• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hochschild Cohomology Rings of Temperley-Lieb Algebras?

    2015-06-01 07:34:40HuanhuanLIYungeXUYuanCHEN
    關(guān)鍵詞:排除故障原始記錄限值

    Huanhuan LI Yunge XU Yuan CHEN

    1 Introduction

    The Temperley-Lieb algebras were first introduced in 1971 in[24]to study the single bond transfer matrices for the ice model and the Potts model.Later they were independently found by Jones when he characterized the algebras arising from the tower construction of semisimple algebras in the study of subfactors(see[18]).These algebras have played a central role in the discovery by Jones of his new polynomial invariant of knots and links(see[19]),and in the subsequent developments over the past four decades relating to knot theory,topological quantum field theory,and statistical physics(see[20]).Their relationship with knot theory comes from their role in the Definition of the Jones polynomial.The theory of quantum invariants of links nowadays involves many research fields.Thus,many important kinds of algebras related to the invariants of braids or links,such as Birman Wenzl algebras(see[5]),Hecke algebras and Brauer algebras,have been of great interest in mathematics and physics.They are all deformations of certain group algebras or other well-known algebras.

    Let K be a field and m a positive integer.Recall that the Temperley-Lieb algebra Am(δ)for δ∈ K is defined to be a K-algebra with identity generated by t1,t2,···,tm?1subject tothe relations:

    It was shown in[25]that a block of a non-semisimple Temperley-Lieb algebra is Morita equivalent to the quotient algebra A=Am=KQ/I given by the quiver

    and the relations I=〈αi+1αi,βiβi+1,βi+1αi+1?αiβi,αm?1βm?1|i=1,2,···,m?2〉.As was shown in[26],the non-trivial block of the representation- finite q-Schur algebras Sq(n,r)with n≥r is also Morita equivalent to an algebra of the form Am.

    Hochschild cohomology HH?(A,M)of A with coefficients in M was introduced in[16]in order to classify,up to equivalence,all extensions of A with Kernel M,which is one-to-one correspondence with HH2(A,M).Many other applications of this cohomology have been discovered since then(see[15]).For example,separable algebras are characterized by the fact that their Hochschild(cohomology)dimension is zero,that is,HH1(A,M)=0 for every bimodule M(see[16]);the deformation theory of an algebra is controlled by its Hochschild cohomology as a graded Lie algebra under the Gerstenhaber bracket(see[11]);Hochschild cohomology is also closely related to simple connectedness,formal smoothness(or quasi-freeness in literature)(see[1,22])and so on.It is well known that HH?(A)is endowed with the so-called Gerstenhaber algebra structure under the cup product

    and the Gerstenhaber Lie bracket

    However,for most finite dimensional algebras,little is known about the Hochschild cohomology groups and even less about the Hochschild cohomology rings(see[2,4,7–10,13,27]).

    Since Hochschild cohomology is invariant under Morita equivalence(see[15]),to describe the Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation- finite q-Schur algebras Sq(n,r)for n≥r,it is sufficient to deal with the basic algebra A defined as above.The K-dimensions of Hochschild cohomology groups of A were obtained in[17]by a long exact sequence of cohomology groups relating to a homological epimorphism of K-algebras,but there K-bases were not given.We begin the paper by giving a minimal projective resolution of A as an Ae-module,and then apply it to obtain K-bases of the cohomology groups in terms of parallel paths.In Section 4 we give an explicit description of the “comultiplicative” map Δ:P→P?AP to determine the cup product of HH?(A)using the composition

    P→P?AP→A?AA→A.

    As a consequence,we will give an explicit presentation of the multiplicative structure of HH?(A)under the cup product by generators and relations.

    2 The Minimal Projective Bimodule Resolution

    Throughout the paper we always assume that A is the algebra defined as in the introduction.We denote by eithe trivial path at the vertex i.Given a path p in Q,we denote by o(p)and t(p)the origin and the terminus of p respectively.

    We will employ the strategy due to Green et al in[12,14]to construct a minimal projective Ae-module resolution of A.Seti=1,2,···,m.For 1≤n≤2m?2,one defines the following elements recursively:

    Noticing that gl.dimA=2m?2,one takesif n>2m?2.Note thatis just an algebraic sum of paths of length n with the original i and containing exactly r arrows of type α.Denote by gnthe set of elements of the formThen,

    For 3≤n≤2m?2,when n=2k,

    when n=2k+1,

    In particular,we have

    In order to define the differential δ,we need the following lemma so that we have two di ff erent ways of expressing the elements of the set gnin terms of the elements of the set gn?1.The proof of Lemma 2.1 is straightforward and therefore omitted.

    Lemma 2.1For n≤1,we have

    Denote?:=?K.define

    and for 1≤n≤2m?2,δn:Pn→ Pn?1is given by

    The following theorem follows immediately from Lemma 2.1 and[12,Theorem 2.1].

    Theorem 2.1With the above notation,the complex

    is a minimal projective Ae-resolution of A,where δ0:P0→ A is the multiplication map.

    ProofLet X=g1and R=g2be the set of generators of I as above.Since A is a Koszul alg?ebra,by[3,Sect.9],it suffices to show that gnis a K-basis of the K-vector space

    We f i rst show that all thebelong to Kninductively.It is trivial for n=2.Assume that the assertion holds for n?1 and we prove it for n.By the induction hypothesis and the formula(2.1),The induction hypothesis and Lemma 2.1 show thatThe assertion follows from the fact that Kn=RXn?2∩ Xn?2R ∩XKn?1∩ Kn?1X.

    Next,gnis K-linearly independent since they have distinct supports.Also,the quadratic duality A!=kQ/I⊥of A is isomorphic to the Yoneda algebra E(A)of A,where I⊥is the ideal of KQ generated by R⊥={β1α1,βi+1αi+1+ αiβi|i=1,2,···,m ? 2}.So the Betti number of the minimal projective resolution of A over Aeis

    Hence gnis a K-basis of Kn.Then the result follows.

    3 Hochschild Cohomology Groups

    This section is devoted to finding K-bases of the Hochschild cohomology groups of A based on the minimal projective Ae-resolution constructed in the previous section.

    Applying HomAe(?,A)to the minimal resolution(P,δ),we have the complex

    Let B={e1,e2,···,em,β1,β2,···,βm?1,α1,α2,···,αm?1,β1α1,β2α2,···,βm?1αm?1}be a K-basis of algebra A,and K(B//gn)denote the vector space with a K-basis B//gn={(b,gnr,i)|We say that two paths α and β are parallel if o(α)=o(β)and t(α)=t(β).

    The following lemma is immediate,see[6,21]for details.

    Lemma 3.1HomAe(Pn,A)~=K(B//gn)as vector spaces.

    ProofIt is easy to see that

    as vector spaces.

    We fix an isomorphism φ :K(B//gn) → HomAe(Pn,A)sending(b,γ) ∈ (B//gn)to the Ae-homomorphism f(b,γ)∈ HomAe(Pn,A),which assigns o(γ)? t(γ)to b,and zero otherwise.The cochain complex above changes into

    where we still denote bythe induced linear maps.

    Lemma 3.2Kerhas a K-basisand dimKIm=m?1.

    ProofUnder the K-bases,

    B//g0={(e1,e1),(e2,e2),···,(em,em),(β1α1,e1),(β2α2,e2),···,(βm?1αm?1,em?1)}and

    B//g1={(β1,β1),(β2,β2),···,(βm?1,βm?1)(α1,?α1),(α2,?α2),···,(αm?1,?αm?1}.It is not difficult to calculate the matrix of the linear map δ?1which is

    with the right m?1 columns zero.It is clear that rankA1=m?1,and hence dimKIm=rankA1=m?1,and dimKKer=|B//g0|?rankA1=(m+m?1)?(m?1)=m.One can easily check that

    Noticing that HHn(A)=Kerwe next find out a K-basis of the kernel space Kerand the image space Imfor n>0,respectively.They will be discussed in four cases.

    Case I:n=4t,t≠0.Set

    Case II:n=4t+1,t≠0.Set

    Case III:n=4t+2.Set

    Case IV:n=4t+3.Set

    Lemma 3.3U forms a K-basis of Imand V forms a K-basis of Ker.

    ProofWe only prove the case I,and the other cases are similar and their proofs are omitted here.It is not difficult to calculate the matrix of the linear mapunder the K-bases B//gn?1=The matrix Anis

    whose first m?2t rows are zero.The rank of Anis m?2t?1 and hence dimKIm=rankAn=m?2t?1 and dimKKer=|B//gn?1|?dimKIm=2(m?2t)?(m?2t?1)=m?2t+1.

    It is easy to see that

    可靠性監(jiān)控(圖2)主要用于監(jiān)控汽車使用和維修過程的可靠性,同時(shí)也監(jiān)控系統(tǒng)功能,例如結(jié)構(gòu)改變原始記錄、維修記錄、故障庫、限值數(shù)據(jù)、排除故障數(shù)據(jù)、質(zhì)量數(shù)據(jù)、費(fèi)用數(shù)據(jù)、零部件和用于管理維修過程的其他各種程序等。

    Since the setis K-linear independent and has m?2t?1 elements,it is a K-basis of Im.

    Clearly,

    It follows that

    which is obviously K-linear independent and has m?2t+1 elements,so it is a K-basis of Ker.The proof is finished.

    Now it is a position to give a K-basis of the Hochschild cohomological space HHn(A).

    Theorem 3.1Let A=KQ/I be the K-algebra defined as in the introduction.Then we have

    (1)dimKHHi(A)=

    (2)HH0(A)has a basis

    HH4t(A)has a basis

    HH4t+1(A)has a basis

    HH4t+2(A)has a basis

    HH4t+3(A)has a basis

    Here these basis elements represent the representatives of the corresponding elements in HHn(A).

    ProofIt follows from Lemmas 3.2–3.3 and the fact that HHi(A)=Kerdirectly.

    Remark 3.1The dimension of the Hochschild cohomological space HHn(A) was obtained by de la Pea and Xi in[17]in a different way.

    4 The Cup Product

    In this section we will describe the multiplicative structure of the Hochschild cohomology ring of A in terms of parallel paths.In[23]it was shown that for any projective Ae-resolution P of a f i nite dimensional algebra A,there exists a unique(up to homotopy)chain map Δ :P → P?AP lifting the identity.P gives rise to a “cup product” of two elements η in HHm(A)and θ in HHn(A)by using the composition

    coinciding with the ordinary cup product and being independent of the projective resolution P of A and the chain map Δ.

    The following lemma provides an explicit description of the so-called“comultiplicative structure” of the generators of each Pnin(P,δ),which is key to def i ning a chain map Δ.

    Lemma 4.1For any given p=0,1,···,n,we have

    ProofWe use induction on p.There is nothing to prove provided that p=0.If p=1,thenwhich is just the de fining formula of

    Suppose now that the formula holds true for p=k.We consider the case p=k+1.By the induction hypothesis and the formula(2.1),we have

    The result follows.

    The lemma allows us to give the Definition of the map Δ :P → P?AP.First we recall the tensor product chain complex(P?AP,D)of(P,δ).Its n-th object isand the differential Dn:(P?AP)n→(P?AP)n?1is given byBy abuse of notations,we denote by othe corresponding idempotent eo(gnr,i)(resp.),and bythe generator oof Pn.

    Definition 4.1The A-A-bimodule map Δ =(Δn):P → P?AP is defined by

    for 0≤n≤2m?2 and the other Δnare all zero.

    Lemma 4.2The map Δ :(P,δ)→ (P?AP,D)defined as above is a chain map.

    ProofTo prove the result,it suffices to show that the diagram

    is commutative for n≥1.

    Letdenote the element of Pt?APn?1?t.By the Definition of Δ and=(?1)nei?βi+n?2r?1+ei?αi+n?2r+(?1)rβi?ei+n?2r+(?1)rαi?1?ei+n?2r,we have

    On the other hand,noting that

    and

    we can directly check that

    and thus Δn?1δn=DnΔnas desired.The proof is finished.

    In order to give an explicit description of the Hochschild cohomology ring of A,we first give the cup product on the level of cochains,which is essentially juxtaposition of parallel paths up to sign.

    Lemma 4.3Let A=KQ/I be the K-algebra defined as in the introduction.Then

    Hereis viewed as 0 whenever b1b2∈I.

    ProofLet ηn1=and ηn2=Using the composition

    we have

    When s≠r1or i≠k,we haveAnd when r?s≠r2or j≠k+n1?2s,we haveThus,only in the case of s=r1,i=k,r?s=r2and j=i+n1?2r1we haveBy the isomorphism of Lemma 3.1,it is easy to see that in the case of j=i+n1? 2r1,we haveand otherwise is zero.

    Theorem 4.1Let A=KQ/I be the K-algebra defined as in the introduction.

    (1)is the identity of HH?(A),and for any ηj=(βjαj,ej)∈ HH0(A),ξ∈ HH?(A),ξ/∈K,we have ηj︶ξ=ξ︶ηj=0.

    (2)Let ηn1and ηn2be the unique basis elements of HHn1(A)and HHn2(A)with n1n2>0,respectively.We have

    ProofIt follows from Lemma 4.3 directly.

    Now we can give a description of the multiplication structure of the Hochschild cohomology ring of A by giving an explicit presentation by generators and relations.Let x1,x2,···,xm?1,y,z be the indeterminates of degree 0,0,···,0,1,2 respectively.Let Λ =K[x1,x2,···,xm?1,y,z]/J,where J is the two-sided ideal of the polynomial algebra K[x1,x2,···,xm?1,y,z]generated by

    xixj=0, xiy=0, xiz=0, 1≤i,j≤m?1, y2=0, zm=0, yzm?1=0.

    Theorem 4.2Let A=KQ/I be the K-algebra defined as in the introduction.Then HH?(A) ~= Λ.

    ProofWe omit the symbol of the cup product ︶ of two elements of HH?(A)for simplicity.Clearlyis the identity of HH?(A).Denote

    By Theorem 4.1,we have

    Hence HH?(A)can be generated by x1,x2,···,xm?1,y,z over K.Also,by Theorem 4.1,it is easy to find that any two elements in HH?(A)are commutative and the following relations hold true:

    xixj=0, xiy=0, xiz=0, 1≤i,j≤m?1, y2=0, zm=0, yzm?1=0.

    Then we construct an epimorphic algebra homomorphism

    ? :K[x1,x2,···,xm?1,y,z]→ HH?(A)

    sending x1,x2,···,xm?1,y,z to x1,x2,···,xm?1,y,z,respectively.Clearly,J ? Ker? by the relations above.Noticing thatas a graded algebra satisfies that dimKΛ0=m and dimKΛj=1 for j≥ 1,we can immediately obtain that HH?(A) ~= Λ by comparing the dimensions of graded algebras HH?(A)and Λ.

    Remark 4.1Since the Hochschild cohomology of algebras is Morita-invariant,the above theorem describes the Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation- finite q-Schur algebras Sq(n,r)for n≥r.

    [1]Ardizzoni,A.,Menini,C.and Stefan,D.,Hochschild cohomology and smoothness in monoidal categories,J.Pure Appl.Algebra,208,2007,297–330.

    [2]Buchweitz,R.O.,Green,E.L.,Snashall,N.and Solberg,?.,Multiplicative structures for Koszul algebras,Quart.J.Math.,59(4),2008,441–454.

    [3]Bulter,M.C.R.and King,A.D.,Minimal resolution of algebras,J.Algebra,212,1999,323–362.

    [4]Bustamante,J.C.,The cohomology structure of string algebras,J.Pure Appl.Algebra,204,2006,616–626.[5]Birman,J.and Wenzl,H.,Braids,link polynomials and a new algebra,Trans.Amer.Math.Soc.,313,1989,249–273.

    [6]Cibils,C.,Rigidity of truncated quiver algebras,Adv.Math.,79,1990,18–42.

    [7]Erdmann,K.and Holm,T.,Twisted bimodules and Hochschild cohomology for self-injective algebras of class An,Forum Math.,11,1999,177–201.

    [8]Erdmann,K.and Schroll,S.,On the Hochschild cohomology of tame Hecke algebras,Arch.Math.,94,2010,117–127.

    [9]Erdmann,K.and Snashall,N.,On Hochschild cohomology of preprojective algebras,II,J.Algebra,205,1998,413–434.

    [10]Fan,J.M.and Xu,Y.G.,On Hochschild cohomology ring of Fibonacci algebras,Frontiers of Mathematics in China,1(4),2006,526–537.

    [11]Gerstenhaber,M.,On the deformation of rings and algebras,Ann.Math.,79,1964,59–103.

    [12]Green,E.L.,Hartman,G.,Marcos,E.N.and Solberg,?.,Resolutions over Koszul algebras,Arch.Math.,85,2005,118–127.

    [13]Green,E.L.and Solberg,?.,Hochschild cohomology rings and triangular rings,Happel,D.and Zhang,Y.B.(eds.),Proceedings of the Ninth International Conference,Beijing Normal University Press,Beijing,2,2002,192–200.

    [14]Green,E.L.,Solberg,? and Zacharia,D.,Minimal projective resolutions,Trans.Amer.Math.Soc.,353,2001,2915–2939.

    [15]Happel,D.,Hochschild cohomology of finite-dimensional algebras,Lecture Notes in Mathematics,1404,Springer-Verlag,New York,1989,108–126.

    [16]Hochschild,G.,On the cohomology groups of an associative algebra,Ann.Math.,46(1),1945,58–67.

    [17]De la Pena,J.A.and Xi,C.C.,Hochschild cohomology of algebras with homological ideals,Tsukuba J.Math.,30(1),2006,61–80.

    [18]Jones,V.F.R.,Index for subfactors,Invent.Math.,72,1983,1–25.

    [19]Jones,V.F.R.,A polynomial invariant for links via von Neumann algebras,Bulletin of the Amer.Math.Soc.,129,1985,103–112.

    [20]Kau ff man,L.H.,Knots in Physics,World Scientic Press,River Edge,NJ,1994.

    [21]Strametz,C.,The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra,Comptes Rendus Mathematique,334,2002,733–738.

    [22]Skowro′nski,A.,Simply connected algebras and Hochschild cohomology,Can.Math.Soc.Proc.,14,1993,431–447.

    [23]Siegel,S.F.and Witherspoon,S.J.,The Hochschild cohomology ring of a group algebra,Proc.London Math.Soc.,79(3),1999,131–157.

    [24]Temperley,H.N.V.and Lieb,E.H.,Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices:Some exact results for the percolation problem,Proc.R.Soc.Lon.(Ser.A),322,1971,251–280.

    [25]Westbury,B.W.,The representation theory of the Temperley-Lieb algebras,Math.Z.,219(4),1995,539–565.

    [26]Xi,C.C.,On representation types of q-Schur algebras,J.Pure Appl.Algebra,84,1993,73–84.

    [27]Xu,Y.G.and Xiang,H.L.,Hochschild cohomology rings of d-Koszul algebras,J.Pure Appl.Algebra,215,2011,1–12.

    猜你喜歡
    排除故障原始記錄限值
    計(jì)量檢定中原始記錄的重要性
    光通信傳輸網(wǎng)排除故障的關(guān)鍵技術(shù)分析
    電子測試(2018年22期)2018-12-19 05:12:22
    關(guān)于廢水排放特別限值的思考
    維修電工的五項(xiàng)操作技巧
    遼寧省遼河流域石油煉制排放限值的制定
    DZZ5溫度異常偏大的原因與分析
    中美煉鋼行業(yè)污染物排放限值研究
    淺析數(shù)字電視前端設(shè)備的技術(shù)應(yīng)用研究
    環(huán)境保護(hù)部解讀新發(fā)布的大氣污染物特別排放限值
    模板化原始記錄在應(yīng)用中存在的問題分析
    无遮挡黄片免费观看| 国产私拍福利视频在线观看| 悠悠久久av| 欧美 亚洲 国产 日韩一| 夜夜躁狠狠躁天天躁| 两人在一起打扑克的视频| 亚洲欧美日韩高清专用| 90打野战视频偷拍视频| 一级a爱片免费观看的视频| 女人高潮潮喷娇喘18禁视频| 精品国产亚洲在线| 色老头精品视频在线观看| 国产av麻豆久久久久久久| 最近最新中文字幕大全电影3| 精品久久久久久成人av| 亚洲一区高清亚洲精品| 久久性视频一级片| 欧美黑人巨大hd| 亚洲精品色激情综合| 欧美黑人精品巨大| 男人舔女人下体高潮全视频| 人人妻人人澡欧美一区二区| 久久香蕉精品热| 欧美精品啪啪一区二区三区| 亚洲午夜理论影院| 麻豆一二三区av精品| 日本一本二区三区精品| svipshipincom国产片| 欧美成人免费av一区二区三区| 免费在线观看成人毛片| 中国美女看黄片| 中亚洲国语对白在线视频| 一夜夜www| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看日本一区| 日韩欧美在线二视频| 免费在线观看成人毛片| 黄色视频不卡| 精华霜和精华液先用哪个| 成年版毛片免费区| 女人爽到高潮嗷嗷叫在线视频| 亚洲午夜理论影院| 看片在线看免费视频| 日日夜夜操网爽| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品久久男人天堂| 国产v大片淫在线免费观看| 热99re8久久精品国产| 在线观看免费午夜福利视频| 真人一进一出gif抽搐免费| 嫁个100分男人电影在线观看| 91国产中文字幕| 丝袜美腿诱惑在线| 我要搜黄色片| 国产私拍福利视频在线观看| www.999成人在线观看| 欧美黑人欧美精品刺激| 亚洲男人天堂网一区| 日韩欧美一区二区三区在线观看| 国产精品久久久人人做人人爽| av国产免费在线观看| 日韩欧美精品v在线| 神马国产精品三级电影在线观看 | 日本精品一区二区三区蜜桃| 99精品欧美一区二区三区四区| www.999成人在线观看| 亚洲熟妇中文字幕五十中出| 香蕉av资源在线| 国产私拍福利视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲av日韩精品久久久久久密| 长腿黑丝高跟| 亚洲国产欧美人成| 亚洲精品粉嫩美女一区| 日韩 欧美 亚洲 中文字幕| 日本五十路高清| 久久久国产欧美日韩av| 亚洲国产精品999在线| 美女大奶头视频| 色噜噜av男人的天堂激情| 亚洲国产看品久久| 国产av一区二区精品久久| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 国产又色又爽无遮挡免费看| 亚洲美女黄片视频| 亚洲成人精品中文字幕电影| 欧美+亚洲+日韩+国产| 国内少妇人妻偷人精品xxx网站 | 精品国产亚洲在线| 欧美日韩黄片免| 亚洲欧美日韩高清在线视频| 欧美一级a爱片免费观看看 | 久久99热这里只有精品18| 国产主播在线观看一区二区| 少妇被粗大的猛进出69影院| 亚洲国产欧洲综合997久久,| 国产精品久久久久久精品电影| 99精品欧美一区二区三区四区| 国产精品九九99| 丝袜美腿诱惑在线| 欧美zozozo另类| 丝袜人妻中文字幕| 国产亚洲av嫩草精品影院| aaaaa片日本免费| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产一区二区精华液| 久久久久精品国产欧美久久久| 久久久精品大字幕| 国产精品电影一区二区三区| 久久久精品大字幕| 女人爽到高潮嗷嗷叫在线视频| 成人国产综合亚洲| 一边摸一边做爽爽视频免费| 亚洲电影在线观看av| 亚洲精品在线观看二区| 五月伊人婷婷丁香| 一区福利在线观看| 国产精品香港三级国产av潘金莲| 亚洲片人在线观看| 长腿黑丝高跟| 91成年电影在线观看| 国产一区二区激情短视频| 19禁男女啪啪无遮挡网站| 他把我摸到了高潮在线观看| 久久这里只有精品中国| 一进一出好大好爽视频| 久久香蕉国产精品| 一级片免费观看大全| 女警被强在线播放| 精品欧美国产一区二区三| 99精品久久久久人妻精品| 精品一区二区三区四区五区乱码| 亚洲精品国产一区二区精华液| 国产精品一区二区免费欧美| 99久久99久久久精品蜜桃| 国产精品乱码一区二三区的特点| 白带黄色成豆腐渣| 熟女电影av网| 亚洲精品一区av在线观看| 亚洲精品久久成人aⅴ小说| 国产黄a三级三级三级人| 在线观看美女被高潮喷水网站 | 我的老师免费观看完整版| 老熟妇仑乱视频hdxx| 国产野战对白在线观看| 一区福利在线观看| 亚洲18禁久久av| 性色av乱码一区二区三区2| 欧美色视频一区免费| 久久久国产成人精品二区| 日本一本二区三区精品| 香蕉久久夜色| 亚洲国产高清在线一区二区三| 精品午夜福利视频在线观看一区| 国产精品亚洲美女久久久| 91九色精品人成在线观看| 老司机在亚洲福利影院| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 午夜福利欧美成人| 久久中文看片网| 露出奶头的视频| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频1000在线观看| 99热6这里只有精品| 成人18禁在线播放| 国产在线精品亚洲第一网站| 丁香六月欧美| 成年版毛片免费区| 亚洲全国av大片| 欧美黑人精品巨大| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品久久久久5区| 一个人免费在线观看电影 | 成人三级黄色视频| 香蕉av资源在线| 久久中文字幕人妻熟女| 中亚洲国语对白在线视频| 国内精品久久久久久久电影| 国产成人欧美在线观看| www.精华液| 脱女人内裤的视频| 757午夜福利合集在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文av在线| 欧美性猛交黑人性爽| 国产精品av久久久久免费| 嫁个100分男人电影在线观看| 精品无人区乱码1区二区| 久久伊人香网站| 欧美高清成人免费视频www| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 亚洲成人精品中文字幕电影| avwww免费| 国产一区二区三区在线臀色熟女| www.www免费av| 国内精品久久久久久久电影| 精品久久久久久久久久久久久| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区mp4| 亚洲欧美日韩无卡精品| 麻豆国产97在线/欧美 | 又大又爽又粗| 人妻久久中文字幕网| 99精品在免费线老司机午夜| 一边摸一边做爽爽视频免费| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩精品亚洲av| 日本 欧美在线| 在线看三级毛片| 欧美一级a爱片免费观看看 | 亚洲精品美女久久久久99蜜臀| 露出奶头的视频| tocl精华| 亚洲欧洲精品一区二区精品久久久| 韩国av一区二区三区四区| 精品国产超薄肉色丝袜足j| 两个人免费观看高清视频| 露出奶头的视频| 欧美成人一区二区免费高清观看 | 中国美女看黄片| 国产亚洲欧美98| 欧美大码av| 欧美不卡视频在线免费观看 | 午夜激情福利司机影院| 精品久久久久久成人av| 精品高清国产在线一区| 曰老女人黄片| 999久久久国产精品视频| 欧美黑人欧美精品刺激| 免费人成视频x8x8入口观看| 欧美丝袜亚洲另类 | 亚洲国产欧洲综合997久久,| 日韩av在线大香蕉| e午夜精品久久久久久久| 中文字幕久久专区| 亚洲中文字幕一区二区三区有码在线看 | 女警被强在线播放| 午夜福利成人在线免费观看| 精品高清国产在线一区| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 国产成人精品无人区| 三级毛片av免费| 久久 成人 亚洲| 身体一侧抽搐| 无遮挡黄片免费观看| 久久久久久大精品| 亚洲色图 男人天堂 中文字幕| 精品午夜福利视频在线观看一区| 香蕉久久夜色| 日本免费一区二区三区高清不卡| 亚洲欧美日韩无卡精品| 视频区欧美日本亚洲| 国产精品美女特级片免费视频播放器 | 欧美日韩中文字幕国产精品一区二区三区| 精品欧美国产一区二区三| 国产又黄又爽又无遮挡在线| 国产亚洲精品久久久久久毛片| 少妇被粗大的猛进出69影院| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产成人精品久久二区二区免费| 麻豆成人av在线观看| 五月伊人婷婷丁香| 亚洲精品中文字幕一二三四区| 国产区一区二久久| 9191精品国产免费久久| 成人国产一区最新在线观看| 变态另类丝袜制服| 后天国语完整版免费观看| 久久久精品大字幕| 亚洲电影在线观看av| 亚洲av成人av| 欧美色视频一区免费| 精品国产乱子伦一区二区三区| 国产精品99久久99久久久不卡| av欧美777| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 国产精品亚洲美女久久久| 亚洲美女黄片视频| 亚洲性夜色夜夜综合| 久久久精品国产亚洲av高清涩受| 免费在线观看日本一区| 精品不卡国产一区二区三区| 亚洲美女视频黄频| 亚洲aⅴ乱码一区二区在线播放 | 欧美三级亚洲精品| 精品乱码久久久久久99久播| 一级片免费观看大全| www.熟女人妻精品国产| 欧美激情久久久久久爽电影| 日韩成人在线观看一区二区三区| 久久久精品欧美日韩精品| 日韩有码中文字幕| 色综合婷婷激情| 每晚都被弄得嗷嗷叫到高潮| 亚洲男人天堂网一区| 国产精华一区二区三区| 国产精品一区二区免费欧美| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 国产精品久久久久久人妻精品电影| 国产亚洲欧美98| 国产午夜精品论理片| 午夜福利高清视频| 深夜精品福利| 最近最新免费中文字幕在线| 蜜桃久久精品国产亚洲av| 又黄又爽又免费观看的视频| www日本黄色视频网| 制服丝袜大香蕉在线| 99久久国产精品久久久| 麻豆一二三区av精品| 精品电影一区二区在线| 亚洲精品粉嫩美女一区| 黄色片一级片一级黄色片| 色综合婷婷激情| 欧美av亚洲av综合av国产av| 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 国产精品乱码一区二三区的特点| 97人妻精品一区二区三区麻豆| 国产伦人伦偷精品视频| 国产v大片淫在线免费观看| 无限看片的www在线观看| 成人三级黄色视频| 久久中文字幕人妻熟女| 99热6这里只有精品| 无限看片的www在线观看| 国产一区在线观看成人免费| 51午夜福利影视在线观看| 特大巨黑吊av在线直播| 欧美激情久久久久久爽电影| 午夜a级毛片| 中国美女看黄片| svipshipincom国产片| 手机成人av网站| 国产精品av视频在线免费观看| a在线观看视频网站| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 九色国产91popny在线| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 国产单亲对白刺激| 国产精品99久久99久久久不卡| 深夜精品福利| 99久久国产精品久久久| 亚洲欧美日韩东京热| 国产精品久久久人人做人人爽| 久久午夜亚洲精品久久| 日日爽夜夜爽网站| 精品久久久久久,| 国产精品久久视频播放| 怎么达到女性高潮| 亚洲美女黄片视频| 免费搜索国产男女视频| 丰满人妻熟妇乱又伦精品不卡| 国产99白浆流出| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 精品国产美女av久久久久小说| tocl精华| 国产亚洲精品av在线| 99re在线观看精品视频| 天堂√8在线中文| 色精品久久人妻99蜜桃| 久久久久久久久免费视频了| 91字幕亚洲| 国产黄色小视频在线观看| 日韩欧美国产在线观看| 日韩精品青青久久久久久| cao死你这个sao货| xxx96com| 人人妻人人澡欧美一区二区| a级毛片在线看网站| 国产激情偷乱视频一区二区| 五月伊人婷婷丁香| 亚洲五月婷婷丁香| 国产亚洲精品av在线| 男女做爰动态图高潮gif福利片| 男人的好看免费观看在线视频 | 88av欧美| 精品无人区乱码1区二区| 激情在线观看视频在线高清| 亚洲精品美女久久av网站| e午夜精品久久久久久久| 国语自产精品视频在线第100页| 波多野结衣高清作品| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| videosex国产| 国产精品久久电影中文字幕| 午夜视频精品福利| 国产成人精品无人区| 午夜精品一区二区三区免费看| 在线视频色国产色| 99riav亚洲国产免费| 麻豆一二三区av精品| 久久这里只有精品中国| 99久久国产精品久久久| 白带黄色成豆腐渣| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 老司机靠b影院| 99国产精品一区二区蜜桃av| 成人一区二区视频在线观看| 国产真人三级小视频在线观看| 精品欧美国产一区二区三| 亚洲国产欧美网| 丰满人妻一区二区三区视频av | 亚洲一区中文字幕在线| 日韩三级视频一区二区三区| 色av中文字幕| 久久婷婷成人综合色麻豆| 欧美成人性av电影在线观看| 久99久视频精品免费| 欧美成人免费av一区二区三区| 亚洲精品中文字幕在线视频| 狠狠狠狠99中文字幕| 黄色a级毛片大全视频| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 三级男女做爰猛烈吃奶摸视频| 亚洲九九香蕉| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 欧美日韩福利视频一区二区| 手机成人av网站| 俄罗斯特黄特色一大片| 99热这里只有是精品50| 亚洲乱码一区二区免费版| 一本一本综合久久| 免费无遮挡裸体视频| 久久久国产精品麻豆| 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 日本成人三级电影网站| 俄罗斯特黄特色一大片| 亚洲在线自拍视频| 99re在线观看精品视频| 无人区码免费观看不卡| 三级男女做爰猛烈吃奶摸视频| 露出奶头的视频| 夜夜躁狠狠躁天天躁| avwww免费| e午夜精品久久久久久久| 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 真人做人爱边吃奶动态| 亚洲成人国产一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美国产一区二区入口| a在线观看视频网站| 亚洲一区二区三区不卡视频| 国产欧美日韩精品亚洲av| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 欧美精品啪啪一区二区三区| 亚洲av日韩精品久久久久久密| 观看免费一级毛片| 美女午夜性视频免费| 国产成人aa在线观看| 亚洲电影在线观看av| 人成视频在线观看免费观看| 在线观看舔阴道视频| 国产av不卡久久| 丰满人妻熟妇乱又伦精品不卡| 五月伊人婷婷丁香| 在线看三级毛片| 999久久久国产精品视频| www.www免费av| 欧美精品亚洲一区二区| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 中文字幕人妻丝袜一区二区| √禁漫天堂资源中文www| 国产精品久久久av美女十八| 日本一区二区免费在线视频| 全区人妻精品视频| 欧美zozozo另类| 人人妻人人看人人澡| 亚洲18禁久久av| 国内久久婷婷六月综合欲色啪| 美女免费视频网站| 欧美色欧美亚洲另类二区| 妹子高潮喷水视频| 国产精品 国内视频| 不卡av一区二区三区| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 久久中文看片网| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 成年免费大片在线观看| 97碰自拍视频| 在线观看免费午夜福利视频| 国产精品久久久久久久电影 | 欧美日韩精品网址| 性色av乱码一区二区三区2| netflix在线观看网站| 色综合站精品国产| 99精品在免费线老司机午夜| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区| 午夜福利在线在线| 午夜老司机福利片| 国产爱豆传媒在线观看 | 国产午夜福利久久久久久| 精品久久久久久久末码| 嫩草影视91久久| 国产精品美女特级片免费视频播放器 | 国产v大片淫在线免费观看| 国产三级在线视频| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 成人手机av| 成人特级黄色片久久久久久久| 久久久久国内视频| 变态另类成人亚洲欧美熟女| 岛国在线免费视频观看| 91九色精品人成在线观看| 国产一区二区三区在线臀色熟女| 在线国产一区二区在线| 99国产综合亚洲精品| 亚洲午夜理论影院| 久久人妻福利社区极品人妻图片| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 黄色毛片三级朝国网站| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 88av欧美| 一级毛片女人18水好多| 亚洲av成人av| 一级毛片精品| 国产av不卡久久| 久久国产精品人妻蜜桃| 亚洲av美国av| 高潮久久久久久久久久久不卡| 波多野结衣高清作品| 日日夜夜操网爽| 麻豆国产97在线/欧美 | 亚洲成人久久性| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠躁躁| 免费在线观看亚洲国产| 免费看a级黄色片| 亚洲第一欧美日韩一区二区三区| 色噜噜av男人的天堂激情| 精品久久久久久成人av| 99久久精品热视频| 欧美大码av| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 九色成人免费人妻av| 久久久久久久久中文| 嫩草影院精品99| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 国语自产精品视频在线第100页| 国产成人影院久久av| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 亚洲精品中文字幕在线视频| 免费在线观看黄色视频的| ponron亚洲| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 亚洲一区高清亚洲精品| 啦啦啦免费观看视频1| 日本在线视频免费播放| 午夜免费观看网址| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 亚洲av片天天在线观看| 国产三级黄色录像| 国产亚洲精品一区二区www| 亚洲精品中文字幕一二三四区| 免费无遮挡裸体视频| 狂野欧美激情性xxxx| 国产午夜福利久久久久久| 女警被强在线播放| 亚洲乱码一区二区免费版| 久久精品国产99精品国产亚洲性色| 一区福利在线观看| 国产精品一区二区免费欧美| 麻豆国产97在线/欧美 | 我的老师免费观看完整版| 亚洲人与动物交配视频| 精品久久久久久,| 亚洲精品国产一区二区精华液| 18禁国产床啪视频网站| 国产99久久九九免费精品|