周 玲,何道江
(安徽師范大學(xué) 數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽 蕪湖 241003)
?
相依誤差線性模型中的主成分s-K估計(jì)
周 玲,何道江
(安徽師范大學(xué) 數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽 蕪湖 241003)
為同時(shí)克服線性回歸模型的自相關(guān)性和回歸變量間的復(fù)共線性,通過融合主成分回歸估計(jì)和s-K估計(jì),提出一類新估計(jì),稱為主成分s-K估計(jì);并在均方誤差陣意義下,得到了這類估計(jì)分別優(yōu)于廣義最小二乘估計(jì)、主成分估計(jì)、r-k和s-K估計(jì)的充要條件.Monto Carlo數(shù)值模擬表明,新估計(jì)是一種同時(shí)克服自相關(guān)性和復(fù)共線性的有效方法.
自相關(guān)性;復(fù)共線性;主成分回歸估計(jì);s-K估計(jì);均方誤差陣
為了克服統(tǒng)計(jì)學(xué)中線性模型的復(fù)共線性問題,常用的方法是使用有偏估計(jì).如Stein估計(jì)[1]、主成分回歸(PCR)估計(jì)[2]、普通嶺(ORR)估計(jì)[3]、Liu估計(jì)[4]和s-K估計(jì)[5]等.此外,融合兩種不同估計(jì)可能會保留這兩種估計(jì)的優(yōu)點(diǎn).Baye等[6]將PCR估計(jì)與ORR估計(jì)融合,提出了r-k估計(jì);Chang等[7]將PCR估計(jì)與兩參數(shù)估計(jì)[8]融合,提出了主成分兩參數(shù)估計(jì)(PCTP).為了克服模型中自相關(guān)的影響,Aitken[9]運(yùn)用OLS技術(shù)引入了廣義最小二乘(GLS)估計(jì);吳燕等[10]基于模型的參數(shù)信息提出了一類新的s-K估計(jì).但此時(shí)模型中的復(fù)共線性可能仍然存在,進(jìn)而GLS估計(jì)由于具有很大的方差而給出不可靠的估計(jì).目前,同時(shí)解決自相關(guān)和復(fù)共線性問題的研究已有許多結(jié)果[11-17].本文為同時(shí)克服自相關(guān)誤差和復(fù)共線性問題,通過融合PCR估計(jì)和s-K估計(jì),提出一類新的估計(jì),稱為主成分s-K估計(jì),并進(jìn)一步考察新估計(jì)相對于這些現(xiàn)有估計(jì)的優(yōu)良性.
考慮如下線性回歸模型:
(1)
其中:Y是n×1維可觀測隨機(jī)向量;X是n×p維列滿秩陣;β是p×1維未知參數(shù)向量;ε是n×1維誤差向量;V是一個(gè)已知的n×n階正定矩陣.于是,存在一個(gè)n×n階非奇異陣P,使得P′P=V-1.用P左乘式(1),則模型(1)可寫成
(2)
記Y*=PY,X*=PX,ε*=Pε,則式(2)可表達(dá)為
(3)
式(3)即為轉(zhuǎn)換模型[11].
Λr=diag(λ1,λ2,…,λr),Λp-r=diag(λr+1,λr+2,…,λp).
對于轉(zhuǎn)換模型,由文獻(xiàn)[18]可知,r-k估計(jì)[6]可寫為
(4)
(5)
其中k≥0和0 (6) 將X*和Y*分別代換成X和Y的關(guān)系式,則模型(1)的s-K估計(jì)可寫成 (7) 其中:s≥1;K=diag(k1,k2,…,kp),且ki≥0,i=1,2,…,p. 下面給出β的一個(gè)新估計(jì),它由PCR估計(jì)和s-K估計(jì)融合而成,形式如下: (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) 證明:由式(14),(15)得 (22) 且C可寫為 (23) 因此,有 (24) (25) 等價(jià)于式(21).證畢. 在式(21)中,取r=p,可得: (26) (27) 此為文獻(xiàn)[16]的結(jié)論. (28) 此為文獻(xiàn)[11]的結(jié)論. 這里(U?v)是一個(gè)酉矩陣(U可能不存在),Δ是一個(gè)正定對角陣(當(dāng)U存在時(shí)才出現(xiàn)),且λ是一個(gè)正數(shù).進(jìn)一步,條件1)~3)均不依賴于廣義逆D-∈G(D)的選擇. (29) 有時(shí)候也會想,其實(shí)現(xiàn)實(shí)世界并不是全然美好的,而是曲折、復(fù)雜的,要不要把這樣的面貌如實(shí)呈現(xiàn)在小人兒面前呢?可就好像蓋樓房,首先要做的是打地基,你可以說樓房是高高地往上去蓋的,可是地基卻得深深地向下去打啊!2歲多的孩子,還處于主要是模仿、重復(fù)大人的語言,而自己的思考能力才剛剛起步的階段,我選擇先用那些光明、美好、積極的材料為他打下地基,為他將來面對世界的復(fù)雜性準(zhǔn)備下基本的心理和情感資源。 (30) 另一方面, 因此,充分條件化為 類似地,可得: 為了進(jìn)一步考察所提估計(jì)類的均方誤差,下面進(jìn)行Monte Carlo數(shù)值模擬.設(shè)計(jì)矩陣X=(xij)n×p由下式給出: (31) 其中ωij(i=1,2,…,n;j=1,2,…,p+1)是獨(dú)立的標(biāo)準(zhǔn)正態(tài)偽隨機(jī)數(shù),且γ是給定的數(shù),γ2表示任意兩個(gè)解釋變量之間的相關(guān)系數(shù).響應(yīng)變量由下式給出: (32) 這里ε=(ε1,ε2,…,εn)′是均值為0、協(xié)方差陣為σ2V的正態(tài)隨機(jī)變量. (33) 分別取ρ=0.5,0.8.與文獻(xiàn)[12,16]一致,取β的真實(shí)值為X′V-1X最大特征值所對應(yīng)的標(biāo)準(zhǔn)化特征向量.此外,取s=1.01,1.001.為方便,K=diag(k1,k2,k3,k4,k5)分別取為A1,A2,A3,B1,B2,B3,其中: A1=diag(0.1,0.1,0.1,0.1,0.1);A2=diag(0.1,0.1,1,1,1);A3=diag(0.1,1,1,1,1); B1=diag(1.5,1.5,1.5,1.5,1.5);B2=diag(1.5,1.5,15,15,15);B3=diag(1.5,15,15,15,15). 表1 當(dāng)s=1.01,ρ=0.5,k=0.1時(shí)各估計(jì)的均方誤差Table 1 Estimated MSE values with s=1.01,ρ=0.5,k=0.1 表2 當(dāng)s=1.01,ρ=0.5,k=1.5時(shí)各估計(jì)的均方誤差Table 2 Estimated MSE values with s=1.01,ρ=0.5,k=1.5 表3 當(dāng)s=1.01,ρ=0.8,k=0.1時(shí)各估計(jì)的均方誤差Table 3 Estimated MSE values with s=1.01,ρ=0.8,k=0.1 表4 當(dāng)s=1.01,ρ=0.8,k=1.5時(shí)各估計(jì)的均方誤差Table 4 Estimated MSE values with s=1.01,ρ=0.8,k=1.5 表5 當(dāng)s=1.001,ρ=0.5,k=0.1時(shí)各估計(jì)的均方誤差Table 5 Estimated MSE values with s=1.001,ρ=0.5,k=0.1 表6 當(dāng)s=1.001,ρ=0.5,k=1.5時(shí)各估計(jì)的均方誤差Table 6 Estimated MSE values with s=1.001,ρ=0.5,k=1.5 表7 當(dāng)s=1.001,ρ=0.8,k=0.1時(shí)各估計(jì)的均方誤差Table 7 Estimated MSE values with s=1.001,ρ=0.8,k=0.1 表8 當(dāng)s=1.001,ρ=0.8,k=1.5時(shí)各估計(jì)的均方誤差Table 8 Estimated MSE values with s=1.001,ρ=0.8,k=1.5 綜上,本文提出了一個(gè)新的估計(jì)量同時(shí)克服模型的自相關(guān)性和復(fù)共線性.在均方誤差陣意義下,比較了新估計(jì)量與GLS,PCR,r-k和s-K估計(jì)量,并給出了新估計(jì)量優(yōu)于其他估計(jì)量的條件.數(shù)值模擬表明,新估計(jì)是一種同時(shí)克服自相關(guān)性和復(fù)共線性的有效方法. [1] Stein C.Inadmissibility of the Usual Estimator for the Mean of Multivariate Normal Distribution [C]//Proceedings of the Third Berkley Symposium on Mathematical and Statistics Probability.[S.l.]:University of Califorinia Press,1956,1:197-206. [2] Massy W F.Principal Components Regression in Exploratory Statistical Research [J].Journal of the American Statistical Association,1965,60(309):234-256. [3] Hoerl A E,Kennard R W.Ridge Regression:Biased Estimation for Nonorthogonal Problems [J].Technometrics,1970,12(1):55-67. [4] LIU Kejian.A New Class of Biased Estimate in Linear Regression [J].Communications in Statistics:Theory and Methods,1993,22(2):393-402. [5] 許瑩,何道江.混合系數(shù)線性模型參數(shù)的一類新估計(jì) [J].數(shù)學(xué)物理學(xué)報(bào),2013,33A(4):702-708.(XU Ying,HE Daojiang.A New Class of Estimators for Coefficients in Mixed Effect Linear Model [J].Acta Mathematica Scientia,2013,33A(4):702-708.) [6] Baye M R,Parker D F.Combining Ridge and Principal Component Regression:A Money Demand Illustration [J].Communications in Statistics:Theory and Methods,1984,13(2):197-205. [7] CHANG Xinfeng,YANG Hu.Combining Two-Parameter and Principal Component Regression Estimators [J].Statistical Papers,2012,53(3):549-562. [8] YANG Hu,CHANG Xinfeng.A New Two-Parameter Estimator in Linear Regression [J].Communications in Statistics:Theory and Methods,2010,39(6):923-934. [9] Aitken A C.On Least Squares and Linear Combinations of Observations [J].Proceedings of the Royal Society of Edinburgh,1936,55:42-48. [10] 吳燕,何道江.線性模型參數(shù)一類新的s-K估計(jì) [J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2014,52(1):45-50.(WU Yan,HE Daojiang.A New Class ofs-KEstimators in the Linear Model [J].Journal of Jilin University:Science Edition,2014,52(1):45-50.) [11] Trenkler G.On the Performance of Biased Estimators in the Linear Regression Model with Correlated or Heteroscedastic Errors [J].Journal of Econometrics,1984,25(1/2):179-190. [12] Firinguetti L L.A Simulation Study of Ridge Regression Estimators with Autocorrelated Errors [J].Communications in Statistics:Simulation and Computation,1989,18(2):673-702. [13] Bayhan G M,Bayhan M.Forecasting Using Autocorrelated Errors and Multicollinear Predictor Variables [J].Computers &Industrial Engineering,1998,34(2):413-421. [14] Güler H,Kaciranlar S.A Comparison of Mixed and Ridge Estimators of Linear Models [J].Communications in Statistics:Simulation and Computation,2009,38(2):368-401. [15] ?zkale M R.A Stochastic Restricted Ridge Regression Estimator [J].Journal of Multivariate Analysis,2009,100(8):1706-1716. [17] HUANG Jiewu,YANG Hu.On a Principal Component Two-Parameter Estimator in Linear Model with Autocorrelated Errors [J].Statistical Papers,2015,56(1):217-230. [18] XU Jianwen,YANG Hu.On the Restrictedr-kClass Estimator and the Restrictedr-dClass Estimator in Linear Regression [J].Journal of Statistical Computation and Simulation,2011,81(6):679-691. [19] Trenkler G,Trenkler D.A Note on Superiority Comparisons of Homogeneous Linear Estimators [J].Communications in Statistics:Theory and Methods,1983,12(7):799-808. [20] Baksalary J K,Trenkler G.Nonnegative and Positive Definiteness of Matrices Modified by Two Matrices of Rank One [J].Linear Algebra and Its Applications,1991,151:169-184. [21] Judge G G,Griffiths W E,Hill R C,et al.The Theory and Practice of Econometrics [M].2nd ed.New York:John Wiley and Sons,1985. (責(zé)任編輯:趙立芹) PrincipalComponentss-KClassEstimatorintheLinearModelwithCorrelatedErrors ZHOU Ling,HE Daojiang (SchoolofMathematicsandComputerScience,AnhuiNormalUniversity,Wuhu241003,AnhuiProvince,China) To combat autocorrelation in errors and multicollinearity among the regressors in linear regression model,we proposed a new estimator by combining the principal components regression (PCR)estimator and thes-Kestimator.Then necessary and sufficient conditions for the superiority of the new estimator over the GLS,the PCR,ther-kand thes-Kestimators were derived by the mean squared error matrix criterion.Finally,a Monte Carlo simulation study was carried out to investigate the performance of the proposed estimator. autocorrelation;multicollinearity;principal components regression estimator;s-Kestimator;mean squared error matrix 10.13413/j.cnki.jdxblxb.2015.03.17 2014-07-16. 周 玲(1989—),女,漢族,碩士研究生,從事數(shù)理統(tǒng)計(jì)的研究,E-mail:lingzhou1989@163.com.通信作者:何道江(1980—),男,漢族,博士,教授,從事數(shù)理統(tǒng)計(jì)的研究,E-mail:djheahnu@163.com. 安徽省自然科學(xué)基金(批準(zhǔn)號:1308085QA13). O212.2 :A :1671-5489(2015)03-0444-072 新估計(jì)量在均方誤差陣意義下的優(yōu)良性
3 數(shù)值模擬