劉媛,王連堂
(西北大學數(shù)學學院,陜西 西安 710127)
兩個Gamma商函數(shù)的對數(shù)完全單調(diào)性
劉媛,王連堂
(西北大學數(shù)學學院,陜西 西安710127)
主要研究了Gamma商函數(shù)的對數(shù)完全單調(diào)性.通過引入一個新的輔助函數(shù)證明了一類Gamma商函數(shù)是嚴格對數(shù)完全單調(diào)的,對此類函數(shù)的系數(shù)進行了推廣并證明了推廣后的這類Gamma商函數(shù)也是嚴格對數(shù)完全單調(diào)的.
Gamma函數(shù);Psi(digamma)函數(shù);Polygamma函數(shù);對數(shù)完全單調(diào)性
Gamma函數(shù)定義為:
lnΓ(x)的導函數(shù)稱為psi函數(shù)(digamma函數(shù))記為ψ(x),即
ψ(x)的n階導函數(shù)ψ(n)(x)稱為polygamma函數(shù).
所謂Gamma商函數(shù)是指關(guān)于某些Gamma函數(shù)的商,關(guān)于Gamma商函數(shù)的完全單調(diào)性的研究是非常有意義的課題.文獻[1]證明了函數(shù)在區(qū)間(0,+∞)上為嚴格對數(shù)凹的.文獻[2]推廣了這一結(jié)果,證明了G(x)的倒數(shù)函數(shù)G-1(x)在區(qū)間(0,+∞)上是嚴格對數(shù)完全單調(diào)的.文獻[3]證明了函數(shù)在區(qū)間(0,+∞)上是對數(shù)完全單調(diào)的,其中m≥2是整數(shù).
對數(shù)完全單調(diào)概念的提出,為研究函數(shù)的完全單調(diào)性提供了簡便的方法.本文通過引入一個新的輔助函數(shù)證明了當m為大于1的正實數(shù)時,F(xiàn)(x)是嚴格對數(shù)完全單調(diào)的,從而推廣了文獻[3]中的結(jié)果.另外,也證明了關(guān)于F(x)的一個推廣的函數(shù)(即定理3.2中的h(x))是嚴格對數(shù)完全單調(diào)的.
定義 2.1[4]函數(shù)f在區(qū)間I上稱為是完全單調(diào)的,若函數(shù)f在區(qū)間I上有任意階導數(shù),并且對于任意x∈I以及n=0,1,2,···,滿足(-1)nf(n)(x)≥0;若此不等式是嚴格的,則稱f是嚴格完全單調(diào)的.
定義 2.2[5]正函數(shù) f在區(qū)間 I上稱為是對數(shù)完全單調(diào)的,若對于任意 x∈I以及n=0,1,2,···,滿足(-1)n[lnf(x)](n)≥0;若此不等式是嚴格的,則稱f是嚴格對數(shù)完全單調(diào)的.
文獻[5]中證明了(嚴格)對數(shù)完全單調(diào)函數(shù)一定是(嚴格)完全單調(diào)的.
引理2.1[6]當x∈(0,+∞)時,有
引理 2.2[6]函數(shù) f(x)在區(qū)間 (0,+∞)上完全單調(diào)的充要條件是存在單調(diào)遞增的函數(shù)α(t),使得f(x)=∫∞0e-xtdα(t).
引理 2.3[7](Laplace變換的卷積定理)設(shè)函數(shù)fi(t)(i=1,2)在任意有限區(qū)間上是分段連續(xù)的,包括(0,+∞).如果存在常數(shù)Mi>0和ci≥0,有|fi(t)|≤Miecit(i=1,2),那么
文章通過引入一個新的輔助函數(shù)(即定理證明中的?(x))證明了兩類Gamma商函數(shù)的嚴格對數(shù)完全單調(diào)性,這推廣了文獻[3]中的結(jié)果,并且此種證明方法更加簡單直接.
[1]Merkle M.On log-convexity of a ratio of gamma functions[J].Univ.Beograd.Publ.Elektrotehn.Fak.Ser.Mat.,1997,8:114-119.
[2]Chen Chaoping.Complete monotonicity properties for a ratio of gamma functions[J].Univ.Beograd.Publ.Elektrotehn.Fak.Ser.Mat.,2005,16:26-28.
[3]Li Aijun,Chen Chaoping.Logarithmically complete monotonicity and Shur-convexity for some ratios of gamma functions[J].Univ.Beograd.Publ.Elektrotehn.Fak.Ser.Mat.,2006,17:88-92.
[4]Qi Feng,Guo Senlin.Complete monotonicities of functions involving the gamma and digamma functions[J].Applied Mathematics and Computation,2004,7(1):63-72.
[5]Qi Feng,Chen Chaoping.A complete monotonicity property of the gamma function[J].Journal of Mathematical Analysis and Applications,2004,296(2):603-607.
[6]Chen Chaoping,Qi Feng.Logarithmically completely monotonic functions relating to the gamma function[J].Journal of Mathematical Analysis and Applications,2006,321(1):405-411.
[7]Guo Senlin,Qi Feng,Srivastava H M.A class of logarithmically completely monotonic functions related to the gamma function with applications[J].Integral Transforms and Special Functions,2012,23(8):557-566.
[8]Necdet Batir.On some properties of digamma and polygamma functions[J].Journal of Mathematical Analysis and Applications,2007,328(1):452-465.
[9]Qi Feng,Christian Berg.Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified bessel functions[J].Mediterranean Journal of Mathematics,2013,10(4):1685-1696.
[10]王竹溪,郭敦仁.特殊函數(shù)概論[M].北京:北京大學出版社,2000.
Logarithmically complete monotonicity of two classes of functions for the ratio of Gamma function
Liu Yuan,Wang Liantang
(College of Mathematics,Northwest University,Xi′an710127,China)
In this article,logarithmically complete monotonicity for the ratio of gamma functions is presented.By introducing a new function,we prove that the ratio of gamma function is strictly logarithmically completely monotonic.We also prove that a generalized form of the function is strictly logarithmically completely monotonic.
Gamma function,Psi(digamma)function,Polygamma function,logarithmically complete monotonicity
O174.6
A
1008-5513(2015)03-0291-05
10.3969/j.issn.1008-5513.2015.03.010
2014-12-03.
陜西省自然科學基金(2010JM1017).
劉媛(1990-),碩士生,研究方向:特殊函數(shù)論.
2010 MSC:26A48