劉躍平,楊翔,徐含青,李永川,李明,黃慶,府偉靈
CYP2C9、VKORC1基因多態(tài)性與華法林個體化用藥研究進(jìn)展
劉躍平,楊翔,徐含青,李永川,李明,黃慶,府偉靈
盡管具有治療指數(shù)狹窄和出血并發(fā)癥頻繁的弊病,華法林仍是臨床上應(yīng)用非常廣泛的口服抗凝血藥物。不同患者對華法林的反應(yīng)差異很大,在達(dá)到相同治療效果的情況下,不同個體的用藥劑量可能相差20倍之多。華法林的治療劑量受多種因素影響,包括基因多態(tài)性、體重指數(shù)、年齡等及其他藥物因素等,這就要求臨床醫(yī)師在應(yīng)用華法林時需注重個體化用藥及選擇最優(yōu)治療方案。多種基因可影響華法林的藥物代謝,其中細(xì)胞色素P450 2C9(CYP2C9)及維生素K環(huán)氧化物還原酶復(fù)合體1(VKORC1)基因多態(tài)性是目前研究的重點(diǎn)。本文將綜述以上兩個基因的基因多態(tài)性及其與華法林個體化用藥相關(guān)性的研究進(jìn)展。
細(xì)胞色素P450 CYP2C9;維生素K環(huán)氧化物還原酶復(fù)合體1;遺傳藥理學(xué);華法林;個體化醫(yī)學(xué);多態(tài)性,單核苷酸
華法林是當(dāng)今抗凝治療的首選藥,主要用于機(jī)械心臟瓣膜置換術(shù)術(shù)后、非瓣膜性心房顫動以及深靜脈血栓等患者的抗凝治療[1-3]。華法林的缺點(diǎn)在于其治療指數(shù)狹窄,劑量個體差異大,即使同一個個體在不同時期所需的劑量也可能不同[4]。華法林的劑量受多種因素影響,如遺傳基因多態(tài)性、體重指數(shù)、年齡等及其他藥物因素等[5]。自關(guān)于基因多態(tài)性與華法林劑量的關(guān)系報(bào)道以來,華法林的個體化用藥研究逐漸集中在與藥物代謝有關(guān)的基因上,如細(xì)胞色素P450 2C9 (cytochromeP450 2C9,CYP2C9)基因、維生素K環(huán)氧化物還原酶復(fù)合體1(vitamin K epoxide reductase complex subunit 1,VKORC1)、細(xì)胞色素P450 4F2(cytochromeP450 4F2,CYP4F2)、γ-谷氨酰胺羧化酶(gamma-glutamylcarboxylase,GGCX)和鈣腔蛋白(calumenin,CALU)基因,其他還有環(huán)氧化物水解酶(epoxide hydrolase,EPHX1)、載脂蛋白E(apolipoprotein E,apoE)基因等[1],其中CYP2C9、VKORC1基因多態(tài)性已成為近年研究的重點(diǎn)。一項(xiàng)針對197例心臟機(jī)械瓣膜置換術(shù)后中國漢族患者VKORC1、CYP2C9、CYP4F2和EPHX1基因多態(tài)性對華法林劑量影響的研究表明:VKORC11639G>A、CYP2C9 1075A>C(CYP2C9*3)、EPHX1 rs2292566、CYP4F2 rs2108622基因多態(tài)性以及體重和年齡分別解釋了30.2%、7.0%、2.8%、3.6%、1.9%和1.7%的華法林個體劑量差異[6]。
華法林是20世紀(jì)40年代美國Wisconsin大學(xué)合成的香豆素類口服抗凝血藥,通過特異性抑制維生素K環(huán)氧化物還原酶(vitamin K epoxide reductase,VKOR)的催化反應(yīng)而發(fā)揮抗凝作用,VKOR主要由VKORC1基因編碼[7-9]。VKOR能夠催化維生素K的環(huán)氧化物轉(zhuǎn)化為還原型維生素K,還原型維生素K是GGCX的必要輔助因子。不具活性的凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ前體和蛋白質(zhì)C、S、Z前體在GGCX的作用下轉(zhuǎn)化為具有活性的凝血因子和蛋白質(zhì),進(jìn)而發(fā)生一系列級聯(lián)反應(yīng),引起血液凝固(圖1)。
圖1 華法林的抗凝機(jī)制及代謝示意圖Fig.1 Schematic representation of warfarin metabolism and its mechanism of action
華法林口服生物利用度高,口服后很快被腸道吸收,90min后血藥濃度達(dá)到高峰。半衰期為36~42h,在血漿中主要與白蛋白結(jié)合,結(jié)合率為90%。用藥后20~30h起效,停藥后作用可持續(xù)4~5d[10]。臨床使用的華法林是消旋酸光學(xué)異構(gòu)體的混合物,其中S型華法林的效能是R型華法林的3~5倍,S型華法林占據(jù)了華法林效應(yīng)的60%~70%[11]。這兩種華法林都是在肝臟中被清除且清除率均較低。CYP2C9僅負(fù)責(zé)藥理活性更強(qiáng)的S型華法林的代謝。R型華法林雖然活性低,但代謝卻十分活躍,可以通過CYP1A2、CYP1A2、CYP3A4和酮還原酶在肝臟中進(jìn)行代謝。因此,僅僅一種酶的變化對R型華法林的代謝影響很小,大多數(shù)情況下,R型華法林在華法林所引起的出血并發(fā)癥中所占比例極小。S型華法林的主要代謝產(chǎn)物是S-7羥基-華法林,另外還有少量的S-6-羥基-華法林。這些反應(yīng)都是由CYP2C9來介導(dǎo)的。
2.1 CYP2C9基因結(jié)構(gòu)及突變類型 人體內(nèi)代謝藥物的酶主要是細(xì)胞色素P450超家族(cytochrome P450,CYP),它們是一類主要存在于肝臟、腸道中的單加氧酶,多位于細(xì)胞內(nèi)質(zhì)網(wǎng)上,催化多種內(nèi)、外源物質(zhì)包括大多數(shù)臨床藥物的代謝[12]。CYP2C亞家族是一類重要的藥物代謝酶,占肝微粒體CYP蛋白總量的18%,催化大約20% CYP介導(dǎo)代謝的臨床藥物[13]。CYP2C9同工酶主要氧化代謝一些應(yīng)用較為廣泛的臨床藥物,包括苯妥因(phenytoin)、華法林(S-warfarin)、甲苯磺丁脲(tolbutamide)、非甾體抗炎藥(NSAIDS)、氯沙坦(losartan)、托拉塞米(torasemide)等100余種藥物[14]。在這些藥物中,一些治療指數(shù)狹窄的藥物代謝受到更多關(guān)注,如華法林、甲苯磺丁脲和苯妥因,因?yàn)镃YP2C9代謝活性受損可能影響藥物在體內(nèi)的實(shí)際含量,甚至可能造成中毒。CYP2C9具有表型和基因型多態(tài)性,且其表型和基因型多態(tài)性與治療指數(shù)狹窄的華法林類藥物的療效及毒副作用密切相關(guān)。
編碼CYP2C9蛋白的基因(Gene ID:1559,NG_008385.1)位于10號染色體長臂(10q24.2),全長約為50kb,包含9個外顯子和8個內(nèi)含子,可讀框長度為1472bp。酶代謝活性的降低或缺失與CYP2C9基因的突變密切相關(guān)。CYP2C9基因的多態(tài)性主要取決于編碼區(qū)的單核苷酸多態(tài)性(SNPs)[15]。SNPs是指人類基因組中存在的單個核苷酸變異,是一個具有高度穩(wěn)定性的遺傳標(biāo)志。一般認(rèn)為SNPs在人群中出現(xiàn)的頻率應(yīng)大于0.3%[16]。人類細(xì)胞色素P450等位基因命名委員會(http://www.cypalleles. ki.se/cyp2c9.htm)已經(jīng)命名58種SNPs,分別以CYP2C9*1~CYP2C9*58命名[17]。決定酶高活性的等位基因CYP2C9*1為野生型等位基因,野生型等位基因具有正常的酶代謝活性,突變型的純合子或雜合子酶代謝活性與野生型相比,都有不同程度的降低,雜合子基因型CYP2C9*1/*3對S型華法林的清除率只有野生型純合子CYP2C9*1的90%,而突變型純合子CYP2C9*3則僅為CYP2C9*1的60%[18]。CYP2C9基因突變類型及其突變頻率在不同種族間存在明顯的差異[19-20]。一項(xiàng)針對中國浙江省與河北省健康漢族人的大規(guī)模調(diào)查結(jié)果顯示,出現(xiàn)頻率較高的等位基因?yàn)镃YP2C9*1、CYP2C9*3、CYP2C9*16、CYP2C9*29和CYP2C9*13,頻率分別是94.48%、2.94%、0.19%、0.19%和0.16%,出現(xiàn)頻率較高的基因型為CYP2C9*1/*1、CYP2C9*1/*3、CYP2C9*1/*16、CYP2C9*1/*29和CYP2C9*1/*13,頻率分別是89.23%、5.36%、0.38%、0.38%和0.33%[21]。此次調(diào)查未見純合子CYP2C9*2/*2,純合子CYP2C9*3/*3的出現(xiàn)頻率為0.24%。CYP2C9*2在該次調(diào)查中出現(xiàn)的頻率并不高,僅為0.14%,與Sanchez-Diz針對西班牙白種人群的調(diào)查結(jié)果相差較大,Sanchez-Diz的調(diào)查顯示,在西班牙白種人群中CYP2C9*2基因的出現(xiàn)頻率為15.80%[22],一項(xiàng)針對日本人的調(diào)查顯示CYP2C9*2與CYP2C9*3的基因出現(xiàn)頻率為0.00%和3.40%[23],針對埃塞俄比亞的調(diào)查顯示CYP2C9*2與CYP2C9*3的基因出現(xiàn)頻率為4.30%和2.30%[24],可見亞洲人群與非洲人群的CYP2C9*2、CYP2C9*3基因出現(xiàn)頻率明顯低于高加索人群。我國民族眾多,地域廣闊,不能排除存在其他基因型的可能,目前針對少數(shù)民族CYP2C9基因多態(tài)性的研究還比較少,需要更多的研究來加以證實(shí)。
2.2 VKORC1基因結(jié)構(gòu)及突變類型 VKOR是華法林的作用靶點(diǎn)[25]。編碼VKOR蛋白的基因VKORC1(Gene ID:79001)位于16號染色體短臂(16p11.2),全長約4100bp,包含3個外顯子。在VKORC1編碼區(qū)和非編碼區(qū)存在大量的多態(tài)性位點(diǎn),其中對華法林劑量有影響的單核苷酸多態(tài)性位點(diǎn)主要有啟動子區(qū)1639位置G>A,第一個內(nèi)含子1173位置C>T。VKORC1-1639GG和VKORC1-1173CC被稱作非變異或野生基因型,VKORC1-1639GA和VKORC1-1173CT是雜合突變基因型,與野生基因型相比,攜帶雜合突變基因型的患者需要華法林劑量相對較低的;VKORC1-1639AA和VKORC1-1173TT是純合子突變基因型,與野生基因型相比,攜帶純合子突變基因型的患者需要的華法林劑量更低一些[26-27]。
VKORC1基因突變頻率在不同種族間也存在顯著差異。一項(xiàng)關(guān)于VKORC1基因型在亞洲國家分布的研究表明,隨著地理位置從東亞向西亞跨越,純合子突變基因型和突變等位基因的出現(xiàn)頻率都在遞減[28]。純合子突變基因型頻率在東亞的中國和日本分別是82.80%(2493/3011)和83.60% (1876/2244),在東南亞的泰國和印度尼西亞分別是63.15%(209/331)和63.04%(215/341),在南亞的伊朗是27.05%(56/207),在西亞的阿曼和土耳其則是14.33%(51/356)和24.92%(76/305)。這也很好地解釋了為什么中國、日本、伊朗和阿曼的華法林標(biāo)準(zhǔn)日用量分別為3.43、2.62、3.79和4.75mg[29-32]。
Aithal發(fā)表于Lancet的一項(xiàng)研究發(fā)現(xiàn),華法林低劑量組約81%的患者(29/36)有1~2個突變等位基因,而在對照組,這一比例僅為40%(40/100),兩組之間的OR(odds ratio)值為6.21(95%CI 2.48~15.6)[33],說明CYP2C9變異等位基因與華法林的維持劑量緊密相關(guān)[34]。該項(xiàng)研究還發(fā)現(xiàn),華法林低劑量組發(fā)生嚴(yán)重出血并發(fā)癥的比例為11/132.8,而在隨機(jī)臨床對照組這一比例為7/311.1,兩組之間的RR(rate ratio)值為3.68(95%CI 1.43~9.50,P=0.007)[33],進(jìn)一步說明有突變的個體發(fā)生出血并發(fā)癥的頻率較高。
不同個體患者對華法林的反應(yīng)差異很大,因此要達(dá)到同樣的效果[國際標(biāo)準(zhǔn)化比值(INR)介于2和3之間],劑量相差有20倍之多,從1mg到超過20mg[4,11]。為達(dá)到華法林最優(yōu)治療效果并為華法林的個體化用藥提供實(shí)驗(yàn)室支持,研究者們進(jìn)行了多項(xiàng)前瞻性隨機(jī)對照研究[35-41]。歐洲抗凝治療藥物基因組學(xué)小組(European Pharmacogenetics of Anticoagulant Therapy Group,EU-PACT)的一項(xiàng)多中心、單盲、前瞻性隨機(jī)對照試驗(yàn)[41],對征集的455例患者進(jìn)行隨機(jī)分組,227例患者為基因型指導(dǎo)用藥小組(Genotype-Guided group),另外228例患者為常規(guī)給藥組,即對照組。兩組的區(qū)別在于初始給藥方案不同,基因型指導(dǎo)用藥小組根據(jù)患者的基因型[CYP2C9*2,CYP2C9*3和VKORC1(1639G>A)]測試結(jié)果進(jìn)行為期5d的給藥方案,對照組按照當(dāng)?shù)爻R?guī)治療方案進(jìn)行為期3d的給藥,而兩組在初始給藥之后的維持性治療方案都一樣,對其進(jìn)行為期3個月的隨訪,主要的比較指標(biāo)有INR值介于2和3之間的時間所占百分比、達(dá)到治療INR值所需要的時間和抗凝過度(INR≥4.0)時間所占百分比。結(jié)果顯示,與對照組比較,基因型指導(dǎo)用藥小組INR值介于2和3之間的時間所占百分比更高(67.4%vs60.3%,P<0.001,圖2),達(dá)到治療INR值所需要的時間更短(圖3)、抗凝過度時間所占百分比更低(27.0%vs36.6%,P=0.03)。上述結(jié)果表明,基因型指導(dǎo)的給藥方案效果要優(yōu)于常規(guī)給藥方案,但還需要更大規(guī)模和涉及更多種族的前瞻性研究予以證實(shí)。
國內(nèi)外也有不少學(xué)者發(fā)表了以CYP2C9和VKORC1基因多態(tài)性為依據(jù),結(jié)合其他因素如年齡、性別、身高、體重等的華法林劑量預(yù)測數(shù)學(xué)模型[27,42]。但這些以藥物遺傳學(xué)為基礎(chǔ)的華法林維持劑量預(yù)測模型大多是根據(jù)回顧性研究結(jié)果開發(fā)出來的,因此在實(shí)際應(yīng)用于臨床之前必須通過前瞻性研究對其加以驗(yàn)證以確定臨床效果和安全性[43]。
圖2 平均INR值(A)和INR值介于2和3之間的時間所占百分比(B)[41]Fig. 2 Mean international normalized ratio (INR) (A) and percentage of time in the therapeutic INR range (B)[41]
圖3 達(dá)到治療INR值所需時間(A)和達(dá)到穩(wěn)定維持治療劑量所需時間(B)的Kaplan-Meier曲線[39]Fig.3 Kaplan-Meier plots of the time to reach a therapeutic INR (A) and to reach a stable warfarin dose (B)[39]
藥物基因組學(xué)及相關(guān)基因多態(tài)性在華法林類藥物的合理使用和個體化用藥上具有重要意義,因此美國食品藥品管理局(FDA)更換了華法林藥物標(biāo)簽,增加了“患者的相關(guān)基因信息有助于患者初始劑量的選擇”(http://www.accessdata.fda.gov/ drugsatfda_docs/label/2010/009218s108lbl.pdf)的內(nèi)容,以優(yōu)化治療方案,避免藥物不良反應(yīng)。但患者是采用常規(guī)用藥策略(標(biāo)準(zhǔn)劑量給藥后再根據(jù)PTINR監(jiān)測值進(jìn)行調(diào)整)還是在用藥之前進(jìn)行相關(guān)基因檢測,以及如何、何時進(jìn)行基因型檢測,目前均未達(dá)成共識或仍存在爭議[44-45],如美國胸科醫(yī)師學(xué)會發(fā)布的指南不推薦對患者常規(guī)進(jìn)行基因型檢測[46]。隨著檢測技術(shù)的日益完善與便捷,基因型檢測在指導(dǎo)個體化用藥方面將扮演越來越重要的角色[47]。同時隨著新藥開發(fā)技術(shù)的不斷創(chuàng)新,將有希望開發(fā)出在藥物作用、性價比等方面可與華法林相媲美,而副作用卻比華法林少很多的藥物[48]。
[1] Ke KP, Liu YQ, Yang HS. Research progress in warfarin's anticoagulation dosage and its influencing factors[J]. Med Recap, 2013(11): 2055-2058.[柯鹍鵬, 劉寅強(qiáng), 楊鴻生. 華法林抗凝劑量與其影響因素的研究進(jìn)展[J]. 醫(yī)學(xué)綜述, 2013(11): 2055-2058.]
[2] Zheng C, Mei D. Related factors affecting anticoagulant effect of warfarin[J]. Adverse Drug React J, 2007, 9(4): 256-261. [鄭策,梅丹. 影響華法林抗凝血作用的有關(guān)因素[J]. 藥物不良反應(yīng)雜志, 2007, 9(4): 256-261.]
[3] Sun YH. Update and explanation of suggestions on anticoagulant therapy of atrial fibrillation and valvular heart disease in the 2012-edition guideline from The American College of Chest Physicians[J]. Chin J Pract Intern Med, 2013, 33(5): 369-371. [孫藝紅. 美國新版《抗栓治療和血栓預(yù)防指南》心房顫動和瓣膜病的更新解讀[J]. 中國實(shí)用內(nèi)科雜志, 2013, 33(5): 369-371.]
[4] Mega, Jessica L, Giugliano,et al. Genotype-guided dosing of warfarin[J]. Clin Chem, 2014, 60(7): 920-922.
[5] Yang F, Zhao GT, Ding YY,et al. Influences of gene polymorphisms on warfarine[J]. Med Rep, 2012(6): 771-774. [楊凡, 趙鋼濤, 丁媛媛, 等. 基因多態(tài)性對華法林的影響[J].醫(yī)藥導(dǎo)報(bào), 2012(6): 771-774.]
[6] Zhang HY, Luo WW, Fang HR,et al. Influence of VKORC1, CYP2C9, CYP4F2 and EPHX1 Gene Polymorphisms on Warfarin Dose[J]. China Pharm, 2012, 23(34): 3201-3205. [張海燕, 羅萬慰, 方煥榮, 等. VKORC1、CYP2C9、CYP4F2、EPHX1基因多態(tài)性對華法林劑量的影響[J]. 中國藥房, 2012, 23(34): 3201-3205.]
[7] Rost S, Fregin A, Ivaskevicius V,et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2[J]. Nature, 2004, 427(6974): 537-541.
[8] Li T, Chang CY, Jin DY,et al. Identification of the gene for vitamin K epoxide reductase[J]. Nature, 2004, 427(6974): 541-544.
[9] Liu F, Zhu R, Kang J. Unfavorable prognosis of cancerassociated acute pulmonary thromboembolism with sequentialanticoagulation[J]. Chin J Pract Intern Med, 2014, 34(2): 183-186. [劉璠, 朱然, 康健. 癌癥相關(guān)急性肺血栓栓塞癥序貫抗凝治療的研究[J]. 中國實(shí)用內(nèi)科雜志, 2014, 34(2): 183-186.]
[10] Yue LF. Anticoagulant drug warfarin and its safe application[J]. Pharm Clin Res, 2009, 17(5): 397-399. [岳林峰. 抗凝藥物華法林的安全應(yīng)用[J]. 藥學(xué)與臨床研究, 2009, 17(5): 397-399.]
[11] Johnson JA, Gong L, Whirl-Carrillo M,et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing[J]. Clin Pharmacol Ther, 2011, 90(4): 625-629.
[12] Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data[J]. Drug Metab Rev, 2002, 34 (1/2): 83-448.
[13] Einolf HJ, Story WT, Marcus CB,et al. Role of cytochrome P450 enzyme induction in the metabolic activation of benzo[c] phenanthrene in human cell lines and mouse epidermis[J]. Chem Res Toxicol, 1997, 10 (5): 609-617.
[14] Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of thein-vitroand human data[J]. Pharmacogenetics, 2002, 12(3): 251-263.
[15] Zhou S, Zhou Z, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance[J]. Toxicology, 2010, 278(2): 165-188.
[16] Qiao ZD. Molecular Biology[M]. BeiJing: Military Medical Science Press, 2012.491. [喬中東. 分子生物學(xué)[M]. 北京: 軍事醫(yī)學(xué)科學(xué)出版社, 2012. 491.]
[17] Sim SC, Ingelman-Sundberg M. The human cytochrome P450 Allele Nomenclature Committee Web site: submission criteria, procedures, and objectives[J].MethodsMol Biol, 2006, 320: 183-191.
[18] Jiang YY. Pharmacogenomics[M]. Beijing: People's Medical Publishing House, 2006.406. [姜遠(yuǎn)英. 藥物基因組學(xué)[M]. 北京: 人民衛(wèi)生出版社, 2006. 406.]
[19] Van Booven D, Marsh S, Mcleod H,et al. Cytochrome P450 2C9-CYP2C9[J]. Pharmacogenet Genomics, 2010, 20(4): 277-281.
[20] Wang B, Wang J, Huang S Q,et al. Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance[J]. Curr Drug Metab, 2009, 10(7): 781-834.
[21] Dai DP, Xu RA, Hu LM,et al. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database[J]. Pharmacogenomics J, 2014, 14(1): 85-92.
[22] Sanchez-Diz P, Estany-Gestal A, Aguirre C,et al. Prevalence of CYP2C9 polymorphisms in the south of Europe[J]. Pharmacogenomics J, 2009, 9(5): 306-310.
[23] Schelleman H, Brensinger C M, Chen J,et al. New genetic variant that might improve warfarin dose prediction in African Americans[J]. Br J Clin Pharmacol, 2010, 70(3): 393-399.
[24] Scordo MG, Aklillu E, Yasar U,et al. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population[J]. Br J Clin Pharmacol, 2001, 52(4): 447-450.
[25] He BX, Shi L, Zhao SJ. Progress of CYP2C9 and VKORC1 polymorphisms on individualized warfarin therapeutic regimen [J]. Guangdong Med J, 2008, 29(4): 684-686. [賀寶霞, 石磊,趙樹進(jìn). CYP2C9和VKORC1基因多態(tài)性與華法林個體化用藥研究進(jìn)展[J]. 廣東醫(yī)學(xué), 2008, 29(4): 684-686.]
[26] Wang D, Chen H, Momary KM,et al. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement[J]. Blood, 2008, 112(4): 1013-1021.
[27] Sconce EA, Khan TI, Wynne HA,et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen[J]. Blood, 2005, 106(7): 2329-2333.
[28] Gaikwad T, Ghosh K, Shetty S. VKORC1 and CYP2C9 genotype distribution in Asian countries[J]. Thrombosis Research, 2014, 134(3): 537-544.
[29] Zhu J, Zheng WJ, Zhang WJ,et al. White blood cells contribute to patient-specific warfarin dose for Han Chinese[J]. Chin Med J (Engl), 2012, 125(11): 1960-1963.
[30] Pathare A, Al KM, Alkindi S,et al. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients[J]. J Hum Genet, 2012, 57(10): 665-669.
[31] Ohno M, Yamamoto A, Ono A,et al. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients[J]. Eur J Clin Pharmacol, 2009, 65(11): 1097-1103.
[32] Andalibi P, Farsam H, Amanlou M,et al. Determination of dosage requirements of warfarin in Iranian patients using HPLC technique[J]. J Clin Pharm Ther, 1998, 23(3): 199-202.
[33] Aithal GP, Day CP, Kesteven PJ,et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications[J]. Lancet, 1999, 353(9154): 717-719.
[34] Freeman BD, Zehnbauer BA, Mcgrath S,et al. Cytochrome P450 polymorphisms are associated with reduced warfarin dose[J]. Surgery, 2000, 128(2): 281-285.
[35] Johnson JA, Gong L, Whirl-Carrillo M,et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing[J]. Clin Pharmacol Ther, 2011, 90(4): 625-629.
[36] Daly AK. Optimal dosing of warfarin and other coumarin anticoagulants: the role of genetic polymorphisms[J]. Arch Toxicol, 2013, 87(3): 407-420.
[37] Ageno W, Gallus AS, Wittkowsky A,et al. Oral anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines[J]. Chest, 2012, 141(2 Suppl): e44S-e88S.
[38] Anderson JL, Horne BD, Stevens SM,et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation[J]. Circulation, 2007, 116(22): 2563-2570.
[39] Hillman MA, Wilke RA, Yale SH,et al. A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data[J]. Clin Med Res, 2005, 3(3): 137-145.
[40] Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study[J]. Clin Pharmacol Ther, 2008, 83(3): 460-470.
[41] Pirmohamed M, Burnside G, Eriksson N,et al. A randomized trial of genotype-guided dosing of warfarin[J]. N Engl J Med, 2013, 369(24): 2294-2303.
[42] Zhu Y, Shennan M, Reynolds KK,et al. Estimation of warfarinmaintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes[J]. Clin Chem, 2007, 53(7): 1199-1205.
[43] Zheng HY, Song J. Effect of polymorphisms of CYP2C9 and VKORC1 on warfarin dosage[J]. Med Recap, 2011, 17(2): 178-180. [鄭紅艷, 宋杰. CYP2C9和VKORC1基因多態(tài)性對華法林劑量的影響[J]. 醫(yī)學(xué)綜述, 2011, 17(2): 178-180.]
[44] Cavallari LH, Nutescu EA. Warfarin pharmacogenetics: to genotype or not to genotype, that is the question[J]. Clin Pharmacol Ther, 2014, 96(1): 22-24.
[45] Eriksson N, Wadelius M. Prediction of warfarin dose: why, when and how[J]? Pharmacogenomics, 2012, 13(4): 429-440.
[46] Holbrook A, Schulman S, Witt DM,et al. Evidence-based management of anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines[J]. Chest, 2012, 141(2 Suppl): e152S-e184S.
[47] Xu DP, Liu Y. A novel insight of understanding of mechanism of hepatitis B virus drug resistance by combining genotype resistant mutation detection and phenotype resistance analysis[J]. Med J Chin PLA, 2012, 37(6): 535-538. [徐東平, 劉妍. 結(jié)合基因型耐藥突變檢測與表型耐藥分析探索乙肝病毒耐藥的新認(rèn)識[J]. 解放軍醫(yī)學(xué)雜志, 2012, 37(6): 535-538.]
[48] Ruff CT, Giugliano RP, Braunwald E,et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials[J]. Lancet, 2014, 383(9921): 955-962.
Research progress in CYP2C9 and VKORC1 gene polymorphism and individualized warfarin therapeutic regimen
LIU Yue-ping1, YANG Xiang1, XU Han-qing1, LI Yong-chuan1, LI Ming2, HUANG Qing1, FU Wei-ling11Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
2Department of Laboratory Medicine, 477 Hospital of PLA, Xiangyang, Hubei 441003, China
Warfarin is still the most clinically used oral anti-coagulant despite of its narrow therapeutic index and high risk of hemorrhage. The mean daily dose of warfarin varies widely from patient to patient, and to achieve the same therapeutic effect, the daily dose of warfarin could be varied over 20-fold. The variability in warfarin dosage depends on several factors, including gene polymorphisms, index of body mass, age and other drugs, and these factors compelled the clinicians to individualize warfarin dosage in order to optimize the therapeutic regimen. A number of genes are involved in metabolism of warfarin, such as cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex subunit 1 (VKORC1), cytochrome P450 4F2 (CYP4F2), gamma-glutamylcarboxylase (GGCX), etc. Of them CYP2C9 and VKORC1 are the emphasis of current researches. The association between the polymorphism of CYP2C9 and VKORC1 and individualized warfarin therapeutic regimen are mainly discussed in this paper.
cytochrome P-450 CYP2C9; vitamin K epoxide reductase complex subunit 1; pharmacogenetcs; warfarin; individualized medicine; polymorphism, single nucleotide
R973.2
A
0577-7402(2015)02-0163-06
10.11855/j.issn.0577-7402.2015.02.16
2014-07-26;
2015-01-13)
(責(zé)任編輯:沈?qū)?
劉躍平,碩士研究生,主管技師。主要從事個體化用藥的基因診斷方面的研究
400038 重慶 第三軍醫(yī)大學(xué)西南醫(yī)院檢驗(yàn)科(劉躍平、楊翔、徐含青、李永川、黃慶、府偉靈);441000 湖北襄陽 解放軍477醫(yī)院檢驗(yàn)科(李明)
黃慶,E-mail: DR.Q.Huang@gmail.com;府偉靈,E-mail: weilingfu@yahoo.com
*Corresponding author. HUANG Qing, E-mail: DR.Q.Huang@gmail.com; FU Wei-ling, E-mail: weilingfu@yahoo.com