• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

    2015-10-13 01:59:49TingtingZhengandPeixinZhang
    Journal of Mathematical Study 2015年3期
    關(guān)鍵詞:狀態(tài)變量工序動(dòng)態(tài)

    Tingting Zheng and Peixin Zhang

    1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

    2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

    Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

    Tingting Zheng1and Peixin Zhang2,?

    1Computer and Message Science College,Fujian Agriculture and Forest University,Fuzhou 350002,Fujian Province,P.R.China.

    2School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian Province,P.R.China.

    .We study the existence ofglobalstrong solution to an initial–boundary value(or initial value)problem for the 3D nonhomogeneous incompressible Navier-Stokes equations.In this study,the initial density is suitably small(or the viscosity coefficient suitably large)and the initial vacuumis allowed.Results show thatthe unique solution of the Navier-Stokes equations can be found.

    AMS subject classifications:35B65,35Q35,76N10

    Incompressible Navier-Stokes equations,strong solutions,vacuum.

    1 Introduction

    The motion of a nonhomogeneous incompressible viscous fluid in a domain ? ofR3is governed by the Navier-Stokes equations

    the initial and boundary conditions(1.1)with the following conditions:

    Here we denote the unknown density,velocity and pressure fields of the fluid byρ,uandP,respectively.fis a given external force driving the motion.? is either a bounded domain inR3with smooth boundary or the whole spaceR3.

    It is interesting to studing the regularity criterion for strong solution of(1.1).Many people devote to researching these kind of results.In particular,Kim[1]proved that ifT?was the blowup time of a local strong solution,then

    whereLrwdenoted the weakLr?space.In[1],Kim also proved that the unique strong solution existed globally when ‖?u0‖L2was small enough.

    For the case the initial density is away from zero,the nonhomogeneous equations(1.1)have been studied by many people,see[2–4]and their references therein.In these papers,the authors proved the existence and uniqueness of the local strong solution for general initial data and they also got global well-posedness results for small solutions in 3D(or higher dimensional)space,while for 2D space they established the existence of large strong solutions.In[5–7],the authors obtained the global well-posedness results for initial data belonging to certain scale invariant space.

    In this paper,base on Kim’s work,we are interested in the existence of global strong solution with general initial data.The main result of this paper can be stated as follows:

    Theorem 1.1.Assume that(ρ0,u0,f)satisfies

    and the compatibility condition

    誤差傳遞建模的研究將多工序系統(tǒng)作為動(dòng)態(tài)時(shí)序過(guò)程,零件特征作為動(dòng)態(tài)過(guò)程的狀態(tài)變量,不同工序作為動(dòng)態(tài)過(guò)程的不同時(shí)間點(diǎn)。零件特征隨工序變化而變化的過(guò)程,視為狀態(tài)變量隨時(shí)間變化而變化的過(guò)程。狀態(tài)空間方程描述了狀態(tài)變量在狀態(tài)空間中隨時(shí)間變化的過(guò)程,可利用狀態(tài)空間方法解決多工序制造誤差傳遞問(wèn)題。

    Throughout this paper,we denote

    1<r<∞,kis a positive constant,the standard Sobolev space is described as follows:

    We will give the proof of Theorem 1.1 in Section 2.

    2 Proof of Theorem 1.1

    Before the proof,we recall the local existence result.In[10],Choe and Kim gave the following local strong solution existence theorem.

    Theorem 2.1.Under the conditions of(1.3)and(1.4),there exists a time T>0and a unique strong solution(ρ,u,P)to the initial boundary problem(1.1)–(1.2)satisfying

    To extend the local classical solution guaranteed by Theorem 2.1,we prove it by contradiction.

    Now,we establish priori estimates for smooth solutions to the initial boundary problems(1.1)-(1.2).LetT>0 be the fixed time and(ρ,u,P)be the smooth solution to(1.1)-(1.2)on ?×(0,T]in the class(2.1)with smooth initial data(ρ0,u0,P0)satisfying with(1.3),(1.4).

    Lemma 2.1.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Then

    where,the letter C denotes a generic positive constant depending on the constants in some Sobolev inequalities.

    Remark 2.1.If ? is a bounded domain,the constantCmust depend on ? comparing to the unbounded domain.

    Proof.Multiplying(1.1)1bypρp?1(p≥2)then integratingxover ?,one gets

    Integrating(2.4)on[0,T]and takingp→∞,we obtain(2.2).Multiplying(1.1)2byu,integratingxover ? and using Sobolev inequalities,we have

    By applying the H¨older and Sobolev inequalities,we have

    whereCis dependent of the constants in the Sobolev inequalities.From this and(2.5),using Young’s inequality,we have

    then by integrating(2.6)on[0,T],we have(2.3).

    We define

    Lemma 2.2.Let(ρ,u,P)be a smooth solution of(1.1)-(1.2).Ifˉρ is suitably small orμis suff iciently large,then

    provided A(T)≤2M.

    Proof.Multiplying(1.1)2byutand integrating over ?,one gets

    With the H¨older and Sobolev inequalities,one has

    for someδ∈(0,1)and for any(r,s)satisfying2s+3r=1,3<r<∞.Takingv=|u|,w=|?u|ands=4,r=6 in(2.9),with Sobolev inequality,one has

    On the other hand,since(u,P)is a solution of the stationary Stokes equations

    whereF=ρf?ρut?ρu·?u,it follows from the classical regularity theory that

    where we assumeμ≥1.Then from(2.10)and(2.11),one deduces

    By integrating the last inequlity on[0,T],it yields that

    Proof of Theorem 1.1.To prove the global existence,we argue by contradiction.Assume that(ρ,u)blows up at some finite timeT?,0 <T?< ∞.Since(ρ,u)satisfies the regularity(2.1)for anyT<T?,in view of Sobolev embedding again,we conclude that

    which contradicts Theorem 1.3 in[1].This completes the proof of Theorem 1.1.

    [1]H.Kim.A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J.Math.Anal.,37:1417–1434,2006.

    [2]S.A.Antontesv,A.V.Kazhikov and V.N.Monakhov.Boundary Value Problems in Mechanics of Nonhomogeneous Fluids.North-Holland,Amsterdam,1990.

    [3]A.V.Kazhikov.Resolution ofboundary value problems for nonhomogeneous viscous fluids.Dokl.Akad.Nauk.,216:1008–1010,1974.

    [4]O.Ladyzhenskaya and V.A.Solonnikov.Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids.J.Soviet Math.,9:697–749,1978.

    [5]H.Abidi and M.Paicu.Existence globale pour un fluide inhomog′ene.Ann.Inst.Fourier(Grenoble),57:883–917,2007.

    [6]R.Danchin.Density-dependent incompressible viscous fluids in critical spaces.Proc.Roy.Soc.Edinburgh Sect.A,133:1311–1334,2003.

    [7]G.L.Gui,J.C.Huang and P.Zhang.Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable.J.Funct.Analysis,261:3181–3210,2011.

    [8]R.J.DiPerna and P.L.Lions.Equations diff′erentielles ordinaires et′equations de transport avec des coefficients irr′eguliers.S′eminaire EDP Ecole Polytechnique,Palaiseau,1988–1989,1989.

    [9]P.L.Lions.Mathematical Topics in Fluid Mechanics,Vol.I:Incompressible Models.Oxford Univ.Press,New York,1996.

    [10]H.J.Choe and H.Kim.Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids.Comm.Partial Diff.Eqs.,28:1183–1201,2003.

    [11]W.Craig,X.D.Huang and Y.Wang.Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations.J.Math.Fluid Mech.,2013,DOI:10.1007/s00021-013-0133-6.

    [12]J.U.Kim.Weak solutions ofan initialboundary value problemfor an incompressible viscous fluid with nonnegative density.SIAM J.Math.Anal.,18:89–96,1987.

    [13]Y.Cho and H.Kim.Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal.,59:465–489,2004.

    15 June,2014;Accepted 23 March,2015

    ?Corresponding author.Email addresses:nljj2011@126.com(T.Zheng),zhpx@hqu.edu.cn(P.Zhang).

    猜你喜歡
    狀態(tài)變量工序動(dòng)態(tài)
    一階動(dòng)態(tài)電路零狀態(tài)響應(yīng)公式的通用拓展
    基于TwinCAT3控制系統(tǒng)的YB518型小盒透明紙包裝機(jī)運(yùn)行速度的控制分析
    國(guó)內(nèi)動(dòng)態(tài)
    120t轉(zhuǎn)爐降低工序能耗生產(chǎn)實(shí)踐
    昆鋼科技(2022年2期)2022-07-08 06:36:14
    國(guó)內(nèi)動(dòng)態(tài)
    國(guó)內(nèi)動(dòng)態(tài)
    基于嵌套思路的飽和孔隙-裂隙介質(zhì)本構(gòu)理論
    大理石大板生產(chǎn)修補(bǔ)工序詳解(二)
    石材(2020年4期)2020-05-25 07:08:50
    動(dòng)態(tài)
    土建工程中關(guān)鍵工序的技術(shù)質(zhì)量控制
    自治县| 河北区| 甘孜| 祁连县| 攀枝花市| 信阳市| 陵水| 虹口区| 永靖县| 卓资县| 聂荣县| 太原市| 会理县| 三穗县| 桑日县| 册亨县| 科技| 攀枝花市| 高雄县| 通州市| 巴彦淖尔市| 荣成市| 临洮县| 斗六市| 南充市| 通辽市| 宜兴市| 黔西县| 即墨市| 邵阳县| 襄城县| 尼木县| 莒南县| 上蔡县| 恩施市| 盐源县| 丹江口市| 神池县| 哈密市| 馆陶县| 武平县|