• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ALL MEROMORPHIC SOLUTIONS OF AN AUXILIARY ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATIONS?

    2015-11-21 07:12:44WenjunYUAN袁文俊

    Wenjun YUAN(袁文?。?/p>

    School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University,Guangzhou 510006,China

    Weiling XIONG(熊維玲)

    Department of Information and Computing Science,Guangxi University of Technology,Liuzhou 545006,China

    Jianming LIN(林劍鳴)?

    School of Economic and Management,Guangzhou University of Chinese Medicine,Guangzhou 510006,China

    Yonghong WU(吳永洪)

    Department of Mathematics and Statistics,Curtin University of Technology,GPO Box U 1987,Perth WA 6845,Australia

    ALL MEROMORPHIC SOLUTIONS OF AN AUXILIARY ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATIONS?

    Wenjun YUAN(袁文?。?/p>

    School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University,Guangzhou 510006,China

    E-mail:gzywj@tom.com

    Weiling XIONG(熊維玲)

    Department of Information and Computing Science,Guangxi University of Technology,Liuzhou 545006,China

    E-mail:xiongwl@163.com

    Jianming LIN(林劍鳴)?

    School of Economic and Management,Guangzhou University of Chinese Medicine,Guangzhou 510006,China

    E-mail:ljmguanli@21cn.com

    Yonghong WU(吳永洪)

    Department of Mathematics and Statistics,Curtin University of Technology,GPO Box U 1987,Perth WA 6845,Australia

    E-mail:y.wu@curtin.edu.au

    In this paper,we first employ the complex method to deritive all meromorphic solutions of an auxiliary ordinary differential equation,and then find all meromorphic exact solutions of the modified ZK equation,modified KdV equation,nonlinear Klein-Gordon equation and modified BBM equation.Our work shows that there exist some classes of rational solutions wr,2(z)and simple periodic solutions ws,1(z)which are new and are not degenerated successively to by the elliptic function solutions.

    differential equation;exact solution;meromorphic function;elliptic function

    2010 MR Subject Classification 30D35;34A05

    1 Introduction and Main Result

    In this paper,we employ the complex method to obtain first all meromorphic solutions of the auxiliary ordinary differential equations[AODEq.(1)]below

    where A,B,C and D are arbitrary constants.Then,we discuss the applications of the solutions for finding meromorphic exact solutions of varies classes of partial differential equations including the modified ZK equation,modified KdV equation,nonlinear Klein-Gordon equation and modified BBM equation.

    In order to state our main result,we need some concepts and notations.

    A meromorphic function w(z)means that w(z)is holomorphic in the complex plane C except for poles.α,b,c,ciand cijare constants,which may be different from each other in different place.We say that a meromorphic function f belongs to the class W if f is an elliptic function,or a rational function of eαz,α∈C,or a rational function of z.

    Our main result is summarized by the following theorem.

    Theorem 1 Suppose that AC/=0,then all meromorphic solutions w of an AODEq.(1)belong to the class W.Furthermore,AODEq.(1)has the following three forms of solutions:(I)The elliptic function solutions

    here g3=0,d2=4c3-g2c,g2and c are arbitrary.

    (II)The simply periodic solutions

    and

    (III)The rational function solutions

    and

    This paper is organized as follows:In the next section,the preliminary lemmas and the Complex Method are given.The proof of Theorem 1 will be given in Section 3.All exact solutions of the auxiliary AODEq.(1)are derived by complex method.In Section 4,we obtain all exact solutions of modified ZK equation,modified KdV equation,nonlinear Klein-Gordon equation and modified BBM equation,which can be converted to the AODEq.(1)making use of the traveling wave reduction.Some conclusions and discussions are given in the final section.

    2 Preliminary Lemmas and the Complex Method

    In order to give our complex method and the proof of Theorem 1,we need some lemmas and results.

    Lemma 1[2,3]Let k∈N,then any meromorphic solution w with at least one pole of a k-th order Briot-Bouquet equation

    belongs to W,where Pi(w)are polynomials in w with constant coefficients.

    Set m∈N:={1,2,3,···},j=0,1,···,m,rj∈N0=N∪{0},r=(r0,r1,···,rj,···,rm). A differential monomial is defined by

    p(r):=r0+r1+···+rmis called the degree of Mr[w].A differential polynomial is defined by

    where arare constants,and I is a finite index set.

    The total degree of P(w,w′,···,w(m))is defined by degP(w,w′,···,w(m)):=max

    r∈I{p(r)}.

    We will consider the following complex ordinary differential equations

    where b/=0,c are constants,n∈N.

    Let p,q∈N.Suppose that equation(5)has a meromorphic solution w with at least one pole,we say that equation(5)satisfies the weakcondition if substituting Laurent series

    into equation(5)we can determine p distinct Laurent principle part

    with pole of multiplicity q at z=0.

    Lemma 2[6,7,16]Let p,l,m,n∈N,degP(w,w(m))<n,and an m-th order Briot-Bouquet

    satisfy the weakcondition.Then all meromorphic solutions w belong to the class W.If for some values of parameters such solution w exists,then other meromorphic solutions form a one-parametric family w(z-z0),z0∈C.Furthermore,each elliptic solution with pole at z=0 can be written as

    Each rational function solution w:=R(z)has the form of

    with l(≤p)distinct poles of multiplicity q.

    Each simply periodic solution is a rational function R(ξ)of ξ=eαz(α∈C).R(ξ)has l(≤p)distinct poles of multiplicity q,and has the form of

    To give the representations of elliptic solutions,we need some notations and results concerning elliptic function[7].

    Let ω1,ω2be two given complex numbers such that Imω1

    ω2>0,L=L[2ω1,2ω2]be discrete set L[2ω1,2ω2]={ω|ω=2nω1+2mω2,n,m∈Z},which is isomorphic to Z×Z. The discriminant?=?(c1,c2):=c31-27c22and

    The Weierstrass elliptic function?(z):=?(z,g2,g3)is a meromorphic function with periods 2ω1,2ω2and satisfying the equation

    where g2=60s4,g3=140s6and?(g2,g3)/=0.

    we have e1=?(ω1),e2=?(ω2),e3=?(ω1+ω2).

    Inversely,given two complex numbers g2and g3such that?(g2,g3)/=0,then there exists a Weierstrass elliptic function?(z)with double periods 2ω1,2ω2such that above relations hold.

    It is easy to see that the set of poles of the Weierstrass elliptic function?(z)is L,?(z)has 4 distinct complete multiple values e1,e2,e3and infinite,and thus any other value must be simple.

    Lemma 3[1,7]The Weierstrass elliptic functions?(z):=?(z,g2,g3)have two successive degeneracies and addition formula:

    (I)To simply periodic functions(i.e.,rational functions of one exponential ekz)according to

    if one root ejis double(?(g2,g3)=0).

    (II)To rational functions of z according to

    When ABC crank rotate at speed ω1=1 rad/s, the motion equation of point C on the upper horizon line track is in the following

    if one root ejis triple(g2=g3=0).

    (III)Addition formula

    By above lemmas,we can give a new method below,say complex method,to find exact solutions of some PDEs.

    Step 1 Substitute the transform T:u(x,t)→w(z), (x,t)→z into a given PDE gives a nonlinear ordinary differential equation(5)or(7).

    Step 2 Substitute(6)into equation(5)or(7)to determine that weakcondition holds.

    Step 3 By indeterminant relation(8),(9)and(10)we find the elliptic,rational and simply periodic solutions w(z)of equation(5)or(7)with pole at z=0,respectively.

    Step 4 By Lemma 1 and Lemma 2 we obtain all meromorphic solutions w(z-z0).

    Step 5 Substitute the inverse transform T-1into these meromorphic solutions w(z-z0),then we get all exact solutions u(x,t)of the original given PDE.

    3 Proof of the Main Result

    Hence,AODEq.(1)satisfies weak<2,1>condition and is an 2 order Briot-Bouquet differential equation.Obviously,AODEq.(1)satisfies the dominant condition.So,by Lemma 2,we know that all meromorphic solutions of AODEq.(1)belong to W.Now we will give the forms of all meromorphic solutions of AODEq.(1).

    By(9),we infer the indeterminant rational solutions of AODEq.(1)with pole at z=0 that

    Substituting R21(z)into AODEq.(1),we get two classes,one is following

    here B=0,D=0.The other is below

    Thus all rational solutions of AODEq.(1)

    and

    where z0∈C,B=0,D=0 in the former formula,or given z1/=0,B=?2C

    In order to have simply periodic solutions,set ξ=exp(αz),put w=R(ξ)into AODEq.(1),then

    Substituting

    into eq.(15),we obtain that

    and

    Substituting ξ=eαzinto above relation,and then we get simply periodic solutions of AODEq.(1)with pole at z=0

    and

    So all simply periodic solutions of AODEq.(1)are obtained by

    and

    From(8)of Lemma 2,we have indeterminant relations of elliptic solutions of AODEq.(1)with pole at z=0

    where F2=4E3-g2E-g3.Applying the conclusion II of Lemma 2 to wd0(z),and noting that the results of rational solutions obtained above,we deduce that c30=0,E=F=0,g3=0. Then we get that

    here g3=0.Therefore,all elliptic solutions of AODEq.(1)

    where z0∈C,g3=0.Making use of addition formula of Lemma 3,we rewrite it to the form

    here g3=0,d2=4c3-g2c,g2and c are arbitrary.

    The proof of Theorem 1 is completed.

    4 Some Applications of Theorem 1

    In this section,the modified ZK equation,modified KdV equation,nonlinear Klein-Gordon equation and modified BBM equation are considered again and the exact solutions are derived with the aid of AODEq.(1).

    4.1 Modified ZK Equation

    Modified ZK equation(Zakharov and Kuznetsov[17],Li et al.[9],Hassan[5],Wazwaz[13],Zhao et al.[18],Peng[12]and Yomba[15])is expressed as

    where β is a constant.

    Substituting

    into eq.(mZK),and integrating it yields

    Eq.(17)is converted to AODEq.(1),where

    By Theorem 1,therefore,all meromorphic solutions w of eq.(mZK)belong to the class W. Furthermore,eq.(mZK)has the following three forms of solutions:

    (I)The elliptic general solutions

    here g3=0,B2=4A3-g2A,g2and A are arbitrary.

    (II)The simply periodic solutions

    and

    (III)The rational function solutions

    and

    4.2 Modified KdV Equation

    Modified KdV equation(Wu et al.[14],Li and Zhang[10],Mei and Zhang[11])has the form

    where τ,β are constant.

    Substituting

    into eq.(mKdV),and integrating it yields

    Eq.(19)is converted to AODEq.(1),where

    By Theorem 1,therefore,all meromorphic solutions w of eq.(mKdV)belong to the class W.

    4.3 Nonlinear Klein-Gordon Equation

    Nonlinear Klein-Gordon equation(Wu et al.[14],Han[4])is of the form

    where c,τ,β are constants.

    Substituting

    into eq.(B)gives

    Eq.(21)is converted to AODEq.(1),where

    4.4 Modified BBM Equation

    Modified BBM equation(L¨u[8])is considered as

    where β is constant.Substituting

    into eq.(mBBM),and integrating it deduces

    Eq.(23)is converted to AODEq.(1),where

    Remark 1 By Theorem 1,therefore,all meromorphic solutions w of eq.(mZK),eq.(mKdV),eq.(KG)and eq.(mBBM)belong to the class W.Similar to Section 4.1,by making using of(2),(3)and(4)of Theorem 1,we can obtain all exact solutions of eqs.(19),(21)and(23).Here we omit the detail with them for simplicity.

    Remark 2 There are some other partial differential equations which can be converted to AODEq.(1)with the aid of the traveling wave reduction.Here we omit the detail with them for simplicity.

    5 Conclusions

    Complex method is a very important tool in finding the exact solutions of nonlinear evolution equations,and AODEq.(1)is one of most important auxiliary equations because many nonlinear evolution equations can be converted to it.In this article,we employ complex method to derive all exact solutions of the auxiliary AODEq.(1).All exact solutions of the modified ZK equation,modified KdV equation,nonlinear Klein-Gordon equation and modified BBM equation are derived with the aid of the auxiliary AODEq.(1).The idea introduced in this paper can be applied to other nonlinear evolution equations.Our work shows that there exist some classes of rational solutions wr,2(z)and simple periodic solutions ws,1(z)which are new and are not degenerated successively to by the elliptic function solutions.

    Acknowledgements This work was supported by the Visiting Scholar Program of Department of Mathematics and Statistics at Curtin University of Technology(200001807894)when the first author worked as visiting scholars.The authors finally wish to thank Professor Robert Conte for supplying his useful reprints and suggestions.

    [1]Conte R,Musette M.Elliptic general analytic solutions.Stud Appl Math,2009,123(1):63-81

    [2]Eremenko A.Meromorphic solutions of equations of briot-bouquet type.Teor Funktsii,F(xiàn)unk Anal i Prilozh,1982,38:48-56;English Translation:Amer Math Soc Transl 1986,133(2):15-23

    [3]Eremenko A,Liao L W,Ng T W.Meromorphic solutions of higher order briot-bouquet differential equations. Math Proc Cambridge Philos Soc,2009,146(1):197-206

    [4]Han Z X.New exact solutions for nonlinear Klein-Gordon equations.Acta Phys Sin,2005,54(4):1481-1484(in Chinese)

    [5]Hassan H H.New exact solutions of two nonlinear physical models.Commun Theor Phys,2010,53:596-604

    [6]Kudryashov N A.Meromorphic solutions of nonlinear ordinary differential equations.Commun Nonlinear Sci Numer Simul,2010,15(10):2778-2790

    [7]Lang S.Elliptic Functions.2nd ed.New York:Springer-Verlag,1987

    [8]L¨u D Z.Abundant Jaccobi elliptic function solutions of nonlinear evolution equations.Acta Phys Sin,2005,54:4501-4505(in Chinese)

    [9]Li B,Chen Y,Zhang H.Exact traveling wave solutions for a generalized Zakharov-Kuznetsov equation. Appl Math Comput,2003,146:653-66

    [10]Li D S,Zhang H Q.A simple method for constructing elliptic function solutions to the nonlinear evolution equations and its applications.Acta Phys Sin,2006,55:1565-1570(in Chinese)

    [11]Mei J Q,Zhang H Q.New soliton-like and periodic-like solutions for the KdV equation.Appl Math Comput,2005,169:589-599

    [12]Peng Y Z.Exact traveling wave solutions for the Zakharov-Kuznetsov equation.Appl Math Comput,2008,199:397-405

    [13]Wazwaz A M.The extended tanh method for the Zakharov-Kuznetsov ZK equation,the modified ZK equation,and its generalized forms.Commun Nonlinear Sci Numer Simulat,2008,13:1039-1047

    [14]Wu H Y,Zhang L,Tan Y K,Zhou X T.Some new exact Jacobian elliptic function solutions of three kinds of nonlinear evolution equations.Acta Phys Sin,2008,57:3312-3318(in Chinese)

    [15]Yomba E.Jacobi elliptic function solutions of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and t-dependent coefficients.Phy Lett A,2010,374:1611-1615

    [16]Yuan W J,Shang Y D,Huang Y,Wang H.The representation of meromorphic solutions of certain ordinary differential equations and its applications.Scientia Sinica Mathematica,2013,43(6):563-575

    [17]Zakharov V E,Kuznetsov E A.On three-dimensional solitons.Sov Phys JETP,1974,39:285-288

    [18]Zhao X,Zhou H,Tang Y,Jia H.Traveling wave solutions for modified Zakharov-Kuznetsov equation.Appl Mathem Comput,2006,181:634-648

    ?Received December 2,2012;revised March 2,2015.The first author is supported by the NSFC(11271090)and NSF of Guangdong(S2012010010121).

    ?Corresponding author:Jianming LIN.

    美女被艹到高潮喷水动态| 亚洲国产最新在线播放| 中国三级夫妇交换| 少妇的逼好多水| 一级片'在线观看视频| 精品午夜福利在线看| 又粗又硬又长又爽又黄的视频| a级毛片免费高清观看在线播放| 亚洲国产欧美人成| 国产精品久久久久久av不卡| 18禁动态无遮挡网站| 80岁老熟妇乱子伦牲交| 亚洲精品aⅴ在线观看| 我的女老师完整版在线观看| 久久午夜福利片| 蜜桃亚洲精品一区二区三区| 人妻一区二区av| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 亚洲综合精品二区| av在线app专区| 精品酒店卫生间| 亚洲自拍偷在线| 激情 狠狠 欧美| 午夜爱爱视频在线播放| 午夜精品一区二区三区免费看| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 青青草视频在线视频观看| 人妻少妇偷人精品九色| 大又大粗又爽又黄少妇毛片口| 国产有黄有色有爽视频| 免费电影在线观看免费观看| 亚洲国产最新在线播放| 丝瓜视频免费看黄片| 免费大片黄手机在线观看| 91aial.com中文字幕在线观看| 国产精品爽爽va在线观看网站| 男人爽女人下面视频在线观看| 亚洲人成网站高清观看| 亚洲第一区二区三区不卡| 久久久久久久久大av| av国产精品久久久久影院| 婷婷色av中文字幕| 搞女人的毛片| 少妇人妻一区二区三区视频| 午夜亚洲福利在线播放| 国产精品伦人一区二区| 99re6热这里在线精品视频| 国产极品天堂在线| 亚洲av电影在线观看一区二区三区 | 国产亚洲av片在线观看秒播厂| .国产精品久久| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频 | 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 高清欧美精品videossex| av在线app专区| 熟女电影av网| 色吧在线观看| 好男人视频免费观看在线| 久久精品国产亚洲av天美| 99久久九九国产精品国产免费| av国产免费在线观看| 嫩草影院新地址| 男人狂女人下面高潮的视频| 免费大片黄手机在线观看| 久久精品国产自在天天线| 黄色怎么调成土黄色| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 2021天堂中文幕一二区在线观| 欧美日韩视频高清一区二区三区二| 美女高潮的动态| 亚洲在久久综合| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 人人妻人人爽人人添夜夜欢视频 | 在线精品无人区一区二区三 | 69人妻影院| 国产亚洲一区二区精品| av黄色大香蕉| 极品教师在线视频| 春色校园在线视频观看| 欧美日韩亚洲高清精品| av专区在线播放| 精品一区二区三卡| 十八禁网站网址无遮挡 | 国产黄色视频一区二区在线观看| 高清欧美精品videossex| 九九爱精品视频在线观看| 在线播放无遮挡| av在线蜜桃| 久久国产乱子免费精品| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 少妇的逼水好多| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 国产乱人偷精品视频| 一级毛片黄色毛片免费观看视频| 色哟哟·www| 亚洲精品成人av观看孕妇| 91精品一卡2卡3卡4卡| 一区二区三区精品91| 国产综合精华液| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 中文精品一卡2卡3卡4更新| 久久精品夜色国产| 亚洲精华国产精华液的使用体验| 精华霜和精华液先用哪个| 毛片一级片免费看久久久久| 国产 一区 欧美 日韩| 国内精品美女久久久久久| 国产精品三级大全| 啦啦啦啦在线视频资源| 成年版毛片免费区| 久久久久久久久大av| 亚洲四区av| 国产伦精品一区二区三区四那| 男人舔奶头视频| 国产精品女同一区二区软件| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 国产亚洲91精品色在线| 日韩一区二区三区影片| 国产成人精品福利久久| 亚洲自偷自拍三级| 青春草国产在线视频| 日本熟妇午夜| 国产精品一及| 乱系列少妇在线播放| 国产毛片在线视频| 亚洲国产av新网站| 乱系列少妇在线播放| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 国产片特级美女逼逼视频| 免费看不卡的av| 黄片wwwwww| 久久午夜福利片| 免费人成在线观看视频色| 婷婷色麻豆天堂久久| 久久影院123| 成人亚洲精品av一区二区| 在线a可以看的网站| 欧美精品国产亚洲| 成年免费大片在线观看| 国产男女超爽视频在线观看| 日韩av免费高清视频| 青春草国产在线视频| h日本视频在线播放| 在线观看三级黄色| 韩国高清视频一区二区三区| 免费av不卡在线播放| 五月玫瑰六月丁香| 女人被狂操c到高潮| 人人妻人人澡人人爽人人夜夜| 亚洲自偷自拍三级| 久久99热6这里只有精品| 成人免费观看视频高清| 欧美精品国产亚洲| 欧美3d第一页| av.在线天堂| 国产亚洲最大av| 国产精品蜜桃在线观看| 高清午夜精品一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲国产成人一精品久久久| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 欧美高清性xxxxhd video| 大话2 男鬼变身卡| 偷拍熟女少妇极品色| 尤物成人国产欧美一区二区三区| 男女边摸边吃奶| 69av精品久久久久久| 高清毛片免费看| 国产黄片美女视频| 国产又色又爽无遮挡免| 99久国产av精品国产电影| 免费在线观看成人毛片| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| av免费观看日本| 日产精品乱码卡一卡2卡三| 久久人人爽av亚洲精品天堂 | 另类亚洲欧美激情| 国内揄拍国产精品人妻在线| 国产淫片久久久久久久久| 久久精品国产亚洲av涩爱| 97超视频在线观看视频| 51国产日韩欧美| 欧美激情久久久久久爽电影| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| av在线蜜桃| 久久99热这里只频精品6学生| 观看免费一级毛片| 97人妻精品一区二区三区麻豆| 免费观看的影片在线观看| 日韩在线高清观看一区二区三区| 成人国产av品久久久| 日韩人妻高清精品专区| 六月丁香七月| 亚洲欧美成人精品一区二区| 亚洲av.av天堂| 韩国av在线不卡| 精品国产一区二区三区久久久樱花 | 少妇丰满av| 午夜爱爱视频在线播放| 亚洲欧美日韩东京热| 日本午夜av视频| 有码 亚洲区| 免费观看在线日韩| 五月伊人婷婷丁香| av卡一久久| 亚洲图色成人| 久久鲁丝午夜福利片| 黄片wwwwww| 国产在视频线精品| 在线观看一区二区三区激情| 国产白丝娇喘喷水9色精品| 大片电影免费在线观看免费| 亚洲精品乱码久久久v下载方式| 男女啪啪激烈高潮av片| 一本久久精品| 欧美人与善性xxx| 亚州av有码| 欧美 日韩 精品 国产| 午夜福利高清视频| 最近手机中文字幕大全| 日本熟妇午夜| 久久ye,这里只有精品| 国产 一区 欧美 日韩| 欧美日韩视频精品一区| 国产精品一区www在线观看| 久久女婷五月综合色啪小说 | 婷婷色av中文字幕| 在线观看av片永久免费下载| 一级毛片我不卡| 人人妻人人看人人澡| 国产精品国产三级国产av玫瑰| 成人鲁丝片一二三区免费| 亚洲国产高清在线一区二区三| 天美传媒精品一区二区| 波多野结衣巨乳人妻| 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 成人毛片a级毛片在线播放| 免费观看无遮挡的男女| 免费看不卡的av| 18禁裸乳无遮挡动漫免费视频 | 国产亚洲91精品色在线| 国产乱人偷精品视频| 亚洲欧美精品专区久久| 亚洲人与动物交配视频| 国内精品美女久久久久久| 男男h啪啪无遮挡| 91狼人影院| 亚洲内射少妇av| 尤物成人国产欧美一区二区三区| 哪个播放器可以免费观看大片| 午夜爱爱视频在线播放| 国产午夜福利久久久久久| av国产精品久久久久影院| 国产午夜精品一二区理论片| xxx大片免费视频| 日本三级黄在线观看| 免费看a级黄色片| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 我的女老师完整版在线观看| 高清毛片免费看| 黄片无遮挡物在线观看| 韩国av在线不卡| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 亚洲精品成人av观看孕妇| 三级国产精品欧美在线观看| 黄色怎么调成土黄色| 乱码一卡2卡4卡精品| 99久久九九国产精品国产免费| 欧美97在线视频| 午夜福利高清视频| 综合色av麻豆| 国产视频内射| 亚洲欧美中文字幕日韩二区| 精品一区二区三卡| 国产精品成人在线| 超碰av人人做人人爽久久| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 日本色播在线视频| av卡一久久| 夜夜爽夜夜爽视频| 免费看a级黄色片| 久久午夜福利片| 秋霞伦理黄片| 男的添女的下面高潮视频| 国产综合精华液| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区 | 亚洲人成网站高清观看| 亚洲av国产av综合av卡| 91精品伊人久久大香线蕉| 精品久久久噜噜| 亚洲欧美精品专区久久| 亚洲国产最新在线播放| 国产伦精品一区二区三区四那| 国产成人免费观看mmmm| 人妻系列 视频| 国产熟女欧美一区二区| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久热精品热| 简卡轻食公司| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| .国产精品久久| 久久韩国三级中文字幕| 人妻一区二区av| 在线观看一区二区三区| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 亚洲精品国产成人久久av| 极品少妇高潮喷水抽搐| 免费看不卡的av| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 亚洲av福利一区| 国产精品一二三区在线看| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 毛片女人毛片| 黄色欧美视频在线观看| 欧美精品一区二区大全| 精品久久久精品久久久| 免费看不卡的av| 在线观看三级黄色| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 国产精品成人在线| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 久久久久久久久久人人人人人人| 精品一区在线观看国产| 日日啪夜夜爽| 永久网站在线| 国产视频首页在线观看| 成人亚洲精品av一区二区| 你懂的网址亚洲精品在线观看| 日韩成人av中文字幕在线观看| 国产色爽女视频免费观看| 亚洲熟女精品中文字幕| 99热全是精品| 又黄又爽又刺激的免费视频.| 永久网站在线| 国产综合精华液| 国产亚洲av片在线观看秒播厂| 成人国产麻豆网| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 高清av免费在线| 丝瓜视频免费看黄片| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区 | 国产欧美日韩一区二区三区在线 | 国产精品久久久久久精品电影| 天堂俺去俺来也www色官网| 日本-黄色视频高清免费观看| 91在线精品国自产拍蜜月| 久久久精品免费免费高清| 久久精品国产自在天天线| 精品人妻熟女av久视频| av福利片在线观看| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 久久精品国产亚洲av涩爱| 一级a做视频免费观看| 亚洲国产精品国产精品| 中文欧美无线码| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说 | 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| 亚洲欧美日韩东京热| 久久久精品94久久精品| 极品少妇高潮喷水抽搐| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区国产| 一级毛片黄色毛片免费观看视频| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 国产成年人精品一区二区| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 亚洲aⅴ乱码一区二区在线播放| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 两个人的视频大全免费| 免费黄色在线免费观看| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 黄色怎么调成土黄色| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 身体一侧抽搐| 久久精品国产亚洲网站| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 男人添女人高潮全过程视频| 亚洲最大成人av| 91精品一卡2卡3卡4卡| 国产黄片视频在线免费观看| 美女脱内裤让男人舔精品视频| 老司机影院成人| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| www.色视频.com| 成人综合一区亚洲| 深爱激情五月婷婷| 成人亚洲精品一区在线观看 | 建设人人有责人人尽责人人享有的 | 日韩人妻高清精品专区| 国产一级毛片在线| 久久久成人免费电影| 国产免费又黄又爽又色| 激情 狠狠 欧美| www.av在线官网国产| 亚洲va在线va天堂va国产| 中文天堂在线官网| 国产精品伦人一区二区| 高清日韩中文字幕在线| 在线播放无遮挡| 舔av片在线| 美女被艹到高潮喷水动态| 黑人高潮一二区| 国产91av在线免费观看| av国产免费在线观看| 韩国高清视频一区二区三区| 神马国产精品三级电影在线观看| 亚洲va在线va天堂va国产| 一个人看视频在线观看www免费| 久久ye,这里只有精品| 久热这里只有精品99| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 久久99精品国语久久久| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 婷婷色综合www| 国产熟女欧美一区二区| videossex国产| 国产精品.久久久| 亚洲,一卡二卡三卡| 伦精品一区二区三区| 欧美性猛交╳xxx乱大交人| 国产午夜精品一二区理论片| 色哟哟·www| 美女被艹到高潮喷水动态| 啦啦啦在线观看免费高清www| 免费黄频网站在线观看国产| 久久久久久伊人网av| 丝瓜视频免费看黄片| 搡女人真爽免费视频火全软件| 亚洲精品456在线播放app| 欧美日韩在线观看h| 国产乱来视频区| 久久久久久九九精品二区国产| 人妻少妇偷人精品九色| 午夜福利网站1000一区二区三区| 久久99热这里只频精品6学生| 黄色欧美视频在线观看| 国产成人免费观看mmmm| 新久久久久国产一级毛片| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片| 2021天堂中文幕一二区在线观| 久久久久国产精品人妻一区二区| 老司机影院毛片| 免费观看性生交大片5| 免费看光身美女| 国产亚洲最大av| 一级毛片aaaaaa免费看小| 自拍欧美九色日韩亚洲蝌蚪91 | 青青草视频在线视频观看| 日韩欧美一区视频在线观看 | 97超碰精品成人国产| 亚洲精品国产色婷婷电影| 亚洲精品一二三| 青春草亚洲视频在线观看| 日韩成人伦理影院| 亚洲av一区综合| 亚洲欧美日韩东京热| 久久6这里有精品| 日韩国内少妇激情av| 亚洲色图综合在线观看| 色综合色国产| 亚洲高清免费不卡视频| 国产精品一区二区在线观看99| 欧美成人一区二区免费高清观看| 色网站视频免费| 禁无遮挡网站| 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 男女国产视频网站| 在线a可以看的网站| 亚洲精品成人av观看孕妇| 久久久成人免费电影| 另类亚洲欧美激情| videossex国产| 日日啪夜夜撸| 国产亚洲av片在线观看秒播厂| 欧美性猛交╳xxx乱大交人| 国产av码专区亚洲av| 久久99热6这里只有精品| 日韩大片免费观看网站| 国产精品99久久久久久久久| 性色avwww在线观看| 免费高清在线观看视频在线观看| 在线观看人妻少妇| 色视频在线一区二区三区| 亚洲欧美一区二区三区黑人 | 日本猛色少妇xxxxx猛交久久| 午夜精品一区二区三区免费看| 一级毛片 在线播放| 国产一区有黄有色的免费视频| 视频区图区小说| 久热久热在线精品观看| 欧美日韩视频精品一区| 中文字幕制服av| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 亚洲av福利一区| 国产午夜精品一二区理论片| 深爱激情五月婷婷| 大香蕉久久网| 一本久久精品| 中文天堂在线官网| 国产视频内射| 少妇被粗大猛烈的视频| videos熟女内射| 精品午夜福利在线看| 少妇的逼水好多| 天美传媒精品一区二区| 一个人看的www免费观看视频| 一区二区三区乱码不卡18| 午夜福利网站1000一区二区三区| 在线免费观看不下载黄p国产| 国产精品无大码| 亚洲久久久久久中文字幕| 又大又黄又爽视频免费| 18+在线观看网站| 插阴视频在线观看视频| 国产精品无大码| 久久精品熟女亚洲av麻豆精品| 国产免费视频播放在线视频| 国产黄色免费在线视频| tube8黄色片| 69人妻影院| 中文字幕av成人在线电影| 99久久人妻综合| 超碰av人人做人人爽久久| 两个人的视频大全免费| 国产在线一区二区三区精| 免费大片18禁| 1000部很黄的大片| 亚洲精品一区蜜桃| 99九九线精品视频在线观看视频| 亚洲av日韩在线播放| 亚洲人成网站在线播| 中国国产av一级| 国产精品一区二区性色av| 丝瓜视频免费看黄片| 欧美性感艳星| 寂寞人妻少妇视频99o| 欧美高清性xxxxhd video| 久久影院123| 成人毛片60女人毛片免费| 亚洲av在线观看美女高潮| 欧美性猛交╳xxx乱大交人| 亚洲av日韩在线播放| av线在线观看网站| 欧美日韩视频高清一区二区三区二| 中文天堂在线官网| 国产日韩欧美亚洲二区| 91在线精品国自产拍蜜月| 男人舔奶头视频| 精品久久久噜噜| 精品久久久久久久末码| 欧美日韩视频精品一区| 国产在线男女| 亚洲欧美清纯卡通|