• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS?

    2015-11-21 07:12:39EricOFOEDUCharlesONYI

    Eric U.OFOEDU Charles E.ONYI

    Department of Mathematics,Nnamdi Azikiwe University,Awka,Anambra State,Nigeria

    APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS?

    Eric U.OFOEDU Charles E.ONYI

    Department of Mathematics,Nnamdi Azikiwe University,Awka,Anambra State,Nigeria

    E-mail:euofoedu@yahoo.com;charles.onyi@gmail.com

    It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly G?ateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G?ateaux differentiable norm.Demicompactness condition imposed in such results is dispensed with.Furthermore,Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed.Our theorems improve,generalize,unify and extend several recently announced results.

    nonexpansive mappings,reflexive real Banach spaces;fixed point;uniformly G?ateaux differentiable norm

    2010 MR Subject Classification 47H06;47H09;47J05;47J25

    1 Introduction

    Let E be a real normed space E.A mapping T:D(T)?E→ R(T)?E is called nonexpansive if and only if‖Tx-Ty‖≤‖x-y‖?x,y∈D(T),where D(T)and R(T)denote the domain and the range of the mapping T,respectively.In what follows,we shall require that D(T)?R(T)and denote the fixed point set of an operator T:D(T)→R(T)by Fix(T),that is,F(xiàn)ix(T):={x∈D(T):Tx=x}.

    Most published results on nonexpansive mappings centered on existence theorems for fixed points of these mappings and iterative approximation of such fixed points.DeMarr[16]in 1963 studied the problem of existence of common fixed point for a family of nonexpansive mappings. He proved the following theorem:

    Theorem 1.1(DeMarr[16]) Let E be a real Banach space and let K be a nonempty compact convex subset of E.If ? is a nonempty commuting family of nonexpansive mappings of K into itself,then the family ? has a common fixed point in K.

    In 1965,Browder[4]proved the result of DeMarr in a uniformly convex real Banach space E,requiring that K is only bounded,closed,convex and nonempty subset of E.For otherfixed point theorems for families of nonexpansive mappings,the reader may consult any of the following references:Belluce and Kirk[2],Lim[21]and Bruck[6].

    Considerable research efforts were devoted to developing iterative methods for approximating common fixed points of families of several classes of nonlinear mappings(see e.g.[1,7,11-14,17,18,27]and references there in).

    Maing′e[22]studied the Halpern-type scheme for approximation of a common fixed point of a countable infinite family of nonexpansive mappings in real Hilbert space.Let{Ti}i≥1be a countable infinite family of nonexpansive mappings.Define NI:={i∈N:Ti/=I}(I being the identity mapping on a real normed space E).Maing′e proved the following theorems

    Theorem 1.2(Maing′e[22])Let K be a nonempty closed convex subset of a real Hilbert space H.Let{Ti}i≥1be a countable family of nonexpansive self-mappings of K,{αn}n≥1and{σi,n}n≥1,i∈N be sequences in(0,1)satisfying the following conditions:

    Theorem 1.3(Maing′e[22])Let K be a nonempty closed convex subset of a real Hilbert space H.Let{Ti}i≥1be a countable family of nonexpansive self-mappings of K,{αn}n≥1and{σi,n}n≥1,i∈N be sequences in(0,1)satisfying the following conditions:

    converges strongly to a unique fixed point of the contraction PFof,where f:K→K is a strict contraction;and PFis the metric projection from H onto F.

    In[9],Chidume et al.proved theorems that extended Theorems 1.2 and 1.3 to ?pspaces,1<p<∞.Furthermore,they proved new convergence theorems which are applicable in Lpspaces,1<p<∞.Moreover,in their more general setting,some of the conditions on the sequences{αn}n≥1and{σi,n}n≥1,imposed in Theorem 1.3 were dispensed with or weakened.

    Chidume and Chidume[10]proved the following theorems which extended the results obtained by Maing′e[22]and Chidume et al.[9]:

    Theorem 1.4(Chidume and Chidume[10])Let E be a uniformly convex real Banach space.Let K be a closed,convex and nonempty subset of E.Letbe a family of nonexpansive self-mappings of K.Letbe a sequence in(0,1)such thatand=0 for all i∈.Define a family of nonexpansive mappings,where I is is an identity map of K and δ∈(0,1)is fixed.Let{ztn}be a sequence satisfying

    Theorem 1.5(Chidume and Chidume[10])Let E be a uniformly convex real Banach space with uniformly G?ateaux differentiable norm.Let K be a closed,convex and nonempty subset of E.Letbe a family of nonexpansive self-mappings of K.For arbitrary fixed δ∈(0,1),define a family of nonexpansive mappingswhere I is is an identity map of K.Assume F:andbe sequences in(0,1)satisfying the following conditions:

    Define a sequence{xn}iteratively by x1,u∈K,

    If at least one of the maps Ti,i=1,2,3,···is demicompact then{xn}converges strongly to an element in F

    Motivated by the results of Maing′e[22],Chidume et al.[9],and Chidume and Chidume[10],it is our aim in this paper to provide a method of proof which enabled us to obtain the conclusion of Chidume and Chidume[10]in more general reflexive and strictly convex real Banach space with unifromly G?ateaux differentiable norm;and the demicompactness condition imposed in[10]is dispensed with.As applications of our theorems,we obtained strong convergence theorems for approximation of common fixed point of countable infinite family of pseudocontractive mappings in real Hilbert space;in addition,strong convergence theorems for approximation ofcommon solution of countable infinite family of generalized mixed equilibrium problem are also obtained in a real Hilbert space.Our theorems augument,extend,generalize and unify the correponding results of Maing′e[22],Chidume et al.[9],and Chidume and Chidume[10].Our method of proof is of independent interest.

    2 Preliminaries

    Let E be a real Banach space with dual E?.We denote by J the normalized duality mapping from E to 2E?defined by

    where<·,·>denotes the generalized duality pairing between members of E and E?.It is well known that if E?is strictly convex then J is single-valued(see,e.g.,[8,28]).In the sequel,we shall denote the single-valued normalized duality mapping by j.

    Let S:={x∈E:‖x‖=1}.The space E is said to have a G?ateaux differentiable norm if and only if the limit

    exists for each x,y∈S,while E is said to have a uniformly G?ateaux differentiable norm if for each y∈S the limit is attained uniformly for x∈S.It is well known that whenever a Banach space has uniformly G?ateaux differentiable norm,then the normalized duality mapping is norm to weak?uniformly continuous on bounded subsets of E.

    Let E be a real normed space.The modulus of convexity of E is the function δE:[0,2]→[0,1]defined by

    The space E is said to be uniformly convex if and only if δE(?)>0??∈(0,2];and the space E is called strictly convex if and only if for all x,y∈E such that‖x‖=‖y‖=1 and for all λ∈(0,1)we have‖λx+(1-λ)y‖<1.It is well known that every uniformly convex real Banach space is strictly convex and reflexive real Banach space,where we know that a real Banach space E is reflexive if and only if every bounded sequence in E has a subsequence which converges weakly.

    A mapping T:D(T)?E→ E is said to be demicompact at h if and only if for any bounded sequence{xn}n≥1in D(T)such that(xn-Txn)→ h as n→ ∞,there exists a subsequence say{xnj}j≥1of{xn}n≥1and x?∈D(T)such that{xnj}j≥1converges strongly to x?and x?-Tx?=h.

    Letμbe a bounded linear functional defined on ?∞satisfying‖μ‖=1=μ(1,1,···,1,···). It is known thatμis a mean on N if and only if

    for every a= (a1,a2,a3,···)∈ ?∞.In the sequel,we shall use the notationμn(an)instead ofμ(a).A meanμon N is called a Banach limit ifμn(an)= μn(an+1)for every a=(a1,a2,a3,···)∈?∞.It is well known that ifμis a Banach limit,then

    In what follows,we shall need the following lemmas.

    Lemma 2.1 Let E be a real normed space,then

    for all x,y∈E and for all j(x+y)∈J(x+y).

    Lemma 2.2(Lemma 3 of Bruck[5]) Let K be a nonempty closed convex subset of a strictly convex real Banach space E.Letbe a sequence of nonexpansive mappings from K to E such thatLetbe a sequence of positive numbers such that,then a mapping T on K defined by Txfor all x∈K is well defined, nonexpansive and Fix(T

    Lemma 2.3(Xu[27])Let{an}be a sequence of nonnegative real numbers satisfying the following relation:

    (ii)limsupσn≤0.

    Then,an→0 as n→∞.

    Lemma 2.5(Kikkawa and Takahashi[19])Let Let K be a nonempty closed convex subset of a Banach spaces E with a uniformly G?ateaux differentiable norm,let{xn}be a bounded sequence of E and letμbe a mean on N.Let z∈K.Then

    3 Implicit Iterative Method for Countable Infnity Family of Nonexpansive Mappings

    We begin with the following lemma:

    Lemma 3.1(Chidume and Chidume[10])Let E be a real Banach space.Let Ti:E→E, i=1,2,···,be a countable infinite family of nonexpansive mappings.Leti=1,2,···be sequences in(0,1)such that.Fix a δ∈(0,1)and define afamily of mappings Si:E→E by Six=(1-δ)x+δTix?x∈E,i=1,2,···.For fixed u∈E and for all n∈N,define a map Φn:E→E by Φnx=αnu+σi,nSix,?x∈E,then Φnis a strict contraction on E.Hence,for all n∈N,there is a unique z∈E satisfying

    n

    Hence,Ψx∈??x∈?,that is,? is invariant under Ψ.Let x?∈Fix(Ψ),then since every closed convex nonempty subset of a reflexive and strictly convex Banach space is a Chebyshev set(see e.g.,[23],Corollary 5.1.19),there exists a unique u?∈? such that

    But x?=Ψx?and Ψu?∈?.Thus,

    So,Ψu?=u?.Hence,F(xiàn)ix(Ψ)∩?/=?.This completes the proof. □

    In particular,we have that

    Now,using(3.1),we have that

    So,

    Again,taking Banach limit,we obtain

    We now show that u?=z?.Suppose for contradiction that u?/=z?,then

    But using(3.1),we have that

    Thus,

    Similarly,we also obtain that≤0 or rather

    Adding(3.4)and(3.5),we have that‖z?-u?‖≤0,a contradiction.Thus,z?=u?.Hence,converges strongly toThis completes the proof.

    4 Explicit Iterative Method for Countable Infinite Family of Nonexpansive Mappings

    For the rest of this paper,{αn}∞n=1and{σi,n}∞n=1are sequences in(0,1)satisfying the following additional conditions:

    Then,

    for some M>0.Thus,

    From(4.1),we have that

    Using Lemma 2.1,we have that

    This implies that

    and hence,

    Also,since j is norm-to-weak?uniformly continuous on bounded subsets of E,we have that

    Moreover,we have that

    Using(4.3),(4.4)and(4.5),we obtain from(4.6)that

    Finally,using Lemma 2.1 we obtain from(4.1)that

    Using(4.7)and Lemma 2.3 in(4.8),we get thatconverges strongly to common fixed point of the familyof nonexpansive mappings. □

    5 Application to Approximation of Common Fixed Points of Counably Infnite Family of Continuous Pseudocontractive Mappings

    The most important generalization of the class of nonexpansive mappings is,perhaps,the class of pseudocontractive mappings.These mappings are intimately connected with the important class of nonlinear accretive operators.This connection will be made precise in what follows.

    A mapping T′with domain D(T′),and range R(T′),in E is called pseudocontractive if and only if for all x,y∈D(T′),the following inequality holds:

    for all r>0.As a consequence of a result of Kato[20],the pseudocontractive mappings can also be defined in terms of the normalized duality mappings as follows:the mapping T′is calledpseudocontractive if and only if for all x,y∈D(T′),there exists j(x-y)∈J(x-y)such that

    It now follows trivially from(5.2)that every nonexpansive mapping is pseudocontractive.We note immediately that the class of pseudocontractive mappings is larger than that of nonexpansive mappings.For examples of pseudocontractive mappings which are not nonexpansive,the reader may see[8].

    To see the connection between the pseudocontractive mappings and the accretive mappings,we introduce the following definition:a mapping A with domain,D(A),and range,R(A),in E is called accretive if and only if for all x,y∈D(A),the following inequality is satisfied:

    for all r>0.Again,as a consequence of Kato[20],it follows that A is accretive if and only if for all x,y∈D(A),there exists j(x-y)∈J(x-y)such that

    It is easy to see from inequalities(5.1)and(5.3)that an operator A is accretive if and only if the mapping T′:=(I-A)is pseudocontractive.Consequently,the fixed point theory for pseudocontractive mappings is intimately connected with the mapping theory of accretive operators.For the importance of accretive operators and their connections with evolution equations,the reader may consult any of the references[8,24].

    Due to the above connection,fixed point theory of pseudocontractive mappings became a flourishing area of intensive research for several authors.It is of interest to note that if E=H is a Hilbert space,accretive operators coincide with the monotone operators,where an operator A with domain,D(A),and range,R(A),in H is called monotone if and only if for all x,y∈D(A),we have that

    Recently,Zegeye[30]established the following lemmas.

    Lemma 5.1(Zegeye[30]) Let K be a nonempty closed convex subset of a real Hilbert space H.Let T′:K→H be a continuous pseudocontractive mapping,then for all r>0 and x∈H,there exists z∈K such that

    Lemma 5.2(Zegeye[30])Let K be a nonempty closed convex subset of a real Hilbert space H.Let T′:K→K be a continuous pseudocontractive mapping,then for all r>0 and x∈H,define a mapping Fr:H→K by

    then the following hold:

    (1)Fris single-valued;

    (2)Fris firmly nonexpansive type mapping,i.e.,for all x,y∈H,

    (3)Fix(Fr)is closed and convex;and Fix(Fr)=Fix(T′)for all r>0.

    Remark 5.3 We observe that Lemmas 5.1 and 5.2 hold in particular for r=1.Thus,ifis a family of continuous pseudocontractive mappings and we define

    Theorem 5.4 Let H be a real Hilbert space.Let T′

    where Six=(1-δ)x+δF(i)1x?x∈H,i=1,2,···.Letbe a sequence in(0,1)such thatand-λi|=0.Let Ψ:=(1-δ)I+δT,where T:=,thenconverges strongly to an element of

    6 Application to Approximation of Common Solution of Countably Infinite Generalized Mixed Equilibrium Problems

    Let K be a closed convex nonempty subset of a real Hilbert space H with inner product ?·,·?and norm‖·‖.Let f:K×K → R be a bifunction and Φ:K → R∪{+∞}be a proper extended real valued function,where R denotes the set of real numbers.Let Θ:K→H be a nonlinear monotone mapping.The generalized mixed equilibrium problem(abbreviated GMEP)for f,Φ and Θ is to find u?∈K such that

    The set of solutions for GMEP(6.1)is denoted by

    If Φ≡0≡Θ in(6.1),then(6.1)reduces to the classical equilibrium problem(abbreviated EP),that is,the problem of finding u?∈K such that

    and GMEP(f,0,0)is denoted by EP(f),where

    If f≡0≡Φ in(6.1),then GMEP(6.1)reduces to the classical variational inequality problem and GMEP(0,0,Θ)is denoted by VI(Θ,K),where

    If f≡0≡Θ,then GMEP(6.1)reduces to the following minimization problem:

    and GMEP(0,Φ,0)is denoted by Argmin(Φ),where

    If Θ≡0,then(6.1)becomes the mixed equilibrium problem(abbreviated MEP)and GMEP(f,Φ,0)is denoted by MEP(f,Φ),where

    If Φ≡0,then(6.1)reduces to the generalized equilibrium problem(abbreviated,GEP)and GMEP(f,0,Θ)is denoted by GEP(f,Θ),where

    If f≡0,then GMEP(6.1)reduces to the generalized variational inequality problem(abbreviated GVIP)and GMEP(0,Φ,Θ)is denoted by GVI(Φ,Θ,K),where

    The generalized mixed equilibrium problem(GMEP)includes as special cases the monotone inclusion problems,saddle point problems,variational inequality problems,minimization problems,optimization problems,vector equilibrium problems,Nash equilibria in noncooperative games.Furthermore,there are several other problems,for example,the complementarity problems and fixed point problems,which can also be written in the form of the generalized mixed equilibrium problem.In other words,the generalized mixed equilibrium problem is a unifying model for several problems arising from engineering,physics,statistics,computer science,optimization theory,operations research,economics and countless other fields.For the past 20 years or so,many existence results have been published for various equilibrium problems(see e.g.[3,25,29]).

    In the sequel,we shall require that the bifunction f:K×K→R satisfies the following conditions:

    (A1)f(x,x)=0?x∈K;

    (A2)f is monotone,in the sense that f(x,y)+f(y,x)≤0 for all x,y∈K;

    t→0

    (A4)the function y→f(x,y)is convex and lower semicontinuous for all x∈K.

    Lemma 6.1(Compare with Lemma 2.4 of[25])Let C be a closed convex nonempty subset of a real Hilbert space H.Let f:K×K → R be a bifunction satisfying conditions(A1)-(A4);Θ:K→H a continuous monotone mapping and Φ:K→R∪{+∞}a proper lower semicontinuous convex function.Then,for all r>0 and x∈H there exists u∈K such that

    Moreover,if for all x∈H we define a mapping Gr:H→2Kby

    then the following hold:

    (1)Gris single-valued for all r>0;

    (2)Gris firmly nonexpansive,that is,for all x,z∈H,

    (3)Fix(Gr)=GMEP(f,Φ,Θ)for all r>0;

    (4)GMEP(f,Φ,Θ)is closed and convex.

    Remark 6.2 We observe that Lemmas 6.1 holds in particular for r=1.Thus,if we define

    where Six=(1-δ)x+?x∈H,i=1,2,···.Letbe a sequence in(0,1)such that=1 andLet Ψ:=(1-δ)I+δT,where T:,then{zn}converges strongly to an element of

    where Six=(1-δ)x+?x∈H,i=1,2,···.Letbe a sequence in(0,1)such that=1 and-λi|=0.Let Ψ:=(1-δ)I+δT,where T:=,then{xn}converges strongly to an element ofGMEP(fi,Φi,Θi).

    Remark 6.5 Prototypes for our iteration parameters are:

    Remark 6.6 It is well known that every real Hilbert is a reflexive and strictly convex real Banach space with uniformly G?ateaux differentiable norm;thus Theorems 5.4,5.5,6.3 and 6.4 hold.

    Remark 6.7 The addition of bounded error terms in any of our recursion formulas leads to no further generalization.

    Remark 6.8 If f:K → K is a contraction map and we replace u by f(xn)in the recursion formulas of our theorems,we obtain what some authors now call viscosity iteration process.We observe that all our theorems in this paper carry over trivially to the so-called viscosity process.One simply replaces u by f(xn),repeats the argument of this paper,using the fact that f is a contraction map.Furthermore,we must note that method of proof of Theorems 3.4 and 4.1 easily carries over to the so-called nonself nonexpansive mappings.

    [1]Bauschke H H.The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space.J Math Anal Appl,1996,202:150-159

    [2]Belluce L P,Kirk W A.Fixed point theorem for families of contraction mappings.Pacific J Math,1996,18:213-217

    [3]Blum E,Oettli W.From optimization and variational inequalities to equilibrum problems.The Mathematics Student,1994,63(1/4):123-145

    [4]Browder F E.Nonexpansive nonlinear operators in Banach space.Proc Nat Acad Sci USA,1965,54(4): 1041-1044

    [5]Bruck R E.Properties of fixed-point sets of nonexpansive mappings in Banach spaces.Trans Amer Math Soc,1973,179:251-262

    [6]Bruck R E,Jr.A common fixed point theorem for a commuting family of nonexpansive mappings.Pacific J Math,1974,53:59-71

    [7]Chang S S,Tan K K,Lee H W Joseph,Chan C K.On the convergnce of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings.J Math Anal Appl,2006,313:273-283

    [8]Chidume C E.Geometric Properties of Banach Spaces and Nonlinear Iterations.Lecture Notes in Mathematics,Vol 1965.Springer-Verlag,2009

    [9]Chidume C E,Chidume C O,Nwogbaga A P.Approximation methods for common fixed points of a countable family of nonself nonexpansive mappings.Nonlinear Analysis,2009,71(12,15):164-175

    [10]Chidume C E,Chidume C O.Iterative methods for common fixed points for a countable family of nonexpansive mappings in uniformly convex spaces.Nonlinear Anal,2009,71(10):4346-4356

    [11]Chidume C E,Ofoedu E U.A new iteration process for finite families of generalized Lipschitz pseudocontractive and generalized Lipschitz accretive mappings.Nonlinear Analysis;TMA,2008,69(4):1200-1207

    [12]Chidume C E,Ofoedu E U.Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings.J Math Anal Appl,2007,333(1):128-141

    [13]Chidume C E,Zegeye H,Prempeh E.Strong convergence theorems for a common fixed point of a finite family of nonexpansive mappings.Comm Appl Nonlinear Anal,2004,11(2):25-32

    [14]Chidume C E,Zegeye H,Shahzad N.Convergence theorems for a common fixed point of finite family of nonself nonexpansive mappings.Fixed Point Theory Appl,2005,(2):233-241

    [15]Cioranescu I.Geometry of Banach Spaces,Duality Mappings and Nonlinear Problems.Dordrecht:Kluwer Academic,1990

    [16]DeMarr R.Common fixed points for commuting contraction mappings.Pacific J Math,1963,13:1139-1141

    [17]Jung J S.Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces.J Math Anal Appl,2005,302:509-520

    [18]Jung J S,Cho Y J,Agarwal R P.Iterative schemes with some control conditions for family of finite nonexpansive mappings in Banach spaces.Fixed Point Theory Appl,2005,2:125-135

    [19]Kikkawa M,Takahashi W.Strong convergence theorems by viscocity approximation methods for a countable family of nonexpansive mappings.Taiwa J Math,2008,12(3):583-598

    [20]Kato T.Nonlinear semi-groups and evolution equations.J Math Soc Japan,1967,19:508-520

    [21]Lim T C.A fixed point theorem for families of nonexpansive mappings.Pacific J Math,1974,53:487-493[22]Maing′e P.Approximation methods for common fixed points of nonexpansive mappings in Hilbert space.J Math Anal Appl,2007,325:469-479

    [23]Megginson R E.An Introduction to Banach Space Theory.New York:Springer-Verlag,1998

    [24]Ofoedu E U,Zegeye H.Further investigation on iteration processes for pseudocontractive mappings with application.Nonlinear Anal TMA,2012,75:153162

    [25]Katchang P,Jitpeera T,Kumam P.Strong convergence theorems for solving generalized mixed equilibrum problems and general system of variational inequalities by the hybrid method.Nonlinear Analysis:Hybrid Systems,2010,4(4):838-852

    [26]Suzuki T.Strong convergence of Krasnoselkii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals.J Math Anal Appl,2005,305:227-239

    [27]Xu H K.Iterative algorithm for nonlinear operators.J London Math Soc,2002,66(2):1-17

    [28]Xu Z B,Roach G F.Characteristic inequalities of uniformly smooth Banach spaces.J Math Anal Appl,1991,157:189-210

    [29]Zegeye H,Ofoedu E U,Shahzad N.Convergence theorems for equilibrum problem,variational inequality problem and countably infinite relatively quasi-nonexpansive mappings.Appl Math Comput,2010,216: 3439-3449

    [30]Zegeye H.An iterativee approximation method for a common fixed point of two pseudo-contractive mappings.ISRN Math Anal,2011,14(2011):Article ID621901

    ?Received February 20,2013;revised March 13,2015.

    国产av不卡久久| 国产亚洲精品一区二区www| 综合色av麻豆| 亚洲av日韩精品久久久久久密| 18禁国产床啪视频网站| 91av网一区二区| 日韩免费av在线播放| 欧美激情久久久久久爽电影| 看黄色毛片网站| 99热精品在线国产| 国产 一区 欧美 日韩| www.www免费av| 亚洲精华国产精华精| 精品免费久久久久久久清纯| 亚洲av成人av| 亚洲精品色激情综合| 久久精品国产亚洲av香蕉五月| 色在线成人网| av天堂在线播放| 国产乱人视频| 12—13女人毛片做爰片一| 全区人妻精品视频| 老熟妇乱子伦视频在线观看| 国产视频一区二区在线看| 亚洲午夜精品一区,二区,三区| 香蕉久久夜色| 国语自产精品视频在线第100页| 免费在线观看日本一区| 亚洲精品乱码久久久v下载方式 | 国产av在哪里看| 大型黄色视频在线免费观看| 亚洲国产高清在线一区二区三| 婷婷亚洲欧美| av天堂中文字幕网| 国产毛片a区久久久久| 日本熟妇午夜| 久久久久国产精品人妻aⅴ院| 熟妇人妻久久中文字幕3abv| 日韩国内少妇激情av| 真人做人爱边吃奶动态| 精品久久久久久久人妻蜜臀av| 精品国产乱子伦一区二区三区| 天堂网av新在线| 99久久精品一区二区三区| 免费一级毛片在线播放高清视频| 99精品在免费线老司机午夜| 中文字幕久久专区| 啦啦啦韩国在线观看视频| 99热这里只有是精品50| 两个人看的免费小视频| www.精华液| 色尼玛亚洲综合影院| 久久久久精品国产欧美久久久| 国产人伦9x9x在线观看| 国产人伦9x9x在线观看| 在线观看日韩欧美| 香蕉国产在线看| 成人av在线播放网站| 淫秽高清视频在线观看| 在线永久观看黄色视频| 亚洲熟女毛片儿| 国产午夜福利久久久久久| 三级男女做爰猛烈吃奶摸视频| 白带黄色成豆腐渣| 老熟妇乱子伦视频在线观看| 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 黑人巨大精品欧美一区二区mp4| 国产精品99久久99久久久不卡| 亚洲午夜精品一区,二区,三区| 成年版毛片免费区| 亚洲精品一卡2卡三卡4卡5卡| 熟女电影av网| 99视频精品全部免费 在线 | 女生性感内裤真人,穿戴方法视频| 老汉色av国产亚洲站长工具| 色综合站精品国产| 观看美女的网站| 一边摸一边抽搐一进一小说| 久久久国产成人免费| x7x7x7水蜜桃| 夜夜夜夜夜久久久久| 亚洲精品456在线播放app | 精品99又大又爽又粗少妇毛片 | 亚洲av电影不卡..在线观看| 成人鲁丝片一二三区免费| 国产精品久久电影中文字幕| 精品久久久久久久久久免费视频| 啦啦啦韩国在线观看视频| 午夜日韩欧美国产| 亚洲自偷自拍图片 自拍| 老熟妇乱子伦视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产午夜福利久久久久久| 亚洲 国产 在线| 2021天堂中文幕一二区在线观| 精华霜和精华液先用哪个| 久久这里只有精品中国| 美女被艹到高潮喷水动态| 国产精品野战在线观看| 欧美日本视频| 白带黄色成豆腐渣| 精品一区二区三区视频在线观看免费| 欧美+亚洲+日韩+国产| 久久欧美精品欧美久久欧美| 男人舔奶头视频| 99re在线观看精品视频| 99热只有精品国产| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩卡通动漫| 香蕉国产在线看| 在线免费观看不下载黄p国产 | 国产成人av教育| 人妻久久中文字幕网| 亚洲av中文字字幕乱码综合| 麻豆一二三区av精品| 久久国产精品影院| 脱女人内裤的视频| 丰满人妻熟妇乱又伦精品不卡| 国产高清三级在线| 可以在线观看毛片的网站| 91在线观看av| 欧美乱色亚洲激情| 夜夜看夜夜爽夜夜摸| 国产爱豆传媒在线观看| 在线观看一区二区三区| 免费av毛片视频| 久久精品综合一区二区三区| 欧美在线一区亚洲| 男人的好看免费观看在线视频| 日韩有码中文字幕| 欧美另类亚洲清纯唯美| 精品一区二区三区av网在线观看| 好看av亚洲va欧美ⅴa在| 亚洲欧美精品综合一区二区三区| 精品一区二区三区视频在线观看免费| 国产爱豆传媒在线观看| 美女午夜性视频免费| 国产欧美日韩精品亚洲av| 久久久精品欧美日韩精品| 中国美女看黄片| 日韩av在线大香蕉| 男女视频在线观看网站免费| 成人av在线播放网站| 国产v大片淫在线免费观看| 精品一区二区三区av网在线观看| 国产伦在线观看视频一区| 国产午夜福利久久久久久| 精品久久久久久,| 美女黄网站色视频| 国内毛片毛片毛片毛片毛片| 91久久精品国产一区二区成人 | 97人妻精品一区二区三区麻豆| 国产精品免费一区二区三区在线| 亚洲精品美女久久av网站| 日本a在线网址| 久久久国产成人免费| 欧美极品一区二区三区四区| 国内精品久久久久精免费| 美女被艹到高潮喷水动态| 成人高潮视频无遮挡免费网站| 老熟妇仑乱视频hdxx| 国产野战对白在线观看| 国产私拍福利视频在线观看| 偷拍熟女少妇极品色| 久久久久国内视频| 亚洲国产色片| 国产精品久久电影中文字幕| 欧美最黄视频在线播放免费| 成人国产综合亚洲| 亚洲 国产 在线| 黄色女人牲交| a级毛片a级免费在线| 一边摸一边抽搐一进一小说| 亚洲成a人片在线一区二区| 两个人看的免费小视频| 国产探花在线观看一区二区| 亚洲最大成人中文| 999久久久精品免费观看国产| 婷婷精品国产亚洲av在线| 久久99热这里只有精品18| 国产精品精品国产色婷婷| 高清毛片免费观看视频网站| 国产美女午夜福利| 99热这里只有是精品50| 欧美乱色亚洲激情| 成人av一区二区三区在线看| 男女下面进入的视频免费午夜| 亚洲精品美女久久av网站| 色播亚洲综合网| 一进一出抽搐动态| 欧洲精品卡2卡3卡4卡5卡区| 国产激情偷乱视频一区二区| 国产精品一区二区精品视频观看| 无遮挡黄片免费观看| 亚洲精品美女久久久久99蜜臀| 一夜夜www| 熟女人妻精品中文字幕| 色尼玛亚洲综合影院| 久久精品亚洲精品国产色婷小说| av在线蜜桃| 午夜a级毛片| 午夜亚洲福利在线播放| 女警被强在线播放| 国产av一区在线观看免费| 亚洲欧美日韩东京热| 日韩人妻高清精品专区| 在线观看一区二区三区| 51午夜福利影视在线观看| 女警被强在线播放| 色av中文字幕| 国产伦在线观看视频一区| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩黄片免| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区国产精品久久精品| 午夜福利在线观看吧| 久久草成人影院| 国产精品电影一区二区三区| 黑人巨大精品欧美一区二区mp4| 搡老岳熟女国产| 午夜福利免费观看在线| 欧美成狂野欧美在线观看| 成人亚洲精品av一区二区| 黑人操中国人逼视频| 欧美一区二区精品小视频在线| 国产av不卡久久| 18禁裸乳无遮挡免费网站照片| 黄色片一级片一级黄色片| 男女那种视频在线观看| 国产欧美日韩一区二区三| 一进一出好大好爽视频| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 最新美女视频免费是黄的| 成人国产综合亚洲| 美女午夜性视频免费| 亚洲精品中文字幕一二三四区| 亚洲成a人片在线一区二区| 99久久精品一区二区三区| 夜夜看夜夜爽夜夜摸| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 后天国语完整版免费观看| av黄色大香蕉| 欧美日韩瑟瑟在线播放| 亚洲美女黄片视频| 亚洲av电影在线进入| 狂野欧美白嫩少妇大欣赏| 一级毛片女人18水好多| 国产精品亚洲一级av第二区| 日韩成人在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 久久久国产成人精品二区| 亚洲av成人一区二区三| 国产成人系列免费观看| 免费人成视频x8x8入口观看| 狂野欧美激情性xxxx| 国产激情偷乱视频一区二区| 悠悠久久av| 久久久水蜜桃国产精品网| 免费观看的影片在线观看| 中文在线观看免费www的网站| 欧美日韩综合久久久久久 | 国产黄片美女视频| 欧美在线黄色| 一个人免费在线观看电影 | 日韩精品青青久久久久久| 亚洲国产欧洲综合997久久,| 午夜免费激情av| 在线播放国产精品三级| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 久久久久性生活片| 老鸭窝网址在线观看| 国产高清videossex| 久久久久国产一级毛片高清牌| 久久久国产成人精品二区| 久久久久性生活片| 国产av一区在线观看免费| 长腿黑丝高跟| 性色av乱码一区二区三区2| 99在线视频只有这里精品首页| 给我免费播放毛片高清在线观看| 亚洲国产精品成人综合色| 这个男人来自地球电影免费观看| 欧美激情在线99| 久久九九热精品免费| 非洲黑人性xxxx精品又粗又长| 97超级碰碰碰精品色视频在线观看| 国产亚洲欧美98| 欧美中文综合在线视频| 国产成人av激情在线播放| 超碰成人久久| av天堂中文字幕网| 无遮挡黄片免费观看| 午夜福利免费观看在线| 午夜精品久久久久久毛片777| 制服人妻中文乱码| 麻豆成人av在线观看| 色老头精品视频在线观看| 国产精品亚洲一级av第二区| 波多野结衣高清无吗| 精品人妻1区二区| 变态另类丝袜制服| 午夜免费激情av| 级片在线观看| 老熟妇乱子伦视频在线观看| 国语自产精品视频在线第100页| 亚洲专区国产一区二区| 精品国产三级普通话版| 欧美日韩乱码在线| 一级作爱视频免费观看| 国产激情久久老熟女| 免费观看精品视频网站| 在线国产一区二区在线| 九九在线视频观看精品| 欧美一区二区精品小视频在线| 免费一级毛片在线播放高清视频| 婷婷亚洲欧美| 熟女电影av网| 久久久久亚洲av毛片大全| av中文乱码字幕在线| 久久久久久国产a免费观看| 国产精华一区二区三区| 久久久久精品国产欧美久久久| 国产精品亚洲一级av第二区| 麻豆国产97在线/欧美| 国产亚洲精品久久久com| 国产精品亚洲av一区麻豆| 国产欧美日韩精品一区二区| 亚洲av电影不卡..在线观看| 夜夜躁狠狠躁天天躁| 国语自产精品视频在线第100页| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人伦免费视频| 国产主播在线观看一区二区| avwww免费| 免费看美女性在线毛片视频| 日日干狠狠操夜夜爽| 狂野欧美激情性xxxx| 国产免费男女视频| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 国产精品电影一区二区三区| 99视频精品全部免费 在线 | 黄色成人免费大全| 日韩精品青青久久久久久| 黄片小视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 99热6这里只有精品| 免费在线观看日本一区| 国产视频一区二区在线看| 亚洲国产精品sss在线观看| 亚洲狠狠婷婷综合久久图片| 久久久色成人| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 色综合亚洲欧美另类图片| 亚洲九九香蕉| 久久九九热精品免费| 高清在线国产一区| 黑人操中国人逼视频| 我的老师免费观看完整版| 丰满的人妻完整版| 免费人成视频x8x8入口观看| 国产日本99.免费观看| 免费观看精品视频网站| 亚洲人成网站在线播放欧美日韩| 18禁黄网站禁片免费观看直播| 九九热线精品视视频播放| 国产淫片久久久久久久久 | 少妇人妻一区二区三区视频| 精品欧美国产一区二区三| 国产毛片a区久久久久| 久久久久久国产a免费观看| 最新美女视频免费是黄的| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 亚洲自偷自拍图片 自拍| 19禁男女啪啪无遮挡网站| 在线播放国产精品三级| 无遮挡黄片免费观看| 久久久国产成人免费| 国产亚洲av高清不卡| 叶爱在线成人免费视频播放| 看免费av毛片| 少妇人妻一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 国产av不卡久久| 97超级碰碰碰精品色视频在线观看| 小说图片视频综合网站| 成在线人永久免费视频| 在线免费观看不下载黄p国产 | 特大巨黑吊av在线直播| 久久久久久久久中文| 999久久久国产精品视频| 观看美女的网站| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| 国产单亲对白刺激| 国产亚洲精品一区二区www| 97碰自拍视频| 综合色av麻豆| 久久久久国产一级毛片高清牌| 在线a可以看的网站| 亚洲av免费在线观看| av片东京热男人的天堂| 国产99白浆流出| 91av网站免费观看| 级片在线观看| 亚洲乱码一区二区免费版| 男女视频在线观看网站免费| 国产人伦9x9x在线观看| 午夜两性在线视频| 一个人免费在线观看的高清视频| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| av视频在线观看入口| 亚洲av成人精品一区久久| 国产野战对白在线观看| 91在线精品国自产拍蜜月 | 国产成人福利小说| 99在线人妻在线中文字幕| 男女视频在线观看网站免费| 国产综合懂色| 国产精品亚洲一级av第二区| 天堂√8在线中文| 久久久久性生活片| 亚洲一区二区三区色噜噜| 免费观看人在逋| 国产亚洲欧美98| 黑人操中国人逼视频| 男人舔女人下体高潮全视频| 国产精华一区二区三区| netflix在线观看网站| 男女下面进入的视频免费午夜| 国产成人影院久久av| 国产激情欧美一区二区| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 麻豆成人av在线观看| 18禁美女被吸乳视频| 免费在线观看日本一区| 国产伦精品一区二区三区视频9 | 亚洲,欧美精品.| 在线免费观看不下载黄p国产 | 不卡av一区二区三区| 少妇的丰满在线观看| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 99riav亚洲国产免费| netflix在线观看网站| 热99在线观看视频| 后天国语完整版免费观看| 9191精品国产免费久久| 最新中文字幕久久久久 | 人妻久久中文字幕网| 老熟妇仑乱视频hdxx| 国产精品久久久久久人妻精品电影| 麻豆一二三区av精品| 亚洲美女视频黄频| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 丰满的人妻完整版| 国产成人av教育| 老司机深夜福利视频在线观看| 国产精品,欧美在线| 一进一出抽搐动态| 白带黄色成豆腐渣| 美女高潮喷水抽搐中文字幕| 在线看三级毛片| 亚洲无线观看免费| 亚洲一区二区三区色噜噜| 国产精品av久久久久免费| av黄色大香蕉| 免费看a级黄色片| 午夜精品久久久久久毛片777| 变态另类成人亚洲欧美熟女| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 一区二区三区高清视频在线| 国产伦人伦偷精品视频| 久久久久久久久免费视频了| 久久人人精品亚洲av| 欧美色视频一区免费| 久久国产精品影院| 国产精品女同一区二区软件 | 久久久久精品国产欧美久久久| 又粗又爽又猛毛片免费看| av视频在线观看入口| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 在线播放国产精品三级| av国产免费在线观看| 麻豆成人午夜福利视频| 亚洲最大成人中文| 亚洲国产欧洲综合997久久,| 麻豆国产av国片精品| 搞女人的毛片| 19禁男女啪啪无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲片人在线观看| 久久这里只有精品19| 男人舔女人的私密视频| 亚洲国产色片| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 亚洲最大成人中文| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| 成人国产一区最新在线观看| 日本一二三区视频观看| 搞女人的毛片| 综合色av麻豆| 欧美一级a爱片免费观看看| 丰满的人妻完整版| 久久草成人影院| 我的老师免费观看完整版| 在线观看午夜福利视频| 手机成人av网站| 亚洲av电影在线进入| 窝窝影院91人妻| 久久久久久久久久黄片| 99热这里只有精品一区 | 亚洲av美国av| 国内久久婷婷六月综合欲色啪| 热99在线观看视频| 久久伊人香网站| 搡老岳熟女国产| 热99re8久久精品国产| 国产视频一区二区在线看| 黄频高清免费视频| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| 天堂av国产一区二区熟女人妻| 亚洲av成人av| 久久热在线av| 在线免费观看的www视频| 级片在线观看| 日本 av在线| 99久久综合精品五月天人人| 日本免费一区二区三区高清不卡| 啪啪无遮挡十八禁网站| 成人欧美大片| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 97超视频在线观看视频| 国产亚洲欧美98| 村上凉子中文字幕在线| 国产成人欧美在线观看| 在线视频色国产色| 女人被狂操c到高潮| 精品电影一区二区在线| 这个男人来自地球电影免费观看| 激情在线观看视频在线高清| 日本a在线网址| 国产成+人综合+亚洲专区| 国产精品九九99| 啦啦啦韩国在线观看视频| 中文字幕人妻丝袜一区二区| 黄色丝袜av网址大全| 国产一区二区在线观看日韩 | 亚洲精品国产精品久久久不卡| 国产高清三级在线| 久久天堂一区二区三区四区| 黄色丝袜av网址大全| 国产私拍福利视频在线观看| av黄色大香蕉| 在线永久观看黄色视频| 91麻豆av在线| 国产三级在线视频| 狂野欧美白嫩少妇大欣赏| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 一二三四在线观看免费中文在| 91久久精品国产一区二区成人 | 亚洲人与动物交配视频| 精品国产亚洲在线| 黄片大片在线免费观看| 国产黄片美女视频| 母亲3免费完整高清在线观看| 日韩国内少妇激情av| 国产伦人伦偷精品视频| 亚洲av成人av| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 啦啦啦观看免费观看视频高清| 99在线人妻在线中文字幕| 亚洲 欧美一区二区三区| 综合色av麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 69av精品久久久久久| 婷婷亚洲欧美| 男女视频在线观看网站免费| 国语自产精品视频在线第100页| 色播亚洲综合网| 在线a可以看的网站| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 后天国语完整版免费观看| ponron亚洲| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 久久久久性生活片| 91av网一区二区| 国产精品 欧美亚洲| 99精品欧美一区二区三区四区| 久久热在线av| 亚洲av美国av|