| 99re6热这里在线精品视频| 亚洲九九香蕉| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| 国产视频首页在线观看| 欧美日韩视频高清一区二区三区二| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 欧美日本中文国产一区发布| 国产精品 国内视频| 极品人妻少妇av视频| 久久影院123| 男男h啪啪无遮挡| 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频 | 男女无遮挡免费网站观看| 精品少妇黑人巨大在线播放| 亚洲国产精品一区二区三区在线| 精品人妻在线不人妻| 欧美老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 18在线观看网站| 国产一区亚洲一区在线观看| 精品一区在线观看国产| 国产免费视频播放在线视频| 热99国产精品久久久久久7| 一边摸一边抽搐一进一出视频| 亚洲精品成人av观看孕妇| 老汉色∧v一级毛片| 自线自在国产av| 亚洲国产看品久久| 亚洲久久久国产精品| 最近最新中文字幕大全免费视频 | 99热全是精品| 精品人妻1区二区| 一区二区日韩欧美中文字幕| 成人免费观看视频高清| 最近最新中文字幕大全免费视频 | 热99国产精品久久久久久7| 老汉色∧v一级毛片| 国产日韩欧美在线精品| 亚洲男人天堂网一区| 亚洲av电影在线进入| 国产色视频综合| 国产精品成人在线| 亚洲欧美日韩高清在线视频 | 亚洲欧美日韩另类电影网站| 18禁国产床啪视频网站| 两性夫妻黄色片| av国产精品久久久久影院| 久久久久久久大尺度免费视频| www.999成人在线观看| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频 | 激情视频va一区二区三区| 欧美人与善性xxx| 麻豆国产av国片精品| 中文字幕av电影在线播放| 好男人电影高清在线观看| 亚洲人成77777在线视频| 国产精品亚洲av一区麻豆| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 在线av久久热| 免费日韩欧美在线观看| 国产成人一区二区在线| 欧美日韩福利视频一区二区| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 日韩大码丰满熟妇| 在线观看免费高清a一片| 国产在线一区二区三区精| 叶爱在线成人免费视频播放| xxx大片免费视频| 手机成人av网站| 久久久欧美国产精品| 91国产中文字幕| 亚洲,一卡二卡三卡| 亚洲图色成人| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 国产1区2区3区精品| 亚洲欧美中文字幕日韩二区| 啦啦啦在线观看免费高清www| 黄色毛片三级朝国网站| 亚洲精品av麻豆狂野| 久热爱精品视频在线9| 国产日韩欧美亚洲二区| 久久鲁丝午夜福利片| 亚洲av欧美aⅴ国产| 欧美日韩一级在线毛片| 两人在一起打扑克的视频| 在线观看免费高清a一片| 午夜精品国产一区二区电影| 黄色视频不卡| 男女下面插进去视频免费观看| 日韩一卡2卡3卡4卡2021年| 777米奇影视久久| 久久人人97超碰香蕉20202| 国产老妇伦熟女老妇高清| 人人妻,人人澡人人爽秒播 | 丝袜美腿诱惑在线| 99香蕉大伊视频| 久久久国产一区二区| 咕卡用的链子| 伊人久久大香线蕉亚洲五| 日本黄色日本黄色录像| 香蕉国产在线看| 欧美另类一区| 国产视频首页在线观看| 成年人午夜在线观看视频| 丝瓜视频免费看黄片| 久久亚洲国产成人精品v| 少妇裸体淫交视频免费看高清 | 久久人人97超碰香蕉20202| 亚洲成av片中文字幕在线观看| 国产精品成人在线| 欧美国产精品一级二级三级| 欧美性长视频在线观看| 人人妻,人人澡人人爽秒播 | 最新在线观看一区二区三区 | 日本欧美视频一区| 叶爱在线成人免费视频播放| 日本vs欧美在线观看视频| 亚洲 欧美一区二区三区| 精品久久久精品久久久| 欧美亚洲日本最大视频资源| 在线精品无人区一区二区三| 十八禁人妻一区二区| 久久久国产一区二区| 亚洲欧美一区二区三区久久| 国产亚洲一区二区精品| 人人妻,人人澡人人爽秒播 | 男女免费视频国产| 久久99精品国语久久久| www.精华液| 又黄又粗又硬又大视频| 国产在线一区二区三区精| 女人久久www免费人成看片| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 日韩一区二区三区影片| 国产午夜精品一二区理论片| 男的添女的下面高潮视频| 国产男人的电影天堂91| 亚洲自偷自拍图片 自拍| 日本91视频免费播放| 精品久久久久久久毛片微露脸 | 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 777久久人妻少妇嫩草av网站| 久久狼人影院| 中文字幕人妻丝袜制服| 久久久久久亚洲精品国产蜜桃av| 中文字幕高清在线视频| 男人添女人高潮全过程视频| 免费在线观看黄色视频的| 老司机影院成人| 亚洲av美国av| 国产精品三级大全| 久久久国产欧美日韩av| 精品国产乱码久久久久久小说| 老司机深夜福利视频在线观看 | 后天国语完整版免费观看| 美国免费a级毛片| 91麻豆精品激情在线观看国产 | 9191精品国产免费久久| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 又黄又粗又硬又大视频| 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线| 超色免费av| 人妻人人澡人人爽人人| 在线天堂中文资源库| 91麻豆av在线| av在线app专区| 国产黄频视频在线观看| 欧美日韩av久久| 日韩熟女老妇一区二区性免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 汤姆久久久久久久影院中文字幕| 99九九在线精品视频| 国产91精品成人一区二区三区 | 又大又黄又爽视频免费| 黄色视频在线播放观看不卡| 丝袜美腿诱惑在线| 美女福利国产在线| 精品人妻熟女毛片av久久网站| 亚洲av男天堂| 黄色 视频免费看| 大型av网站在线播放| 日日爽夜夜爽网站| 一本一本久久a久久精品综合妖精| 亚洲国产av影院在线观看| 一级毛片我不卡| 日本五十路高清| 色网站视频免费| 一本色道久久久久久精品综合| av天堂久久9| 麻豆国产av国片精品| 制服人妻中文乱码| 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区| 国产亚洲精品久久久久5区| 免费av中文字幕在线| 国产一级毛片在线| 免费高清在线观看日韩| 午夜久久久在线观看| 热re99久久精品国产66热6| 欧美黄色片欧美黄色片| 大话2 男鬼变身卡| 国产激情久久老熟女| 又紧又爽又黄一区二区| 亚洲精品美女久久久久99蜜臀 | 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | 国产黄频视频在线观看| 久久国产亚洲av麻豆专区| 999久久久国产精品视频| 女人久久www免费人成看片| 99热国产这里只有精品6| 中文字幕av电影在线播放| 国产爽快片一区二区三区| 视频区欧美日本亚洲| 91麻豆av在线| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 男女国产视频网站| 纯流量卡能插随身wifi吗| 欧美日韩综合久久久久久| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 国产片特级美女逼逼视频| 亚洲av在线观看美女高潮| 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 国产在视频线精品| 男女无遮挡免费网站观看| 日本a在线网址| 少妇的丰满在线观看| 久久国产精品影院| 国产一区二区激情短视频 | e午夜精品久久久久久久| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| 波野结衣二区三区在线| 18禁黄网站禁片午夜丰满| 啦啦啦中文免费视频观看日本| 欧美日韩黄片免| 国产一区二区三区综合在线观看| 成人手机av| 一区二区三区四区激情视频| 91字幕亚洲| 国产伦人伦偷精品视频| 一级毛片电影观看| 热re99久久精品国产66热6| 国产精品.久久久| 最新在线观看一区二区三区 | 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 天天躁夜夜躁狠狠躁躁| 操出白浆在线播放| 999久久久国产精品视频| 欧美精品一区二区免费开放| 国产视频一区二区在线看| 亚洲欧美一区二区三区黑人| 国产精品熟女久久久久浪| 大陆偷拍与自拍| av国产精品久久久久影院| 午夜福利,免费看| 丰满人妻熟妇乱又伦精品不卡| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 国产亚洲精品第一综合不卡| 在线av久久热| 国产在线观看jvid| 久久久久视频综合| 在线观看一区二区三区激情| 七月丁香在线播放| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 国产成人一区二区三区免费视频网站 | 亚洲视频免费观看视频| 伦理电影免费视频| 国产不卡av网站在线观看| 免费久久久久久久精品成人欧美视频| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| 丝瓜视频免费看黄片| 中文字幕人妻熟女乱码| 亚洲国产成人一精品久久久| 18禁黄网站禁片午夜丰满| 亚洲国产欧美日韩在线播放| 免费观看a级毛片全部| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕| 亚洲熟女毛片儿| 美女大奶头黄色视频| av不卡在线播放| 天天添夜夜摸| 久久精品国产综合久久久| 国产成人精品在线电影| 99九九在线精品视频| 国产精品一区二区在线观看99| 日本av手机在线免费观看| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 久久精品熟女亚洲av麻豆精品| 最新在线观看一区二区三区 | 日本色播在线视频| 国产无遮挡羞羞视频在线观看| 色精品久久人妻99蜜桃| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 久久国产精品影院| 一区二区三区精品91| 国产亚洲av高清不卡| 天天躁夜夜躁狠狠久久av| 亚洲午夜精品一区,二区,三区| 成年美女黄网站色视频大全免费| 欧美国产精品va在线观看不卡| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美网| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 亚洲国产欧美网| 久久毛片免费看一区二区三区| 大香蕉久久成人网| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 最新在线观看一区二区三区 | 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 丁香六月欧美| 亚洲国产精品国产精品| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 欧美+亚洲+日韩+国产| 99国产精品一区二区蜜桃av | 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 久久精品国产亚洲av高清一级| 91麻豆av在线| 纯流量卡能插随身wifi吗| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| av网站在线播放免费| 热re99久久精品国产66热6| 女人久久www免费人成看片| 91麻豆av在线| 免费看av在线观看网站| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 国产男人的电影天堂91| 国产成人欧美| 久久精品国产亚洲av高清一级| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 少妇裸体淫交视频免费看高清 | 亚洲情色 制服丝袜| 又黄又粗又硬又大视频| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 一边亲一边摸免费视频| 久久久久久久国产电影| 欧美精品一区二区大全| 日日夜夜操网爽| 亚洲精品久久成人aⅴ小说| 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡 | 久久毛片免费看一区二区三区| 操美女的视频在线观看| 国产无遮挡羞羞视频在线观看| 中国美女看黄片| a级毛片黄视频| 国产伦人伦偷精品视频| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av高清一级| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 蜜桃国产av成人99| 久久这里只有精品19| 久久久国产欧美日韩av| 免费久久久久久久精品成人欧美视频| 免费在线观看完整版高清| 国产片内射在线| 日本91视频免费播放| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 欧美日韩综合久久久久久| 欧美国产精品va在线观看不卡| av网站免费在线观看视频| 精品少妇一区二区三区视频日本电影| 亚洲色图 男人天堂 中文字幕| 午夜视频精品福利| 国产一区二区在线观看av| 天天影视国产精品| 国产人伦9x9x在线观看| 女性生殖器流出的白浆| 一本大道久久a久久精品| 国产精品 国内视频| 亚洲av综合色区一区| 别揉我奶头~嗯~啊~动态视频 | 少妇裸体淫交视频免费看高清 | 久久人人97超碰香蕉20202| 免费不卡黄色视频| 国产日韩欧美在线精品| 国产日韩一区二区三区精品不卡| 国产精品九九99| 无限看片的www在线观看| 男女下面插进去视频免费观看| 亚洲欧美激情在线| 最黄视频免费看| 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 两个人免费观看高清视频| 在线观看国产h片| 欧美日本中文国产一区发布| 一区二区三区乱码不卡18| av网站免费在线观看视频| 亚洲成人免费电影在线观看 | 国产xxxxx性猛交| 男女边吃奶边做爰视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品自拍成人| 女人被躁到高潮嗷嗷叫费观| 成年女人毛片免费观看观看9 | xxx大片免费视频| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看 | 一个人免费看片子| 激情五月婷婷亚洲| 久久精品人人爽人人爽视色| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 不卡av一区二区三区| 丝袜美腿诱惑在线| av电影中文网址| 国产高清不卡午夜福利| 下体分泌物呈黄色| 亚洲天堂av无毛| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 91精品三级在线观看| 一本久久精品| 日韩av不卡免费在线播放| 国产高清视频在线播放一区 | 日本欧美国产在线视频| 嫁个100分男人电影在线观看 | www.精华液| 亚洲成av片中文字幕在线观看| 好男人视频免费观看在线| 老鸭窝网址在线观看| 纯流量卡能插随身wifi吗| 制服诱惑二区| 午夜福利视频在线观看免费| www.熟女人妻精品国产| 成人亚洲精品一区在线观看| 老司机在亚洲福利影院| 如日韩欧美国产精品一区二区三区| 精品人妻一区二区三区麻豆| 一级毛片电影观看| 人人妻人人澡人人爽人人夜夜| 夜夜骑夜夜射夜夜干| 欧美亚洲 丝袜 人妻 在线| 伊人久久大香线蕉亚洲五| 免费久久久久久久精品成人欧美视频| www.av在线官网国产| 久久国产亚洲av麻豆专区| 视频区欧美日本亚洲| 首页视频小说图片口味搜索 | 日韩 欧美 亚洲 中文字幕| 精品一品国产午夜福利视频| 在线天堂中文资源库| 亚洲国产av影院在线观看| 一级毛片我不卡| 午夜福利,免费看| 亚洲国产中文字幕在线视频| 丁香六月天网| 操出白浆在线播放| 国产精品久久久久久精品古装| 国产精品久久久久久人妻精品电影 | 中文字幕av电影在线播放| 国产不卡av网站在线观看| 国产男女内射视频| 少妇精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| av天堂在线播放| 麻豆国产av国片精品| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 美女视频免费永久观看网站| 欧美黄色淫秽网站| 日韩欧美一区视频在线观看| 青青草视频在线视频观看| 精品国产乱码久久久久久男人| 亚洲欧美中文字幕日韩二区| 在线观看免费午夜福利视频| 免费黄频网站在线观看国产| 久久久久久久精品精品| 精品免费久久久久久久清纯 | 欧美人与性动交α欧美精品济南到| 亚洲成人免费av在线播放| 精品一区在线观看国产| 天天添夜夜摸| 亚洲欧美一区二区三区国产| 日本wwww免费看| 国产精品香港三级国产av潘金莲 | 精品免费久久久久久久清纯 | 91麻豆av在线| 久久久久精品人妻al黑| 欧美 亚洲 国产 日韩一| 午夜av观看不卡| 国产精品麻豆人妻色哟哟久久| 精品一区二区三区av网在线观看 | 国产精品香港三级国产av潘金莲 | 成年美女黄网站色视频大全免费| 亚洲精品在线美女| 一本—道久久a久久精品蜜桃钙片| 午夜福利,免费看| 一级毛片我不卡| 亚洲色图 男人天堂 中文字幕| 涩涩av久久男人的天堂| 天堂8中文在线网| 中文字幕另类日韩欧美亚洲嫩草| 天堂俺去俺来也www色官网| 狂野欧美激情性xxxx| 国产精品二区激情视频| 久久久久网色| 日韩伦理黄色片| 精品人妻在线不人妻| 精品高清国产在线一区| 久久久亚洲精品成人影院| 亚洲av在线观看美女高潮| 男女高潮啪啪啪动态图| 国产男女超爽视频在线观看| 久久人人爽人人片av| 极品人妻少妇av视频| 蜜桃在线观看..| 老司机深夜福利视频在线观看 | 日日摸夜夜添夜夜爱| 欧美精品人与动牲交sv欧美| 丝瓜视频免费看黄片| 国产精品欧美亚洲77777| 成在线人永久免费视频| 黄网站色视频无遮挡免费观看| 十分钟在线观看高清视频www| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| 18禁黄网站禁片午夜丰满| 午夜福利一区二区在线看| 91九色精品人成在线观看| 一区二区三区精品91| 在线观看一区二区三区激情| 国精品久久久久久国模美| 18在线观看网站| 欧美97在线视频| 啦啦啦视频在线资源免费观看| 亚洲精品日韩在线中文字幕| 亚洲少妇的诱惑av| 校园人妻丝袜中文字幕| 欧美在线一区亚洲| 欧美日韩亚洲高清精品| 男女高潮啪啪啪动态图| 免费观看人在逋|