• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SUB-ADDITIVE PRESSURE ON A BOREL SET?

    2015-11-21 07:12:35YangyangCHEN陳陽(yáng)洋YunZHAO趙云
    關(guān)鍵詞:趙云

    Yangyang CHEN(陳陽(yáng)洋) Yun ZHAO(趙云)

    Department of Mathematics,Soochow University,Suzhou 215006,China

    Wen-Chiao CHENG(鄭文巧)?

    Department of Applied Mathematics,Chinese Culture University Yangmingshan,Taipei 11114,China

    SUB-ADDITIVE PRESSURE ON A BOREL SET?

    Yangyang CHEN(陳陽(yáng)洋) Yun ZHAO(趙云)

    Department of Mathematics,Soochow University,Suzhou 215006,China

    E-mail:oufei861155909@163.com;zhaoyun@suda.edu.cn

    Wen-Chiao CHENG(鄭文巧)?

    Department of Applied Mathematics,Chinese Culture University Yangmingshan,Taipei 11114,China

    E-mail:zwq2@faculty.pccu.edu.tw

    The goal of this paper is to investigate topological conditional pressure of a continuous transformation as defined for sub-additive potentials.This study presents a variational inequality for sub-additive topological conditional pressure on a closed subset,which is the other form of the variational principle for the sub-additive topological pressure presented by Cao,F(xiàn)eng,and Huang in[9].Moreover,under some additional assumptions,this result can be generalized to the non-compact case.

    sub-additive potentials;topological pressure;conditional entropy;variational inequality

    2010 MR Subject Classification 37A30;37L40

    1 Introduction

    In this study,(X,T)denotes a topological dynamical system(TDS for short)in the sense that T:X→X is a continuous map on a compact metric space X with the metric d.

    Entropy is a critical factor in dynamical systems and the study of ergodic theory.Metric entropy was defined by Kolomogorov and Sinai from Shannon's information theory in 1959,while Adler,Konheim and McAndrew[1]used the concept of open covers to introduce topological entropy in 1965,and Bowen[7]later defined topological entropy on a metric space by using generating and separating sets,respectively.These three different definitions of topological entropy was proved equivalent provided the compactness of the space,see[23]for the details. Metric or measure-theoretic entropy measures the maximal loss of information in the iteration of finite partitions in a measure-preserving transformation,whereas topological entropy measures the maximal exponential growth rate of orbits.However,these concepts are not isolated. These two notions are connected by a famous variational principle stating that the topologicalentropy is the supremum of the metric entropies for all invariant probability measures of a given topological system and is described in the following:

    where h(T)denotes the topological entropy for T and hμ(T)is the metric entropy.The term M(X,T)denotes all the T-invariant Borel probability measures on X.

    As a natural generalization of topological entropy,topological pressure is a quantity which belongs to one of the concepts in the thermodynamic formalism.Topological pressure contains information about the dynamics of the system,which can be extracted by varying the potential energy function.It is well known that the topological pressure with a potential function plays a fundamental role in the study of the Hausdorff dimension of repellers and the hyperbolic set.Related studies include[4,7,13,14,17,19,21-23].The relationship among topological pressure,potential function and metric entropy are formulated by a variational principle,which states that if T:X→X is a continuous map,f:X→R is a continuous function,and P(T,f)denotes the topological pressure of T with respect to f,then

    In[11],F(xiàn)alconer considered the topological pressure for sub-additive potentials,and proved the variational principle for sub-additive topological pressure under some Lipschitz conditions and bounded distortion assumptions on the sub-additive potentials.For an arbitrary subset and any non-additive potentials on the compact metric space,Barreira[3]defined non-additive topological pressure and also showed the variational principle under particular convergence conditions on the potentials.Recently,Cao,F(xiàn)eng and Huang[9]generalized the results of Rulle and Walters to the sub-additive potentials on the compact metric space.It deserves to mention that they didn't put any other assumptions on the potentials and their results had relevant applications in dimension theory,see[2].Feng and Huang in[12]introduced the notion of asymptotically additive/subadditive potentials,and proved the variational principle for topological pressure with these two potential.The main goal of demonstration is to study the multifractal analysis of these two potentials.Note that Barreira[5,6]and Mummert[18]dealt with variational principle for topological pressure with almost additive potentials.Huang,Yi[16]and Zhang[24]considered the variational principle for the local topological pressure.For more information,see[25]and[26]for variational principle of conditional topological pressure and coset pressure with sub-additive potentials,respectively.

    Furthermore,Li,Chen and Cheng[15]generalized the results of Walters regarding the variational principle for topological pressure and their results can be stated precisely as follows. Let T:X → X be a continuous map,and f:X → R be a continuous function.Given a T-invariant closed subset G of X,i.e.,T-1G=G,and consider the pressure PG(T,f)of T on G with respect to f,then the following variational inequality is obtained

    wheredenotes the partition{G,XG},and hμ(T|)denotes the conditional entropy of T with respect toμ,see[23]for the details.This formula can be used to generalize the results of Cheng[10]regarding topological entropy.Inspired by[15]and[9],this paper considers thetopological pressure PG(T,F(xiàn))of a sub-additive potential F on a T-invariant closed subset G of X.Inequality(1.1)is also generalized to the sub-additive case.Moreover,relying on more techniques of the proof of variational principle for sub-additive topological pressure built by Cao,F(xiàn)eng and Huang[9]leads to the following theorem.

    Theorem 1.1 Assume T:X→X is a continuous map of the compact metric space X,and F={gn}∞n=1is a sub-additive potential on X.If G is a T-invariant closed subset of X,then

    It is of interest to note that Theorem 1.1 is also true if the potential F is asymptotically sub-additive by using Feng and Huang's result[12].Roughly speaking,an asymptotically subadditive potential is a family of continuous functions which can be approximated by sub-additive potentials,see[12]for the precise definition.

    The purpose of this paper is to demonstrate Theorem 1.1 and is organized as follows.Using the similar notion of topological pressure,Section 2 establishes conditional entropy,conditional sub-additive topological pressure focused on the T-invariant Borel set and states the variational principle revealed by[9].Section 3 shows how to estimate the supremum of a special type of conditional entropy with a sub-additive potential by calculating the topological conditional pressure.The resulting variational inequality is based on the results presented by Cao,F(xiàn)eng and Huang'work[9].Finally,Section 4 shows that the variational inequality is still true for the non-compact case if some assumptions are added.

    2 Notations and Related Propositions

    A reasonable measure-theoretic or topological entropy should be a measure of the uncertainty of the system.These entropies should be invariant under measurable or topological changes of coordinates,respectively.Topological pressure,which is an extension of topological entropy,is a rich source of dynamical systems.This value roughly measures the orbit complexity of the iterated map on the potential functions.This section first reviews the concept of conditional metric entropy on a probability space and sub-additive potentials.Then the topological pressure concentrated on a Borel set is given in order to present the variational inequality among these invariant values.

    The conditional entropy of an ergodic theory is usually defined as follows.Let(X,B,μ)be a probability space.The terms α={A1,A2,···,Am}and β={B1,B2,···,Bn}denote the finite partitions of X.The conditional entropy of α with respect to β is defined as

    and is called the metric entropy of T with respect to α.The metric entropy of T is given by the value,where α is any finite partition of X.

    The following discussion is based on the assumption that T:X→X is a continuous map of the compact metric space X,and G is a T-invariant closed subset of X.Letdenote the partition{G,XG},where XG is the complement of G.Let M(X,T)denote the set of all T-invariant Borel probability measures on(X,B(X)),where B(X)represents the Borel σ-algebra of X.Given a T-invariant measureμ∈M(X,T),define

    Remark 2.1 If G=X orμ(G)=1,then actually hμ(T)=hμ(T|).

    This conditional metric entropy hμ(T|)has some basic properties,including power rule,product rule and affinity and is stated as follows.The main idea of these proofs come from Li,Chen and Cheng's approximations,see[10,15].A simple example is the sub-shift of finite type on symbolic dynamics with two-sided shift.

    Lemma 2.2(see[10]) The conditional entropy hμ(T|)is a measure-theoretic conjugacy invariant.

    Lemma 2.3(see[10]) For each positive integer r,hμ(Tr|)=r·hμ(T|).

    Lemma 2.4(see[15])Let(X1,B1,m1)and(X2,B2,m2)be probability spaces and let T1:X1→X1,T2:X2→X2be measure-preserving maps.Then

    whereμ=m1×m2,Giis a Ti-invariant subspace of Xi,i=1,2.

    Lemma 2.5(see[15])Let T be a measure-preserving map of the probability space(X,B,μ)and let G be a T-invariant subset of X.Then the mapμ→ hμ(T|,α)is affine where α is any finite partition of X.Hence,so is the mapμ→hμ(T|).In other words,for all 0<λ<1,and whenμ1,μ2are both invariant measures,we have

    For convenience,notations and definitions of the sub-additive potential is adopted by Cao,F(xiàn)eng and Huang's recent work,[9]and can be described in the following.

    For a sub-additive potentialandμ∈M(X,T),define

    and

    Then,define

    Due to PG(T,F(xiàn),?)is a decreasing function of ?,the limiting process ?→ 0 is reasonable. PG(T,F(xiàn))is said to be the topological pressure of T restricted on G with respect to the subadditive potential F.

    Remark 2.8 If G=X,for simplicity,we just note PX(T,F(xiàn))as P(T,F(xiàn)).Set PG(T,F(xiàn))= -∞by convention when G=?.If F={gn}n≥1is additive,i.e.,there exists a ?:X →R such that gn(x)=?+??T+···+??Tn-1,then the above definition reduces to the additive topological pressure.

    The theory about the topological pressure,variational principle and equilibrium states plays a fundamental role in statistical mechanics,ergodic theory and dynamical systems.The variational principle of the sub-additive topological pressure was shown by Cao,F(xiàn)eng and Huang's work on the whole space X in[9].

    Theorem 2.9(see[9,Theorem 1.1])Let F={gn}∞n=1be a sub-additive potential on a TDS(X,T).This leads to

    3 Main Proof

    For a continuous function T of a compact metric space(X,d),the well-known variational principle of topological pressure shows the relationships among pressure,entropy invariants,and potential energy from probabilistic and topological perspectives.This section provides a detailed proof of the variational principle for the topological conditional pressure with a subadditive potential.

    Unavoidable,we will face the special case that F?(μ)=-∞,?μ∈M(X,T),while it doesn't exist in the additive case,since if F={gn}n≥1is additive,that means the existence of a continuous function ?:X → R such that gn(x)=?+??T+···+??Tn-1,then |F?(μ)|=|R?dμ|≤||?||∞is always finite.It is worthwhile to point out that Li,Chen and Cheng used the standard technique of variational principle developed by P.Walters to prove the first inequality in their Theorem 1.1,see[15].Following previous research by Cao,F(xiàn)eng and Huang's work[9],this study derives the proof of the presented variational inequality by using a series of modifications.

    Proof of Theorem 1.1 We divide the proof into three small steps.

    Part I If?μ∈M(X,T),F(xiàn)?(μ)=-∞,i.e.,P(T,F(xiàn))=-∞.For G is a closed T-invariant subset of X,it is not hard to show thatThus,the topological pressure on the compact subsetis well-defined.Since M(G,T)?M(X,T),andwe haveby an application of Theorem 2.9 on these subsystems(G,T|G)andDefine sup?=-∞,then Theorem 1.1 still holds.Therefore, we always assume that there existsμ∈M(X,T)such that F?(μ)/=-∞in the following two parts.

    Part II This part will prove

    If PG(T,F(xiàn))=-∞,then the above inequality holds obviously.If PG(T,F(xiàn))/=-∞,Theorem 2.9 on the subsystem(G,T|G)ensures that there existsμ∈M(G,T)?M(X,T)such that.By Theorem 2.9,one has

    where the second equality follows from Remark 2.1,sinceμ(G)=1,?μ∈M(G,T).

    Part III Finally,we show that for eachμ∈M(X,T)satisfying F?(μ)/=-∞,one has

    Given aμ∈M(X,T)with F?(μ)/=-∞.Ifμ(G)=1,by Remark 2.1 we have hμ(T|)= hμ(T).Using Theorem 2.9,we have

    Using a similar argument,ifμ(G)=0 then we have

    Hence,in the following we assume that 0<μ(G)<1.Let η be a finite partition of the space X,then

    where Gc=XG,μGandμGcdenotes the conditional probability measures induced byμon G and Gc,respectively.Dividing by n on both sides of the above equality and let n→∞,one has

    Moreover,

    On the other hand,we first assume that hμG(T)and hμG(T)are finite.Then for any ?>0 there exists finite partitions η,ξ of X such that

    Set ζ=η∨ξ,using the property of refinement of entropy,which implies

    Multiply the above two inequalities byμ(G)andμ(Gc),respectively,together with(3.1)one has

    Since ?>0 is arbitrary,we obtain

    Finally,if hμG(T)=+∞or hμGc(T)=+∞,modifying slightly the above arguments we have hμ(T|)=+∞.The above arguments show that

    Furthermore,

    and F?(μ)/=-∞,which implies

    Note thatμG∈M(G,T),μGc∈M(Gc,T)?M(Gc,T),the application of Theorem 2.9 on subsystems(G,T)and(Gc,T)gives

    and

    Multiply the above two inequalities byμ(G)andμ(Gc),respectively,adding them,one easily obtains

    as desired.□

    If this closed T-invariant subset G represents the whole space X,then XG=?.This allows Theorem 2.1,which is the variational principle presented by Cao,F(xiàn)eng and Huang[9].

    4 Non-Compact Case

    This section will consider the non-compact case,i.e.,the T-invariant subset G of X can be not closed.Different definitions of topological pressure can be used to obtain an even more general variational inequality.First,define the topological pressure of any subset.The following notations are adopted from Barreira[3].

    Let T:X → X be a continuous map on the compact metric space X.If U is a finite open cover of X and n≥1,denote by Wn(U)the collection of strings U=U1U2···Unwith U1,U2,···,Un∈U.For each U∈Wn(U),call the integer m(U)=n the length of U,and define the open set

    This section is based on the assumption that the following property holds:

    Given any subset Z?X,sub-additive potentials F={gn}n≥1and open cover U of X,for α∈R,define

    the reasonablenessof the above definition can be ensured by the structure theory of Carath′eodory(see[20]).Moreover,the topological pressure of T restricted on Z with respect to F is defined by

    The following paragraphs present some lemmas.

    Lemma 4.1(see[3,Corollary1.8])Let F={gn}n≥1be a sub-additive potential on a TDS(X,T),and G a T-invariant Borel subset of X.If there exists a continuous function ψ:X→R,such that gn+1-gn?T→ψ uniformly on G as n→∞,and V(x)∩M(G)/=?,?x∈G,then

    where M(G)denotes all the invariant measures that satisfyμ(G)=1 and T|G denotes the map T restricted on G.

    Remark 4.2(see[3,Lemma 2])In the above lemma,without the condition V(x)∩M(G)/=?,?x∈G,we can obtain

    Lemma 4.3(see[15,Lemma 4.1])Let(X,T)be a TDS,and G a T-invariant Borel subset.For eachμ∈M(G),we have

    We still need the following lemma.

    Lemma 4.4 Let F={gn}n≥1be a sub-additive potential on a TDS(X,T),and G a T-invariant Borel subset of X.If there exists a continuous function ψ:X → R,such that gn+1-gn?T→ψ uniformly on G as n→∞,then for eachμ∈M(G)one has

    Since gn+1-gn?T→ψ uniformly on G as n→∞,set an=G(gn+1-gn?T)dμ.In this case,an→RGψdμas n→∞.Letting n→∞on both sides of the above formula,then the desired result is obtained.

    Theorem 4.5 Let F={gn}n≥1be a sub-additive potential on X,and G a T-invariant Borel subset of X.If there exists a continuous function ψ:X→R,such that gn+1-gn?T→ψ uniformly on X as n→∞,in addition,we assume V(x)∩M(G)/=?,?x∈G,then

    Proof Using Lemmas 4.1,4.3 and 4.4,we have

    On the other hand,for eachμ∈M(X,T),in Section 3,we have established

    and

    whereμGandμGcdenotes the conditional probability induced byμon G and Gc,respectively. Obviously,μG∈M(G),μGc∈M(Gc),By Remark 4.2,we have

    and

    Multiply the above two inequalities byμGandμGcrespectively,and add them,we have

    It follows from Lemma 4.4 that

    Hence,

    as desired.

    At last,the following question is proposed:

    Question Given a TDS(X,T)and a sub-additive potential F={gn}n≥1on X.Let G be a T-invariant Borel subset of X.If we only assume that V(x)∩M(G)/=?,?x∈G,does the following variational inequality still hold?

    [1]Adler R L,Konheim A G,McAndrew M H.Topological entropy.Trans Amer Math Soc,1965,114: 309-319

    [2]Ban Jungchao,Cao Yongluo,Hu Huyi.Dimensions of average conformal repeller and average.Trans Amer Math Soc,2010,362:727-751

    [3]Barreira L M.A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems.Ergod Th Dynam Syst,1996,16:871-927

    [4]Barreira L M.Dimension and recurrence in hyperbolic dynamics//Progress in Mathematics,272.Basel: Birkh¨auser Verlag,2008

    [5]Barreira L.Nonadditive thermodynamic formalism:equilibrium and Gibbs measures.Disc Contin Dyn Syst,2006,16:279-305

    [6]Barreira L.Almost additive thermodynamic formalism:some recent developments.Rev Math Phys,2010,22(10):1147-1179

    [7]Bowen R.Topological entropy for noncompact sets.Trans Amer Math Soc,1973,184:125-136

    [8]Bowen R.Equilibrium states and the ergodic theory of Anosov diffeomorphism//Lecture Notes in Math,Vol 470.New York:Springer-Verlag,1975

    [9]Cao Y,F(xiàn)eng D,Huang W.The thermodynamic formalism for sub-additive potentials.Disc Contin Dyn Sys,2008,20(3):639-657

    [10]Cheng W.Estimate for supremum of conditional entropy on a closed subset.Taiwanese J Math,2008,12(7):1791-1803

    [11]Falconer K J.A subadditive thermodynamic formalism for mixing repellers.J Phys A,1988,21(14): L737-L742

    [12]Feng D,Huang W.Lyapunov spectrum of asymptotically sub-additive potentials.Commun Math Phys,2010,297:1-43

    [13]Gelfert K.Equality of pressures for diffeomorphisms preserving hyperbolic measures.Math Z,2009,261(4): 711-724

    [14]Gelfert K,Wolf C.Topological pressure via saddle points.Trans Amer Math Soc,2008,360(1):545-561[15]Li Y,Chen E,Cheng W.Variational inequality for conditional pressure on a Borel subset.Pacific J Math,2012,256(1):151-164

    [16]Huang W,Yi Y.A local variational principle of pressure and its applications to equilibrium states.Israel J Math,2007,161:29-94

    [17]Molaeo M R.Dynamically defined topological pressure.J Dyn Syst Geom Theor,2008,6(1):75-81

    [18]Mummert A.The thermodynamic formalism for almost-additive sequences.Discrete Contin Dyn Syst,2006,16:435-454

    [19]Pesin Y,Pitskel B.Topological pressure and the variational principle for noncompact sets.Funct Anal Appl,1984,18:307-318

    [20]Pesin Y.Dimension Theory in Dynamical Systems,Contemporary Views and Applications.Chicago: University of Chicago Press,1997

    [21]Ruelle D.Statistical mechanics on a compact set with Zvaction satisfying expansiveness and specification. Trans Ame Math Soc,1973,187:237-251

    [22]Walters P.A variational principle for the pressure of continuous transformations.Amer J Math,1975,97(4):937-971

    [23]Walters P.An Introduction to Ergodic Theory.Berlin,Heidelberg,New York:Springer-Verlag,1982

    [24]Zhang G.Variational principles of pressure.Dis Contin Dyn Syst,2009,24(4):1409-1435

    [25]Zhao Y,Cheng W.Variational principle for conditional pressure with subadditive potential.Open Syst Inf Dyn,2011,18(4):389-404

    [26]Zhao Y,Cheng W.Coset pressure with sub-additive potentials.Stoch Dyn,2014,14(1):1350012

    ?Received July 23,2013;revised October 24,2014.For this research,Chen was partially supported by National University Student Innovation Program(111028508).Cheng was supported by NSC Grant NSC 101-2115-M-034-001.Zhao was partially supported by NSFC(11371271).This work was partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    ?Corresponding author:Wen-Chiao CHENG.

    猜你喜歡
    趙云
    A NOTE ON MEASURE-THEORETICEQUICONTINUITY AND RIGIDITY*
    《無(wú)風(fēng)的夏日》
    人文天下(2021年6期)2021-12-05 00:37:40
    標(biāo)點(diǎn)符號(hào)的爭(zhēng)吵
    Jokes Today
    薛景 趙云 華金濤
    甘南牧民 趙云雁
    金秋(2020年4期)2020-08-18 02:39:20
    七進(jìn)七出長(zhǎng)坂坡
    帶趙云參觀太陽(yáng)系
    趙云只追三里
    寫(xiě)好中國(guó)字
    日韩欧美国产一区二区入口| 啦啦啦啦在线视频资源| 亚洲av免费在线观看| 欧美日本亚洲视频在线播放| 琪琪午夜伦伦电影理论片6080| 男插女下体视频免费在线播放| 又爽又黄无遮挡网站| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 精华霜和精华液先用哪个| 亚洲最大成人av| 麻豆成人午夜福利视频| 免费在线观看日本一区| ponron亚洲| 亚洲av.av天堂| 91久久精品国产一区二区成人| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清| 在线观看免费视频日本深夜| 色吧在线观看| 国内精品宾馆在线| 欧美最黄视频在线播放免费| ponron亚洲| 99在线人妻在线中文字幕| 国产精品久久久久久av不卡| 99久久成人亚洲精品观看| 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 国产精品电影一区二区三区| 白带黄色成豆腐渣| 欧美日韩综合久久久久久 | 少妇裸体淫交视频免费看高清| www.色视频.com| 婷婷色综合大香蕉| 九九久久精品国产亚洲av麻豆| 18禁黄网站禁片免费观看直播| 黄色女人牲交| 99久久中文字幕三级久久日本| 亚洲18禁久久av| 亚洲内射少妇av| 欧美黑人欧美精品刺激| 69av精品久久久久久| 久久精品国产99精品国产亚洲性色| 亚洲成av人片在线播放无| 亚洲专区中文字幕在线| 极品教师在线免费播放| aaaaa片日本免费| 赤兔流量卡办理| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 韩国av在线不卡| 人人妻人人看人人澡| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 久久草成人影院| 国产伦在线观看视频一区| 日本五十路高清| 国产一区二区三区在线臀色熟女| 夜夜夜夜夜久久久久| 在线播放无遮挡| 最好的美女福利视频网| 久久6这里有精品| 国产精品久久久久久久久免| 黄色配什么色好看| 国产精品av视频在线免费观看| 色播亚洲综合网| 亚洲不卡免费看| 亚洲经典国产精华液单| 国产午夜福利久久久久久| 无遮挡黄片免费观看| 18禁在线播放成人免费| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 亚洲国产精品sss在线观看| 观看美女的网站| 亚洲一区高清亚洲精品| 亚洲经典国产精华液单| 长腿黑丝高跟| 非洲黑人性xxxx精品又粗又长| 亚洲精华国产精华液的使用体验 | 老司机深夜福利视频在线观看| 国产午夜精品久久久久久一区二区三区 | 国产欧美日韩精品亚洲av| 午夜福利欧美成人| 日韩欧美一区二区三区在线观看| 久久久久久伊人网av| 男女边吃奶边做爰视频| 综合色av麻豆| 他把我摸到了高潮在线观看| 午夜福利在线观看免费完整高清在 | 午夜亚洲福利在线播放| 男人舔女人下体高潮全视频| 国产精品爽爽va在线观看网站| 欧美一区二区国产精品久久精品| 最近视频中文字幕2019在线8| 国产精品av视频在线免费观看| АⅤ资源中文在线天堂| 亚洲欧美日韩卡通动漫| 亚洲狠狠婷婷综合久久图片| 成人国产综合亚洲| 久久久久免费精品人妻一区二区| 欧美激情久久久久久爽电影| 亚洲午夜理论影院| 联通29元200g的流量卡| 国产在线精品亚洲第一网站| 啦啦啦观看免费观看视频高清| h日本视频在线播放| 干丝袜人妻中文字幕| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 少妇的逼好多水| 国产精品美女特级片免费视频播放器| 少妇熟女aⅴ在线视频| 亚洲精品日韩av片在线观看| 97热精品久久久久久| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 欧美激情久久久久久爽电影| 欧美精品国产亚洲| 亚洲一区高清亚洲精品| 黄色日韩在线| 国产一区二区在线av高清观看| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 久久这里只有精品中国| 简卡轻食公司| 少妇高潮的动态图| 亚洲精品色激情综合| 国产淫片久久久久久久久| 在线播放无遮挡| 亚洲欧美日韩无卡精品| 俺也久久电影网| 天堂网av新在线| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 级片在线观看| 成人av一区二区三区在线看| 免费大片18禁| 中文字幕人妻熟人妻熟丝袜美| 午夜a级毛片| 欧美成人a在线观看| 久久国产精品人妻蜜桃| 91午夜精品亚洲一区二区三区 | 精品免费久久久久久久清纯| 三级毛片av免费| 如何舔出高潮| 久久久久久久久中文| 黄色配什么色好看| 日韩欧美精品v在线| 亚洲av美国av| 国产伦人伦偷精品视频| 1000部很黄的大片| 亚洲欧美日韩无卡精品| 日本精品一区二区三区蜜桃| 噜噜噜噜噜久久久久久91| 久久久国产成人免费| 国产又黄又爽又无遮挡在线| 级片在线观看| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 午夜a级毛片| 美女xxoo啪啪120秒动态图| 国产综合懂色| 亚洲精品成人久久久久久| 22中文网久久字幕| 高清日韩中文字幕在线| 我的老师免费观看完整版| 国产高清视频在线观看网站| 天堂动漫精品| 免费人成视频x8x8入口观看| 偷拍熟女少妇极品色| 两人在一起打扑克的视频| 国产色爽女视频免费观看| 麻豆成人av在线观看| 成人三级黄色视频| 日本免费a在线| 亚洲人成伊人成综合网2020| 国产精品野战在线观看| 日本黄色视频三级网站网址| 深夜精品福利| 久久久久国内视频| 欧美另类亚洲清纯唯美| 99热精品在线国产| 国产白丝娇喘喷水9色精品| 欧美三级亚洲精品| 九色成人免费人妻av| 在现免费观看毛片| 精品久久久久久久久久久久久| 国产av麻豆久久久久久久| 中文亚洲av片在线观看爽| 搡老岳熟女国产| 亚洲av熟女| 亚洲av电影不卡..在线观看| 欧美激情国产日韩精品一区| 亚洲成人久久性| 久久久久久久久大av| 欧美一区二区国产精品久久精品| 久久6这里有精品| 女的被弄到高潮叫床怎么办 | 波多野结衣巨乳人妻| 欧美不卡视频在线免费观看| 精品一区二区三区人妻视频| 亚洲va在线va天堂va国产| 亚洲成人精品中文字幕电影| 婷婷六月久久综合丁香| 欧美日韩中文字幕国产精品一区二区三区| 欧美成人a在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 亚洲中文日韩欧美视频| 校园春色视频在线观看| 欧美极品一区二区三区四区| 人人妻,人人澡人人爽秒播| 我的女老师完整版在线观看| 亚洲av熟女| 欧美xxxx性猛交bbbb| 老师上课跳d突然被开到最大视频| 在线观看美女被高潮喷水网站| 一级黄色大片毛片| 亚洲色图av天堂| 国产爱豆传媒在线观看| 国产成人a区在线观看| 国产午夜精品论理片| 日韩欧美国产一区二区入口| а√天堂www在线а√下载| 麻豆av噜噜一区二区三区| 小蜜桃在线观看免费完整版高清| 亚洲国产精品合色在线| 91av网一区二区| 亚洲熟妇熟女久久| 日韩亚洲欧美综合| 亚洲avbb在线观看| av黄色大香蕉| 在线观看舔阴道视频| 国产熟女欧美一区二区| 亚洲成人中文字幕在线播放| 国产91精品成人一区二区三区| 色吧在线观看| av视频在线观看入口| 最新中文字幕久久久久| 久久久午夜欧美精品| 精品午夜福利在线看| 岛国在线免费视频观看| 18禁裸乳无遮挡免费网站照片| 国产精品人妻久久久久久| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类 | 日本爱情动作片www.在线观看 | 国产精品一区二区性色av| av视频在线观看入口| 赤兔流量卡办理| 国产精品一及| 精品99又大又爽又粗少妇毛片 | 成熟少妇高潮喷水视频| 日韩精品中文字幕看吧| 黄色女人牲交| 天美传媒精品一区二区| 成年女人毛片免费观看观看9| 国产高清三级在线| 欧美三级亚洲精品| 99热只有精品国产| 俺也久久电影网| 国产又黄又爽又无遮挡在线| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品青青久久久久久| 黄色丝袜av网址大全| 欧美高清成人免费视频www| 亚洲精品一区av在线观看| 九九热线精品视视频播放| 内地一区二区视频在线| 国产午夜精品久久久久久一区二区三区 | www.色视频.com| 免费看av在线观看网站| 女同久久另类99精品国产91| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 天堂动漫精品| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 精品无人区乱码1区二区| 日本黄大片高清| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 69人妻影院| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 国产综合懂色| 99久久中文字幕三级久久日本| 精品日产1卡2卡| 国产三级中文精品| 热99re8久久精品国产| 免费观看在线日韩| 免费观看的影片在线观看| 精品福利观看| av视频在线观看入口| 久久久久免费精品人妻一区二区| 舔av片在线| 国产av麻豆久久久久久久| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 日本色播在线视频| 久久草成人影院| 日本五十路高清| 日韩 亚洲 欧美在线| 亚洲国产高清在线一区二区三| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 欧美zozozo另类| 91狼人影院| 露出奶头的视频| 精品久久久噜噜| 他把我摸到了高潮在线观看| av黄色大香蕉| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 美女免费视频网站| 国产视频内射| 欧美+亚洲+日韩+国产| 国产淫片久久久久久久久| 亚洲电影在线观看av| 欧美黑人巨大hd| 看免费成人av毛片| 欧美在线一区亚洲| 99久久九九国产精品国产免费| 国产一区二区激情短视频| 日本一本二区三区精品| 久久久久久久久久黄片| 亚洲在线观看片| 丰满人妻一区二区三区视频av| 又爽又黄无遮挡网站| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| .国产精品久久| 欧美性猛交黑人性爽| 亚洲欧美激情综合另类| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 久久久精品欧美日韩精品| 亚洲avbb在线观看| 夜夜看夜夜爽夜夜摸| 综合色av麻豆| 男人狂女人下面高潮的视频| 国产黄片美女视频| 国产亚洲91精品色在线| 久久精品国产亚洲网站| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| 三级毛片av免费| 国产精品久久久久久久电影| 国产精品爽爽va在线观看网站| 亚洲图色成人| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 真实男女啪啪啪动态图| 日韩一本色道免费dvd| 久久6这里有精品| 在线播放国产精品三级| 国产乱人视频| 少妇猛男粗大的猛烈进出视频 | 亚洲av中文av极速乱 | 夜夜看夜夜爽夜夜摸| 美女免费视频网站| 精品一区二区三区视频在线观看免费| 日本 av在线| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 可以在线观看毛片的网站| av中文乱码字幕在线| 国模一区二区三区四区视频| 国产精品电影一区二区三区| 亚洲美女视频黄频| 日韩 亚洲 欧美在线| 亚洲国产精品合色在线| 国产高清激情床上av| 老司机福利观看| 在线观看一区二区三区| 国产在视频线在精品| 色吧在线观看| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| 身体一侧抽搐| 国产成人aa在线观看| 国产三级中文精品| 男人狂女人下面高潮的视频| 久久亚洲精品不卡| 精品人妻一区二区三区麻豆 | 美女免费视频网站| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 亚洲在线自拍视频| 国产精品人妻久久久影院| 99热这里只有是精品50| АⅤ资源中文在线天堂| 91在线观看av| 亚洲av第一区精品v没综合| 天天一区二区日本电影三级| 一区二区三区免费毛片| 日本黄色视频三级网站网址| 人妻少妇偷人精品九色| 神马国产精品三级电影在线观看| 成年女人毛片免费观看观看9| av中文乱码字幕在线| x7x7x7水蜜桃| 国产 一区精品| 亚洲欧美精品综合久久99| 久久精品久久久久久噜噜老黄 | 久久中文看片网| 老女人水多毛片| 免费不卡的大黄色大毛片视频在线观看 | 最近最新中文字幕大全电影3| 97超视频在线观看视频| 麻豆一二三区av精品| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 国产视频一区二区在线看| 国产一区二区激情短视频| 一本精品99久久精品77| 精品国产三级普通话版| 亚洲人成伊人成综合网2020| 欧美日韩综合久久久久久 | 国产亚洲精品久久久com| 国产伦在线观看视频一区| 国产av不卡久久| 久久国产精品人妻蜜桃| 男人舔奶头视频| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区久久| 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 成人二区视频| 久久婷婷人人爽人人干人人爱| av在线老鸭窝| 变态另类丝袜制服| 欧美人与善性xxx| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 日韩欧美精品免费久久| 22中文网久久字幕| 99久国产av精品| 搡女人真爽免费视频火全软件 | 免费观看精品视频网站| 亚洲狠狠婷婷综合久久图片| 亚洲av五月六月丁香网| 禁无遮挡网站| 午夜免费成人在线视频| 日韩欧美在线二视频| 精品午夜福利在线看| 国产激情偷乱视频一区二区| 69人妻影院| 欧美区成人在线视频| 久久久色成人| 22中文网久久字幕| 特大巨黑吊av在线直播| 精品一区二区免费观看| 日日摸夜夜添夜夜添小说| 综合色av麻豆| 欧美日韩瑟瑟在线播放| 一本久久中文字幕| 久久久午夜欧美精品| av天堂在线播放| 中文字幕av成人在线电影| 日本 欧美在线| 国产免费男女视频| 欧美一区二区亚洲| 午夜日韩欧美国产| 少妇的逼好多水| 亚洲美女搞黄在线观看 | 中文亚洲av片在线观看爽| 少妇猛男粗大的猛烈进出视频 | 国产不卡一卡二| 亚洲人与动物交配视频| 日韩欧美 国产精品| 亚洲欧美日韩高清专用| 久久久午夜欧美精品| 欧美另类亚洲清纯唯美| 亚洲自偷自拍三级| 国产精品不卡视频一区二区| 亚洲五月天丁香| 一进一出抽搐gif免费好疼| 夜夜夜夜夜久久久久| 久久婷婷人人爽人人干人人爱| 日韩大尺度精品在线看网址| 俄罗斯特黄特色一大片| 黄色一级大片看看| 搡老妇女老女人老熟妇| 人妻丰满熟妇av一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 中文字幕av成人在线电影| 99精品久久久久人妻精品| 亚洲国产高清在线一区二区三| 精品久久久久久久末码| 伊人久久精品亚洲午夜| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 校园春色视频在线观看| 欧美bdsm另类| 精品日产1卡2卡| 亚洲美女视频黄频| 99久久成人亚洲精品观看| 一进一出好大好爽视频| 级片在线观看| 在线免费观看的www视频| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 日韩一区二区视频免费看| 国产伦人伦偷精品视频| 动漫黄色视频在线观看| 国产单亲对白刺激| 精品午夜福利在线看| 久久久久久久久久成人| 午夜免费激情av| 日韩欧美国产一区二区入口| 又爽又黄a免费视频| 欧美一区二区国产精品久久精品| 一个人看的www免费观看视频| 国产成人aa在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久精免费| 亚洲av第一区精品v没综合| 欧美xxxx黑人xx丫x性爽| 国产精品一区www在线观看 | 久久久国产成人免费| 美女免费视频网站| 久久久精品大字幕| 一区二区三区四区激情视频 | 日本成人三级电影网站| 国产一级毛片七仙女欲春2| 夜夜夜夜夜久久久久| 国产一区二区在线观看日韩| 韩国av在线不卡| 亚洲美女黄片视频| 国产单亲对白刺激| 五月伊人婷婷丁香| 一级av片app| 日本 av在线| 亚洲不卡免费看| 草草在线视频免费看| 精品人妻一区二区三区麻豆 | 免费观看在线日韩| 免费观看的影片在线观看| 亚洲电影在线观看av| 桃红色精品国产亚洲av| 熟女电影av网| 亚洲五月天丁香| h日本视频在线播放| 欧美成人一区二区免费高清观看| 全区人妻精品视频| 别揉我奶头~嗯~啊~动态视频| 亚洲精品亚洲一区二区| 美女高潮的动态| 男女下面进入的视频免费午夜| 日韩欧美国产在线观看| 99热只有精品国产| 精品人妻1区二区| 国产精品日韩av在线免费观看| 欧美激情久久久久久爽电影| 午夜精品久久久久久毛片777| 日本 av在线| 国产亚洲精品综合一区在线观看| 午夜免费激情av| 日本色播在线视频| 国产av麻豆久久久久久久| 中亚洲国语对白在线视频| av天堂在线播放| 淫妇啪啪啪对白视频| 成人亚洲精品av一区二区| 九九在线视频观看精品| 美女高潮的动态| 免费高清视频大片| 欧美日韩国产亚洲二区| 91久久精品国产一区二区成人| 欧美精品啪啪一区二区三区| 日韩av在线大香蕉| 久久香蕉精品热| 精品欧美国产一区二区三| 久久欧美精品欧美久久欧美| 精品无人区乱码1区二区| 亚洲精品亚洲一区二区| 国产精品伦人一区二区| 午夜a级毛片| 欧美国产日韩亚洲一区| 我的女老师完整版在线观看| 99热这里只有是精品50| 欧美精品国产亚洲| 日韩欧美在线乱码| 欧美成人性av电影在线观看| 又紧又爽又黄一区二区| 午夜精品在线福利| 又粗又爽又猛毛片免费看| 久久99热6这里只有精品| 色噜噜av男人的天堂激情| 国产大屁股一区二区在线视频| 波多野结衣高清作品| 日本爱情动作片www.在线观看 | 国产伦精品一区二区三区四那| 国产伦人伦偷精品视频| 日韩中文字幕欧美一区二区| www.www免费av| 我的老师免费观看完整版| 美女 人体艺术 gogo| 日本 av在线| 欧美最黄视频在线播放免费| 国产伦人伦偷精品视频| 国产老妇女一区|