林武輝,陳立奇,何建華,馬 豪,曾 志,曾 實(shí)(.清華大學(xué)工程物理系,北京 00084;2.清華大學(xué)粒子技術(shù)與輻射成像教育部重點(diǎn)實(shí)驗(yàn)室,北京 00084;3.國家海洋局海洋放射性技術(shù)與環(huán)境安全評估實(shí)驗(yàn)室,福建 廈門 36005;4.國家海洋局海洋大氣化學(xué)與全球變化重點(diǎn)實(shí)驗(yàn)室,福建 廈門 36005;5.國家海洋局第三海洋研究所,福建 廈門 36005)
日本福島核事故后的海洋放射性監(jiān)測進(jìn)展
林武輝1,2,3,4,5,陳立奇4,5*,何建華3,5,馬 豪1,2,曾 志1,2,曾 實(shí)1(1.清華大學(xué)工程物理系,北京 100084;2.清華大學(xué)粒子技術(shù)與輻射成像教育部重點(diǎn)實(shí)驗(yàn)室,北京 100084;3.國家海洋局海洋放射性技術(shù)與環(huán)境安全評估實(shí)驗(yàn)室,福建 廈門 361005;4.國家海洋局海洋大氣化學(xué)與全球變化重點(diǎn)實(shí)驗(yàn)室,福建 廈門 361005;5.國家海洋局第三海洋研究所,福建 廈門 361005)
全面總結(jié)日本福島核事故后不同核素通過海洋途徑排放的放射性總量;介紹多個國家開展的海洋放射性監(jiān)測工作;基于海洋放射性本底與各國制定的限值標(biāo)準(zhǔn),對福島核事故后海洋放射性監(jiān)測結(jié)果進(jìn)行評價;最后對國內(nèi)外的海洋放射性監(jiān)測工作進(jìn)行展望,從海洋環(huán)境安全角度出發(fā),提出建立我國海洋放射性數(shù)據(jù)庫的必要性.
福島核事故;海洋放射性監(jiān)測;核電站;標(biāo)準(zhǔn);數(shù)據(jù)庫
2011年3月日本福島核事故泄漏的放射性物質(zhì)80%進(jìn)入太平洋,19%沉降于日本,不到1%沉降于北美、歐亞大陸等地區(qū)[1-5],該事故是至今為止最為嚴(yán)重的海洋放射性污染事故.事故之后,許多國家相繼開展海洋放射性監(jiān)測工作,并積累大量海洋放射性監(jiān)測數(shù)據(jù).本工作總結(jié)了2011年發(fā)生的福島核事故后的3年來,多個國家開展的海洋放射性監(jiān)測工作和進(jìn)展,基于海洋放射性本底與各國制定的限值標(biāo)準(zhǔn),對福島核事故后海洋放射性監(jiān)測結(jié)果進(jìn)行評價,并對國內(nèi)外的海洋放射性監(jiān)測工作進(jìn)行展望,提出建立我國海洋放射性數(shù)據(jù)庫的必要性.
核事故泄漏的放射性物質(zhì)總量是事故分級的依據(jù),是后果評價的基礎(chǔ).許多國家、機(jī)構(gòu)、學(xué)者根據(jù)環(huán)境放射性監(jiān)測結(jié)果并結(jié)合模型對事故后的放射性物質(zhì)排放總量進(jìn)行估計(jì),本文全面匯總不同核素通過海洋途徑排放的放射性物質(zhì)總量,并對福島核事故泄漏的放射性總量進(jìn)行簡單估計(jì).
1.1 海洋排放
福島核事故是至今為止最嚴(yán)重的海洋放射性污染事故,大量放射性物質(zhì)通過液態(tài)排放直接進(jìn)入海洋環(huán)境[6].表1總結(jié)福島核事故后不同核素進(jìn)入海洋環(huán)境的放射性排放總量,部分核素有多個估算值,數(shù)據(jù)主要來源于已經(jīng)過同行評審的公開發(fā)表學(xué)術(shù)文獻(xiàn)和政府及國際組織的工作報(bào)告.
表1 海洋途徑排放放射性物質(zhì)總量估計(jì)(1015Bq)Table 1 Source term estimation of radionuclides by oceanic pathway (1015Bq)
131I、134Cs和137Cs發(fā)射γ射線,其測量方法相對容易,所以在事故后有大量的海水監(jiān)測數(shù)據(jù),而且三者是事故排放的主要核素,是對人類、生物產(chǎn)生電離輻射危害的主要貢獻(xiàn)核素,因此其排放量的估算研究較為豐富,131I、134Cs、137Cs海洋排放的源項(xiàng)分別為10~61PBq、2~20PBq、1~30PBq.不同排放時間及海域的界定、不同來源的氣象與水文數(shù)據(jù)的選取、不同模型的應(yīng)用、不同來源的監(jiān)測數(shù)據(jù)的校準(zhǔn)等因素,都導(dǎo)致福島核事故的源項(xiàng)估計(jì)存在一定的不確定性.今后仍然需要利用更多手段,從不同角度出發(fā)定量源項(xiàng),減少源項(xiàng)評估過程中的不確定度.
1.2 福島核事故放射性物質(zhì)泄漏總量估計(jì)
日本福島核事故雖然被定為7級核事故,但是如果不考慮放射性惰性氣體(85Kr、133Xe)的排放,福島核事故放射性物質(zhì)泄漏總量為520PBq,大約為前蘇聯(lián)的切爾諾貝利核事故放射性物質(zhì)泄漏總量的10%~15%[25],但是由于核電站廠區(qū)附近的核事故后續(xù)地下水等過程的放射性排放量尚未充分考慮,該估算結(jié)果仍然存在一定的不確定性;如果考慮惰性氣體的排放,福島核事故放射性物質(zhì)排放總量大于切爾諾貝利核事故的放射性排放總量,因?yàn)楦u核事故有4個反應(yīng)堆發(fā)生不同程度的堆芯熔化,而切爾諾貝利核事故只有一個反應(yīng)堆發(fā)生熔化[1].
日本福島核事故后,多個國家相繼開展大量的海洋放射性監(jiān)測工作,本文對日本、美國、韓國、俄羅斯、中國在北太平洋開展的放射性監(jiān)測工作進(jìn)行總結(jié).
2.1 日本
福島核事故之后,日本在近岸、北太平洋開展大量的海洋放射性監(jiān)測工作,監(jiān)測海域包括日本近岸[26-31]、日本海[32-33]、北太平洋[34-41],測量的主要核素是134Cs、137Cs.3年來的近岸和開闊大洋的連續(xù)監(jiān)測表明,事故初期福島近岸的海洋環(huán)境受到福島核事故的強(qiáng)烈影響,海水137Cs最高活度達(dá)到6.8×106Bq/m3,事故后期由于海水不斷稀釋及放射性排放量的有效控制,海水中放射性核素的活度不斷下降,開闊大洋海水137Cs最高值在10Bq/m3.圖1收集了上千個日本開展的放射性監(jiān)測站位空間分布圖,虛線方框區(qū)域放大后的圖顯示的是日本近岸監(jiān)測站位情況.
開挖前,需保證施工區(qū)域土層密實(shí)平整,穩(wěn)定性好,周邊施工空間無障礙物,懸吊機(jī)具的鋼絲索必須在導(dǎo)墻中心線上成垂直狀態(tài),不能松弛,才能保證成槽垂直精度,待確保施工區(qū)域土層穩(wěn)定后,以最小角度定位。
2.2 美國
核事故泄漏的大量放射性物質(zhì)進(jìn)入海洋,將通過大洋環(huán)流影響美國西海岸[42].福島核事故之后,美國聯(lián)合日本、英國、西班牙等其它國家于2011年6月4~18日在西太平洋開展放射性監(jiān)測,監(jiān)測核素包含3H、110mAg、89Sr、90Sr、129I、134Cs、137Cs、226Ra、228Ra,圖2虛線框放大后的圖給出該航次的站位空間分布[7,19],美國部分高校也開展北太平洋海水中134Cs、137Cs的測量工作,并畫于圖2[43].美國監(jiān)測結(jié)果表明,事故后2年,夏威夷附近海域的海水137Cs活度范圍是1~4Bq/m3,是事故前的2~3倍.
圖1 福島核事故后日本在近岸及北太平洋監(jiān)測站位空間分布Fig.1 Radioactive monitor stations near the coast of Japan and Pacific Ocean after the FNA (Data from Japan)
圖2 福島核事故后美國等開展的海洋放射性監(jiān)測站位空間分布Fig.2 Radioactive monitor stations in the North Pacific Ocean after the FNA (Data from the USA)
2.3 韓國
福島核事故之后,韓國作為日本臨近國家,于2011年3~7月開展大量海洋放射性調(diào)查,主要區(qū)域?yàn)槠浣逗S?、黃海、東海及日本海[44],監(jiān)測核素包含90Sr、131I、134Cs、137Cs、239+240Pu,具體空間站位如圖3,該研究表明韓國近岸海域并未觀測到來自福島核事故的放射性核素的信號.
圖3 福島核事故后韓國海洋放射性監(jiān)測站位空間分布Fig.3 Radioactive monitor stations of Korean after the FNA
2.4 俄羅斯
福島核事故之后,俄羅斯立即開展海洋放射性監(jiān)測,于2011年4~5月、2012年8~9月在日本海、西太平洋開展海水放射性測量[45],測量核素包含3H、90Sr、134Cs、137Cs、239+240Pu等,總共監(jiān)測21個站位,研究結(jié)果表明日本以東海域海水137Cs儲量比事故前高4.6倍,具體空間分布參考圖4.
圖4 福島核事故后俄羅斯海洋放射性監(jiān)測站位空間分布Fig.4 Radioactive monitor stations of Russia after the FNA
2.5 中國
圖5 福島核事故后中國海洋放射性監(jiān)測區(qū)域Fig.5 Radioactive monitor regions of China after the FNA
表2 表層海水中的放射性核素活度分布[50]Table 2 Ranking of average radioactivity of surface seawater[50]
日本福島核事故是至今為止最嚴(yán)重的海洋放射性污染事故,大量放射性物質(zhì)進(jìn)入北太平洋,必然改變海洋放射性本底[6].多個國家相繼開展的海洋放射性監(jiān)測工作積累了大量的海洋放射性數(shù)據(jù),核事故后的海洋放射性數(shù)據(jù)是后果評價的依據(jù),是新時期的海洋放射性本底數(shù)據(jù)庫的重要補(bǔ)充,有利于水文動力模型驗(yàn)證和海洋學(xué)過程的研究[47-49].
目前海洋放射性監(jiān)測結(jié)果顯示,來自福島核事故的放射性物質(zhì)在北太平洋中沿著水平與垂直方向上遷移、擴(kuò)散,污染范圍不斷擴(kuò)大,核素活度不斷被稀釋而降低,海盆尺度上來自福島的放射性物質(zhì)自西向東輸運(yùn),運(yùn)移速率大約為8cm/s,并呈現(xiàn)次表層存在高值的特點(diǎn),目前開闊大洋海水中137Cs活度最高值在10Bq/m3左右,明顯高于事故前的北太平洋海水137Cs活度1~2Bq/m3的本底[34,38].
海水作為復(fù)雜的天然體系,含有許多天然、人工的放射性核素.表2從高到低全面給出海水中放射性核素的活度及其來源.福島核事故泄漏的放射性核素137Cs活度被大洋海水稀釋,目前大洋海水中137Cs活度降低為10Bq/m3左右,比40K活度少3個數(shù)量級,同時低于87Rb、3H、234U、238U和234Th的核素活度.
許多國家針對水中核素的放射性活度制定一系列的限值標(biāo)準(zhǔn),以保護(hù)人類健康與環(huán)境的安全.表3給出目前開闊大洋海水中來自福島核事故的137Cs活度與不同國家制定的水中137Cs活度限值標(biāo)準(zhǔn)的對比情況.目前開闊大洋中海水中137Cs核素活度遠(yuǎn)小于各個國家制定的水中137Cs活度限值標(biāo)準(zhǔn).
表3 福島核事故來源的海水137Cs活度與各國水中137Cs活度限值標(biāo)準(zhǔn)[51-52]Table 3 Limiting radioactivity of137Cs in water from the International and National standards[51-52]
自20世紀(jì)40年代以來,人類開始利用原子能,并向環(huán)境中引入大量的人工放射性核素,大量放射性物質(zhì)進(jìn)入海洋環(huán)境,國際上已經(jīng)開展大量海洋放射性監(jiān)測工作[53-58],國際上幾個涉及海洋放射性核素測量的大型項(xiàng)目包含:Geochemical Ocean Sections Program (GEOSECS,1972~1978)、Transient Tracers in the Ocean (TTO,1981~1983)、World Ocean Circulation Experiment (WOCE,1990~2002)、Arctic Monitoring and Assessment Programme (AMAP,1991~)、World Marine Radioactivity Studies (WOMARS, 1996~2002)、Japan-Korean-Russia Jointed Expedition (1996~2002)、Southern Hemisphere Ocean Tracer Studies(SHOTS,2002~2010)、GEOTRACERS (2010~).
我國近海海洋放射性監(jiān)測工作始于20世紀(jì)60年代,衛(wèi)生部部署各沿海省市在渤海、黃海、東海和南海開展海水、沉積物、海洋生物放射性調(diào)查工作,李樹慶等對20世紀(jì)70-80年代我國近海海洋放射性水平進(jìn)行系統(tǒng)的總結(jié)[59];中科院海洋所李培泉等在70-80年代對我國海洋放射性研究做了大量工作[60];國家海洋局第三海洋研究所蔡福龍對我國在海洋放射生態(tài)學(xué)方面的研究進(jìn)行介紹[61];第一次、第二次全國海洋污染基線調(diào)查積累部分海洋放射性監(jiān)測數(shù)據(jù);我國建立多個濱海核電站過程中,也同時開展了大量的海洋放射性環(huán)境監(jiān)測;唐森銘等對過去40年的我國海域放射性水平調(diào)查進(jìn)行總結(jié)[62].
針對海量海洋放射性監(jiān)測數(shù)據(jù),國際原子能機(jī)構(gòu)(IAEA)與日本氣象研究所分別建立Global Marine Radioactivity Database/Marine Information System (GLOMARD/MARIS)[63-64]與Historical Artificial Radionuclides in the Pacific Ocean and its Marginal Seas (HAM-Global Database)[65-66]兩個全球海洋放射性數(shù)據(jù)庫. IAEA數(shù)據(jù)庫中我國近海放射性數(shù)據(jù)資料很少,日本氣象研究所的數(shù)據(jù)庫并不公開.
目前我國環(huán)保部門、海洋部門、衛(wèi)生部門、中科院系統(tǒng)、高校系統(tǒng)、核電站等不同機(jī)構(gòu)已經(jīng)積累大量的海洋放射性監(jiān)測數(shù)據(jù),但是零散而不集中,不利于數(shù)據(jù)挖掘、利用和管理.我國濱海核電已經(jīng)進(jìn)入快速發(fā)展時期,海洋放射性數(shù)據(jù)庫的建立對于今后的海洋環(huán)境安全具有重要意義.中國近海海洋放射性數(shù)據(jù)的積累可以評價我國濱海核電等其他核工業(yè)活度的影響,開闊大洋放射性數(shù)據(jù)的積累可以評價其它國家核工業(yè)活動的影響,并對我國海域可能造成的影響進(jìn)行預(yù)報(bào)與預(yù)警.中國科學(xué)院在放射化學(xué)學(xué)科發(fā)展戰(zhàn)略中也專門提出數(shù)據(jù)庫建設(shè)的重要性[67].因此,在福島核事故的背景下,海洋放射性數(shù)據(jù)庫作為海洋放射性監(jiān)測工作的最終成果,應(yīng)該受到特別的重視.
[1]Stohl A, Seibert P, Wotawa G, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term,atmospheric dispersion, and deposition [J]. Atmospheric Chemistry and Physics, 2012,12(5):2313-2343.
[2]Christoudias T, Lelieveld J. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident [J]. Atmospheric Chemistry and Physics, 2013,13(3):1425-1438.
[3]Morino Y, Ohara T, Nishizawa M. Atmospheric behavior,deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011 [J]. Geophysical research letters, 2011,38(7):85-93.
[4]Yoshida N, Kanda J. Tracking the Fukushima radionuclides [J]. Science, 2012,336(6085):1115-1116.
[5]Ten Hoeve J E, Jacobson M Z. Worldwide health effects of the Fukushima Daiichi nuclear accident [J]. Energy and Environmental Science, 2012,5(9):8743-8757.
[6]Buesseler K. Fukushima and ocean radioactivity [J]. Oceanography, 2014,27(1):92-105.
[7]Povinec P, Aoyama M, Biddulph D, et al. Cesium, iodine and tritium in NW Pacific waters-a comparison of the Fukushima impact with global fallout [J]. Biogeosciences, 2013, 10:5481-5496.
[8]Casacuberta N, Masqué P, Garcia-Orellana J, et al.90Sr and89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident [J]. Biogeosciences, 2013,10(2): 3649-3659.
[9]Periá?Ez R, Suh K-S, Byung-Il M, et al. Numerical Modeling of the Releases of90Sr from Fukushima to the Ocean: An Evaluation of the Source Term [J]. Environmental science & technology, 2013,47(21):12305-12313.
[10]Povinec P P, Hirose K, Aoyama M. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact [J]. Environmental Science and Technology,2012,46(18):10356-10363.
[11]Nair R, Sunny F, Chopra M, et al. Estimation of radioactive leakages into the Pacific Ocean due to Fukushima nuclear accident [J]. Environmental Earth Sciences, 2014,71(3):1007-1019.
[12]Hou X, Povinec P P, Zhang L, et al. Iodine-129in seawater offshore Fukushima: Distribution, inorganic speciation, sources,and budget [J]. Environmental Science and Technology, 2013,47(7):3091-3098.
[13]Guilderson T, Tumey S, Brown T, et al. The 129-Iodine content of subtropical Pacific waters: impact of Fukushima and other anthropogenic129I sources [J]. Biogeosciences, 2014, 11:4839-4852.
[14]Kawamura H, Kobayashi T, Furuno A, et al. Preliminary numerical experiments on oceanic dispersion of131I and137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster [J]. Journal of Nuclear Science and Technology, 2011,48(11):1349-1356.
[15]Tsumune D, Tsubono T, Aoyama M, et al. One-year, regionalscale simulation of137Cs radioactivity in the ocean following the Fukushima Daiichi Nuclear Power Plant accident [J]. Biogeosciences, 2013,10:5601-5617.
[16]Charette M A, Breier C F, Henderson P B, et al. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident [J]. Biogeosciences, 2013,10(3):2159-2167.
[17]Zheng J, Tagami K, Bu W, et al.135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident [J]. Environmental Science and Technology, 2014,48(10): 5433-5438.
[18]Dietze H, Kriest I.137Cs off Fukushima Dai-ichi, Japan- model based estimates of dilution and fate [J]. Ocean Science,2012,8(3):319-332.
[19]Buesseler K O, Jayne S R, Fisher N S, et al. Fukushima-derived radionuclides in the ocean and biota off Japan [J]. Proceedings of the National Academy of Sciences, 2012,109(16):5984-5988.
[20]Tsumune D, Tsubono T, Aoyama M, et al. Distribution of oceanic137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model [J]. Journal of Environmental Radioactivity, 2012,111:100-108.
[21]Estournel C, Bosc E, Bocquet M, et al. Assessment of the amount of cesium-137released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012,117(C11).
[22]Miyazawa Y, Masumoto Y, Varlamov S, et al. Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident [J]. Biogeosciences,2013,10:2349-2363.
[23]Rypina I, Jayne S, Yoshida S, et al. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison [J]. Biogeosciences, 2013,10:4973-4990.
[24]Bailly Du Bois P, Laguionie P, Boust D, et al. Estimation of marine source-term following Fukushima Dai-ichi accident [J]. Journal of Environmental Radioactivity, 2012,114:2-9.
[25]Steinhauser G, Brandl A, Johnson T E. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts [J]. Science of The Total Environment,2014,470:800-817.
[26]Inoue M, Kofuji H, Nagao S, et al. Low levels of134Cs andl37Cs in surface seawaters around the Japanese Archipelago after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 [J]. Geochemical Journal, 2012,46(4):311-320.
[27]Inoue M, Kofuji H, Hamajima Y, et al.134Cs and137Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait,northeastern Japan, after Fukushima Dai-ichi Nuclear Power Plant accident [J]. Journal of Environmental Radioactivity, 2012,111:116-119.
[28]Inoue M, Furusawa Y, Fujimoto K, et al.228Ra/226Ra ratio and7Be concentration in the Sea of Japan as indicators for water transport: comparison with migration pattern of Fukushima Dai-ichi NPP- derived134Cs and137Cs [J]. Journal of Environmental Radioactivity, 2013,126:176-187.
[29]Kofuji H, Inoue M. Temporal variations in134Cs and137Cs concentrations in seawater along the Shimokita Peninsula and the northern Sanriku coast in northeastern Japan, one year after the Fukushima Dai-ichi Nuclear Power Plant accident [J]. Journal of Environmental Radioactivity, 2013,124:239-245.
[30]Aoyama M, Tsumune D, Uematsu M, et al. Temporal variation ofl34Cs andl37Cs activities in surface water at stations along the coastline near the Fukushima Dai-ichi Nuclear Power Plant accident site, Japan [J]. Geochemical Journal, 2012,46(4):321-325.
[31]Oikawa S, Takata H, Watabe T, et al. Distribution of the Fukushima-derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and Ibaraki Prefectures, Japan[J]. Biogeosciences, 2013,10:5031-5047.
[32]Inoue M, Kofuji H, Nagao S, et al. Lateral variation of134Cs and137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2012,109:45-51.
[33]Inoue M, Kofuji H, Oikawa S, et al. Spatial variations of low levels of134Cs and137Cs in seawaters within the Sea of Japan after the Fukushima Dai-ichi Nuclear Power Plant accident [J]. Applied Radiation and Isotopes, 2013,81:340-343.
[34]Kumamoto Y, Aoyama M, Hamajima Y, et al. Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific [J]. Scientific Reports,2014,4:4276.
[35]Kaeriyama H, Shimizu Y, Ambe D, et al. Southwest intrusion of 134Cs and137Cs derived from the Fukushima Dai-ichi Nuclear Power Plant accident in the western North Pacific [J]. Environmental Science and Technology, 2014,48(6):3120-3127.
[36]Aoyama M, Tsumune D, Hamajima Y. Distribution of137Cs and134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013,296(1):535-539.
[37]Honda M C, Aono T, Aoyama M, et al. Dispersion of artificial caesium-134and-137in the western North Pacific one month after the Fukushima accident [J]. Geochem. J, 2012,46(1):361-369.
[38]Aoyama M, Uematsu M, Tsumune D, et al. Surface pathway ofradioactive plume of TEPCO Fukushima NPP1 released134Cs and137Cs [J]. Biogeosciences, 2013,10:3067-3078.
[39]Kaeriyama H, Ambe D, Shimizu Y, et al. Direct observation of134Cs and137Cs in surface seawater in the western and central North Pacific after the Fukushima Dai-ichi nuclear power plant accident [J]. Biogeosciences, 2013,10:4287-4295.
[40]Kitamura M, Kumamoto Y, Kawakami H, et al. Horizontal distribution of Fukushima-derived radiocesium in zooplankton in the northwestern Pacific Ocean [J]. Biogeosciences, 2013,10: 5729-5738.
[41]Kumamoto Y, Murata A, Kawano T, et al. Fukushima-derived radiocesium in the northwestern Pacific Ocean in February 2012[J]. Applied Radiation and Isotopes, 2013,81:335-339.
[42]Povinec P, Gera M, Holy K, et al. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean [J]. Applied Radiation and Isotopes, 2013,81:383-392.
[43]Kameník J, Dulaiova H, Buesseler K O, et al. Cesium-134and 137activities in the central North Pacific Ocean after the Fukushima Dai-ichi nuclear power plant accident [J]. Biogeosciences, 2013,10:6045-6052.
[44]Kim C-K, Byun J-I, Chae J-S, et al. Radiological impact in Korea following the Fukushima nuclear accident [J]. Journal of Environmental Radioactivity, 2012,111:70-82.
[45]Ramzaev V, Nikitin A, Sevastyanov A, et al. Shipboard determination of radiocesium in seawater after the Fukushima accident: results from the 2011-2012Russian expeditions to the Sea of Japan and western North Pacific Ocean [J]. Journal of Environmental Radioactivity, 2014,135:13-24.
[46]Wu J, Zhou K, and Dai M. Impacts of the Fukushima nuclear accident on the China Seas: Evaluation based on anthropogenic radionuclide137Cs [J]. Chinese Science Bulletin, 2013,58(4/5): 552-558.
[47]Aoyama M Pacific Ocean, in Radionuclides in the Environment[Z]. John Wiley and Sons, 2010:347-360.
[48]Inomata Y. Global trends in cesium distribution, in Radionuclides in the Environment [M]. John Wiley and Sons, 2010:453-466.
[49]Inomata Y, Aoyama M, Tsumune D, et al. Optimum interpolation analysis of basin-scale137Cs transport in surface seawater in the North Pacific Ocean [J]. Journal of Environmental Monitoring,2012,14(12):3146-3155.
[50]Szymczak R. Tropical radiochemical oceanography, in tropical radioecology [M]. New York: Elsevier, 2012:121-153.
[51]劉長安,李小娟,陳爾東,等.福島核危機(jī)中的飲用水安全問題[J]. 現(xiàn)代儀器, 2012,18(2):11-16.
[52]Bradley F J, Pratt R M. Regulations, in radionuclide concentrations in food and the environment [M]. CRC Press,2006.
[53]Livingston H D, Povinec P P. A millennium perspective on the contribution of global fallout radionuclides to ocean science [J]. Health Physics, 2002,82(5):656-668.
[54]Livingston H D, Povinec P P. Anthropogenic marine radioactivity[J]. Ocean and Coastal Management, 2000,43(8):689-712.
[55]Aarkrog A. Input of anthropogenic radionuclides into the World Ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003,50(17):2597-2606.
[56]Povinec P, Eriksson M, Scholten J, et al. Marine Radioactivity Analysis, in Handbook of radioactivity analysis [M]. Academic Press, 2012:769-832.
[57]Cigna a A. Forty years of anthropogenic radionuclides in surface seawater. Italian and Japanese data [J]. Ocean Science Journal,2006,41(4):261-290.
[58]Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of environmental radioactivity, 2010,101(6):426-437.
[59]李樹慶,祝漢民,吳復(fù)壽,等.中國近海放射性水平 [M]. 北京:海洋出版社, 1987.
[60]李培泉.海洋放射性及其污染 [M]. 北京:科學(xué)出版社, 1983.
[61]蔡福龍.海洋放射生態(tài)學(xué) [M]. 北京:原子能出版社, 1987.
[62]唐森銘,商照榮.中國近海海域環(huán)境放射性水平調(diào)查 [J]. 核安全, 2005,4(2):21-30.
[63]Povinec P P, Aarkrog A, Buesseler K O, et al.90Sr,137Cs and239,240Pu concentration surface water time series in the Pacific and Indian Oceans-WOMARS results [J]. Journal of Environmental Radioactivity, 2005,81(1):63-87.
[64]Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H,90Sr,137Cs and239,240Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of Environmental Radioactivity, 2004,76(1/2):113-137.
[65]Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal,2004,4:200-215.
[66]Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring,2009,11(1):116-125.
[67]中國科學(xué)院,中國學(xué)科發(fā)展戰(zhàn)略——放射化學(xué) [M]. 北京:科學(xué)出版社, 2013.
致謝:感謝董振芳研究員和余雯副研究員對本文提出的意見.
Review on monitoring marine radioactivity since the Fukushima Nuclear Accident.
LIN Wu-hui1,2,3,4,5, CHEN Li-qi4,5*, HE Jian-hua3,5, MA Hao1,2, ZENG Zhi1,2, ZENG Shi1(1.Department of Engineering Physics, Tsinghua University,Beijing 100084, China;2.Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Tsinghua University,Beijing 100084, China;3.Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, State Oceanic Administration, Xiamen 361005, China;4.Key Laboratory of Global Change and Marine-Atmospheric Chemistry, State Oceanic Administration, Xiamen 361005, China;5.Third Institution of Oceanography, State Oceanic Administration,Xiamen 361005, China). China Environmental Science, 2015,35(1):269~276
Fukushima Nuclear Accident (FNA) is the most serious problem in marine radioactive contamination. Therefore, monitoring and assessment of the marine radioactivity become globally concerned and hot spot since the FNA. This paper will review on radioactive source term derived from the FNA through marine pathway and surveys from some countries. Based on marine radioactivity background and the national and international standards, the results from marine radioactive monitoring were evaluated. Finally, we propose to develop marine radioactivity database according to the marine nuclear safety and necessary of demotic or international marine radioactive monitoring.
Fukushima Nuclear Accident;marine radioactivity monitoring;nuclear power plant;standard;database
X55
A
1000-6923(2015)01-0269-08
林武輝(1987-),男,福建泉州人,清華大學(xué)博士研究生,主要從事海洋放射性研究.發(fā)表論文7篇.
2014-05-02
福建省核輻射環(huán)境監(jiān)測技術(shù)與評價方法研究(2013R016);中國極地科學(xué)戰(zhàn)略研究基金項(xiàng)目(20120316)
* 責(zé)任作者, 研究員, Lqchen@soa.gov.cn