黃守程,葉梅榮,劉愛榮 (安徽科技學(xué)院生命科學(xué)學(xué)院,安徽 鳳陽(yáng)233100)
張遠(yuǎn)兵 (安徽科技學(xué)院城建與環(huán)境學(xué)院,安徽 鳳陽(yáng)233100)
植物在生長(zhǎng)發(fā)育的過程中會(huì)遭受多種環(huán)境因子脅迫,如高(低)溫、強(qiáng)(弱)光、干旱(洪水)、高鹽、重金屬、病原菌(或病毒)侵染等,當(dāng)這些因素造成的影響超過一定的限度就會(huì)對(duì)植物的生長(zhǎng)發(fā)育產(chǎn)生傷害[1]。脅迫導(dǎo)致植物生長(zhǎng)狀況的改變和代謝的失衡,進(jìn)而引起植物通過改變體內(nèi)的代謝途徑來(lái)進(jìn)行脅迫應(yīng)答[2]。熱激蛋白(heat-shock proteins,HSPs)是生物遭受脅迫(如干旱、低溫、重金屬離子等)之后大量產(chǎn)生的一類特殊蛋白質(zhì)[3],HSPs在結(jié)構(gòu)上極為保守,具有分子伴侶功能,參與生物體內(nèi)新生肽的運(yùn)輸、折疊、組裝、定位以及變性蛋白的復(fù)性和降解[4]。DnaJ(HSP40)是最早在Escherichiacoli中發(fā)現(xiàn)的一種調(diào)節(jié)蛋白[5]?,F(xiàn)已發(fā)現(xiàn)動(dòng)物、植物以及真菌中廣泛存在與DnaJ功能相似的蛋白,稱為DnaJ-like蛋白[6~8]。DnaJ-like蛋白廣泛分布于細(xì)胞內(nèi)多個(gè)細(xì)胞器,如細(xì)胞質(zhì)、細(xì)胞膜、葉綠體、線粒體、內(nèi)質(zhì)網(wǎng)、細(xì)胞核、液泡以及細(xì)胞骨架[9],參與植物的形態(tài)建成[10]、葉綠體運(yùn)動(dòng)[11]以及多種脅迫應(yīng)答反應(yīng)[12~14]。大量研究表明,DnaJ-like蛋白在植物的生物與非生物脅迫中具有非常重要的作用。
DnaJ是一種重要的分子伴侶蛋白,DnaJ結(jié)構(gòu)域是一個(gè)大約由70個(gè)氨基酸組成保守結(jié)構(gòu)域,其核心結(jié)構(gòu)是His/Pro/Asp三肽[15]。一般包含4個(gè)功能域:N-末端保守的J功能域(J domain)、富含甘氨酸結(jié)構(gòu)域(G/P domain)、含4個(gè)CXXCXGXG重復(fù)基序的中央富含Cys區(qū)域(CRR domain)以及1個(gè)由120~170氨基酸組成的C-端低同源結(jié)構(gòu)域(CTD domain)[16]。根據(jù)結(jié)構(gòu)的不同,DnaJ蛋白家族成員可分為3種類型:類型I——同時(shí)含有J、G/P和CRR等3個(gè)結(jié)構(gòu)域,類型II——含有J、G/P等2個(gè)結(jié)構(gòu)域,類型Ⅲ——只含有J結(jié)構(gòu)域[17]。CRR domain中的2個(gè)鋅原子與4個(gè)半胱氨酸殘基形成鋅指結(jié)構(gòu)域,協(xié)助DnaJ蛋白特異性地識(shí)別并結(jié)合到變性的蛋白質(zhì)底物上[18,19]。
DnaJ蛋白在維持脅迫條件下細(xì)胞內(nèi)蛋白質(zhì)的穩(wěn)態(tài)以及蛋白復(fù)合體的穩(wěn)定性方面具有重要作用[12]。HSPA70(DnaK)是一類重要的分子伴侶,在生物與非生物脅迫中具有極其重要的作用,被稱為脅迫蛋白,但其活性受到DnaJ蛋白的調(diào)節(jié)[20]。DnaJ蛋白的J domain是主要的功能域,促進(jìn)HSP70的ATPase活性,調(diào)節(jié)蛋白復(fù)合體的折疊、組裝與解聚[17],而這一過程需要DnaJ、GrpE和DnaK的共同協(xié)作才得以完成。DnaJ能夠增強(qiáng)DnaK與其底物的親和性,促進(jìn)與底物的結(jié)合并形成DnaJ-substrate-DnaK-ATP復(fù)合體[21],最后在GrpE的協(xié)助下,利用ATP水解,促進(jìn)DnaK的釋放,重新參與循環(huán)[22](圖1)。
圖1 DnaJ與Hsp70相互作用
Dnaj-like蛋白廣泛存在于生物體中。例如,釀酒酵母(Saccharomycescerevisiae)中有22個(gè)J蛋白,而擬南芥中則存在120個(gè)J蛋白[9]。DnaJ蛋白的功能與其在細(xì)胞內(nèi)的定位有關(guān)。計(jì)算機(jī)模擬分析發(fā)現(xiàn)擬南芥J蛋白分布于不同的亞細(xì)胞結(jié)構(gòu)中。在120個(gè)J蛋白中,其中50個(gè)定位于胞質(zhì)溶膠,19個(gè)定位于線粒體,12個(gè)定位于葉綠體,9個(gè)定位于內(nèi)質(zhì)網(wǎng),3個(gè)在細(xì)胞骨架,1個(gè)在細(xì)胞質(zhì)膜,2個(gè)在液泡,其余24個(gè)定位于細(xì)胞核[9]。
DnaJ蛋白參與多肽鏈的裝配和運(yùn)輸。胞質(zhì)溶膠中與核糖體結(jié)合的J蛋白能夠阻止多肽鏈合成過程中的肽鏈聚合,從而保護(hù)蛋白質(zhì)的合成[23]。atDjB8與酵母鈣調(diào)素結(jié)合蛋白(Caj1)是同源蛋白,在核轉(zhuǎn)運(yùn)和RNA剪接中具有重要作用[24]。atDjC22是酵母Erj5的同源基因,參與內(nèi)質(zhì)網(wǎng)蛋白折疊和未折疊蛋白反應(yīng)(unfolded protein response)[25]。atDjC20和atDjC21是酵母Sec63的同源蛋白,與內(nèi)質(zhì)網(wǎng)蛋白的轉(zhuǎn)運(yùn)有關(guān)[26]。蛋白質(zhì)前體(preprotein)進(jìn)入線粒體基質(zhì)是由線粒體內(nèi)膜上的J蛋白——Pam18和Pam16與 Hsp70互作介導(dǎo)的[27,28]。
DnaJ蛋白影響mRNA的剪接或small RNA的合成。大豆DnaJ-like蛋白——GmHSP40.1,與HcRed-SE和SR33-YFP共表達(dá)于細(xì)胞核中,參與pre-mRNA的剪切和mRNA的成熟,或者參與small RNA的生物合成[29]。DnaJ蛋白還可以調(diào)控主宰酶(H+-ATPase)的活性。質(zhì)膜H+-ATPase(PM H+-ATPase)在細(xì)胞許多生命活動(dòng)過程中具有重要作用。PKS5負(fù)調(diào)控質(zhì)膜H+-ATPase活性,研究發(fā)現(xiàn)擬南芥J3蛋白能夠通過與PKS5激酶互作并抑制其活性,進(jìn)而正調(diào)控質(zhì)膜H+-ATPase的活性[13]。
Dnaj-like蛋白參與信號(hào)的轉(zhuǎn)導(dǎo)過程。atDjC18是一個(gè)auxilin-like J蛋白(JAC1),調(diào)控向光素介導(dǎo)的葉綠體運(yùn)動(dòng),從而參與光信號(hào)的轉(zhuǎn)導(dǎo)。Chen等[30]發(fā)現(xiàn)擬南芥的1個(gè)葉綠體DnaJ-like蛋白—AtJ8,該蛋白基因在強(qiáng)光下表達(dá)完全受抑,而僅在弱光及黑暗下表達(dá),且其表達(dá)可在光/暗條件下發(fā)生轉(zhuǎn)換,表明其可能與植物光周期有關(guān)。細(xì)胞骨架是重力信號(hào)感受器,atDjB11(ARG1)、atDjB12(ARL1)和atDjB13(ARL2)與細(xì)胞骨架相互作用而參與重力信號(hào)的轉(zhuǎn)導(dǎo)[31,32],進(jìn)一步的研究表明,ARG1和ARL2通過降低胞質(zhì)H+濃度和影響生長(zhǎng)素的分布來(lái)參與重力感知細(xì)胞的早期向地性信號(hào)轉(zhuǎn)導(dǎo)[33]。內(nèi)質(zhì)網(wǎng)參與細(xì)胞內(nèi)蛋白質(zhì)正常的折疊與修飾,逆境導(dǎo)致內(nèi)質(zhì)網(wǎng)積累大量未折疊的蛋白質(zhì),損害細(xì)胞的功能。當(dāng)植物處于脅迫環(huán)境下,DnaJ蛋白與內(nèi)質(zhì)網(wǎng)分子伴侶binding immunoglobulin protein(BIP)相互作用[34,35],激活內(nèi)質(zhì)網(wǎng)脅迫感受器(ER stress sensors),釋放膜相關(guān)轉(zhuǎn)錄因子bZIP28并離開內(nèi)質(zhì)網(wǎng),在高爾基體內(nèi)被水解釋放出轉(zhuǎn)錄激活域,然后進(jìn)入細(xì)胞核調(diào)控脅迫響應(yīng)基因的表達(dá)[36]。
研究表明,DnaJ-like蛋白在植物的防御中具有多種重要作用。Liu等[29]研究發(fā)現(xiàn),大豆J domain類型的DnaJ-like的蛋白GmHSP40.1在煙草(Nicotianabenthamiana)中過表達(dá)導(dǎo)致煙草葉片的過敏性細(xì)胞死亡;該蛋白基因定位于細(xì)胞核,GmHSP40.1的沉默導(dǎo)致大豆對(duì)花葉病毒(Soybean mosaic virus)的敏感性增強(qiáng),表明GmHSP40.1在大豆細(xì)胞死亡以及抗病反應(yīng)中具有關(guān)鍵作用。Tobacco stress-induced1(Tsi1)是一個(gè)乙烯響應(yīng)因子結(jié)合蛋白/AP2類型的轉(zhuǎn)錄因子。Tsi1-interacting protein1(Tsip1)是一個(gè)DnaJ-like鋅指蛋白,能夠與Tsi1相互作用;水楊酸、乙烯、赤霉素、NaCl以及病毒處理均能促進(jìn)Tsip1的轉(zhuǎn)錄水平;轉(zhuǎn)基因煙草中共表達(dá)Tsip1和Tsi1能顯著增強(qiáng)對(duì)病原菌以及鹽脅迫的抗性[37]。Hofius等[38]研究發(fā)現(xiàn)煙草馬鈴薯Y病毒(PVY)的衣殼蛋白(capsid protein,CP)能夠與一系列DnaJ-like蛋白(NtCPIPs)相互作用,過表達(dá)NtCPIP1和NtCPIP2a的J-domain缺失突變體能顯著增強(qiáng)轉(zhuǎn)基因煙草對(duì)PVY的抵抗能力,表明NtCPIPs介導(dǎo)了煙草對(duì)PVY的易感性。Susanne等[39]鑒定出1個(gè)番茄(Lycopersiconesculentum)DnaJ-like蛋白基因,受番茄斑萎病毒(tomato spotted wilt virus,TSWV)誘導(dǎo)而上調(diào)表達(dá)。有趣的是,該DnaJ-like蛋白缺乏CRR結(jié)構(gòu)域,而含有1個(gè)賴氨酸富集結(jié)構(gòu)域(KXXXKE/K)。進(jìn)一步的研究表明,該DnaJ-like蛋白介導(dǎo)了病毒蛋白在宿主體內(nèi)的移動(dòng)。同樣地,煙草DnaJ-like蛋白NtMPIP1通過與煙草花葉病毒(tobacco mosaic virus,TMV)的運(yùn)動(dòng)蛋白(movement protein,MP)相互作用,促進(jìn)病毒在植物體內(nèi)細(xì)胞之間的擴(kuò)散轉(zhuǎn)移(cell-tocell spread),而NtMPIP1基因的沉默則顯著抑制TMV的體內(nèi)擴(kuò)散[40]。在茉莉酸介導(dǎo)的油菜(Brassicajuncea)防御反應(yīng)中,DnaJ-like蛋白表達(dá)上調(diào),并協(xié)同其他脅迫應(yīng)答基因,對(duì)減少油菜芥末蚜蟲[Lipaphiserysimi(Kalt.)]的數(shù)量有重要作用[41]。Wang等[42]發(fā)現(xiàn)了1個(gè)番茄葉綠體的 DnaJ-like蛋白(LeCDJ2),受到水楊酸、干旱以及病原菌的誘導(dǎo)表達(dá),過表達(dá)LeCDJ2基因顯示出對(duì)青枯假單胞桿菌(Pseudomonassolanacearum)的抗性。有意思的是,HopI1是丁香假單胞菌(Pseudomonassyringae)的毒性效應(yīng)器,是一個(gè)DnaJ-like蛋白,在擬南芥中表達(dá)該基因,發(fā)現(xiàn)其定位于葉綠體并能導(dǎo)致類囊體變長(zhǎng)以及基粒腫脹,抑制葉綠體水楊酸積累,進(jìn)而抑制水楊酸介導(dǎo)的防御反應(yīng)[43]。綜上所述,DnaJ-like蛋白具有差異化的防御能力,有的能夠增強(qiáng)植物的抗病反應(yīng)能力,而有的則降低了植物的抗病反應(yīng)能力,增強(qiáng)了植物對(duì)病原菌的易感性。
3.2.1 溫度脅迫
Rampuria等[44]通過SSH文庫(kù)分析篩選出一個(gè)DnaJ-like蛋白(JK266046),半定量PCR分析顯示該蛋白在42℃熱處理5min表達(dá)量是對(duì)照的10倍。Kong等[12,45]研究發(fā)現(xiàn)一個(gè)葉綠體的DnaJ蛋白(LeCDJ1)能促進(jìn)轉(zhuǎn)基因番茄的耐高溫能力,同時(shí)能夠增強(qiáng)低溫下光合膜的穩(wěn)定性。AtDjB1屬于擬南芥DnaJ/J-domain的蛋白家族的一個(gè)成員,能夠保護(hù)細(xì)胞,防止高溫脅迫誘發(fā)的活性氧造成的氧化損傷,從而提高擬南芥的耐熱性[14]。大豆GmDjp1編碼1個(gè)J domain類型的DnaJ-like蛋白,定位于細(xì)胞核,其轉(zhuǎn)錄水平受高溫、低溫、脫水等多種脅迫的誘導(dǎo)而上升,異源表達(dá)能夠顯著提高大腸桿菌(E.coli)的耐熱性,表明該基因在響應(yīng)高溫及其他非生物脅迫中具有重要作用[46]。相反地,定位于細(xì)胞核的擬南芥AtDjC53基因,編碼1個(gè)J domain類型的蛋白,負(fù)調(diào)控?cái)M南芥的耐熱性,其機(jī)制可能是AtDjC53的表達(dá)導(dǎo)致一些關(guān)鍵的HSP基因(如Hsp25.3-P和 Hsa32)表達(dá)受抑[47]。
3.2.2 水分和鹽脅迫
利用cDNA芯片技術(shù),Schafleitner等[48]鑒定出6個(gè)DnaJ-like蛋白均受到到水分脅迫的誘導(dǎo)而上調(diào)表達(dá),其作用可能是維持干旱脅迫下細(xì)胞內(nèi)蛋白組分的穩(wěn)定性,從而減輕細(xì)胞的損傷。應(yīng)用同樣的方法,Rodrigues等[49]從甘蔗中篩選出3個(gè)DnaJ-like蛋白,對(duì)其中1個(gè)DnaJ-like蛋白基因的表達(dá)進(jìn)行RT-qPCR驗(yàn)證發(fā)現(xiàn)該基因在耐旱品種中下調(diào)表達(dá),而在不耐旱品種中則上調(diào)表達(dá),這表明不同的基因型背景導(dǎo)致了基因表達(dá)差異,而這種差異可能是適應(yīng)水分脅迫的選擇性表達(dá)策略。桉樹(Eucalyptus camaldulensis)在水分脅迫下的轉(zhuǎn)錄組分析也篩選出的1個(gè)DnaJ-like蛋白,其3個(gè)等位基因的表達(dá)差異極其顯著,個(gè)別等位基因在脅迫下表達(dá)量提高100多倍[50]。Wang等[51]研究發(fā)現(xiàn),DnaJ-like蛋白基因AtDjB1敲除的擬南芥(atj1-1)具有較高的葡萄糖水平,以致于植物對(duì)ABA敏感性增強(qiáng),從而提高了植物對(duì)滲透脅迫的抵抗能力。定位于番茄葉綠體的DnaJ-like蛋白(LeCDJ2),異源表達(dá)顯著提高煙草的抗旱能力,并且通過維持PSII D1蛋白的穩(wěn)定來(lái)減輕光抑制[42]。Zhao等[52]研究表明,擬南芥的DnaJ蛋白的原核表達(dá)能夠提高細(xì)菌對(duì)鹽的耐受性,DnaJ可能在鹽脅迫條件下參與了蛋白質(zhì)的保護(hù),改善了細(xì)胞膜膜脂的流動(dòng)性,從而增加了細(xì)菌細(xì)胞的活力。
3.2.3 重金屬脅迫
研究表明,重金屬脅迫抑制分子伴侶輔助的蛋白折疊,從而導(dǎo)致細(xì)胞損傷,而DnaJ/Dnak/GrpE分子伴侶系統(tǒng)能夠促進(jìn)蛋白質(zhì)的重折疊[53]。Chai等[54]從蕓豆(Phaseolusvulgaris)中分離出編碼1個(gè)DnaJ-like蛋白的基因——PvSR6,該蛋白在重金屬(Hg、Cd、Cu、Zn和As)脅迫下表達(dá)顯著增強(qiáng)。Venkatachalam等[55]在重金屬富集植物田菁(Sesbaniadrummondii)鑒定出1個(gè)Hg2+誘導(dǎo)的DnaJ-like蛋白。Zhen等[56]通過對(duì)耐鋁大豆種質(zhì)的2-DE蛋白質(zhì)組學(xué)研究發(fā)現(xiàn)了3個(gè)DnaJ-like蛋白受鋁誘導(dǎo)而強(qiáng)烈表達(dá),其中有2個(gè)蛋白是被新誘導(dǎo)表達(dá),另1個(gè)蛋白在鋁脅迫24、48h和72h的表達(dá)量分別是對(duì)照的3.75、11.45和9.07倍。Cancado等[57]通過cDNA array方法分離鋁脅迫下玉米根系的基因表達(dá)差異,也發(fā)現(xiàn)了1個(gè)在鋁抗性及敏感玉米中差異表達(dá)的DnaJ-like蛋白。Goodwin等[58]也從擬南芥中分離出1個(gè)鋁脅迫下差異表達(dá)的DnaJ-like蛋白,其表達(dá)量是對(duì)照的2.76倍。Duressa等[59]研究發(fā)現(xiàn)鋁抗性大豆(PI 416937)中1個(gè)DnaJ-like蛋白,其在鋁處理48h和72h后分別上調(diào)表達(dá)5.32倍和6.45倍。由此可見,DnaJ-like蛋白能夠響應(yīng)重金屬離子脅迫,可能參與了毒性的解除,但具體的功能和機(jī)制尚不明確。
植物在生長(zhǎng)發(fā)育的過程中不可避免地遭受多種多樣環(huán)境因子的脅迫,為了適應(yīng)復(fù)雜多變的環(huán)境,植物需要適時(shí)地作出應(yīng)激反應(yīng)。植物可以在多個(gè)層次上、通過不同的途徑及機(jī)制響應(yīng)生物及非生物脅迫。大量研究表明,分子伴侶參與植物的脅迫應(yīng)答,DnaJ-like蛋白在植物的生長(zhǎng)發(fā)育以及脅迫響應(yīng)過程中具有關(guān)鍵的作用,但是大多數(shù)DnaJ蛋白的功能尚不清楚。由于DnaJ-like蛋白種類及功能的多樣性,且具有不同的亞細(xì)胞定位,DnaJ-like蛋白既可以正調(diào)控植物的防御反應(yīng),也可以負(fù)調(diào)控植物的防御反應(yīng),這為認(rèn)識(shí)其作用機(jī)制帶來(lái)了難度。
未來(lái)的研究應(yīng)該從以下幾個(gè)方面進(jìn)行:首先,通過基于轉(zhuǎn)錄組高通量測(cè)序技術(shù)篩選脅迫相關(guān)的差異表達(dá)的DnaJ-like蛋白基因,為全面認(rèn)識(shí)其功能奠定基礎(chǔ);其次,通過功能缺失(loss of function)和功能獲得(gain of function)以及轉(zhuǎn)基因的研究,深入探究DnaJ-like蛋白的功能及分子機(jī)制;最后,篩選關(guān)鍵的靶標(biāo)基因,為植物的抗性遺傳改良提供理論依據(jù)。
[1]Bohnert H J,Sheveleva E.Plant stress adaptations-making metabolism move [J].Current Opinion in Plant Biology,1998,1:267~274.
[2]Shulaev V,Cortes D,Miller G,etal.Metabolomics for plant stress response [J].Physiologia Plantarum,2008,132:199~208.
[3]Morimoto R I.Cell in stress:transcription activation of heat shock proteins [J].Science,1993,259:1409~1410.
[4]Martin E F,Gretchen E H.Heat-shock proteins,molecular chaperones,and the stress response-evolutionary and ecological physiology [J].Annual Review Physiology,1999,61:243~282.
[5]Hartl F U,Hlodan R,Langer T.Molecular chaperones in protein folding:the art of avoiding sticky situations [J].Trends in Biochemical Sciences,1994,19:20~25.
[6]Craig E A,Gambill B D,Nelson R J.Heat shock proteins:molecular chaperones of protein biogenesis [J].Microbiological Reviews,1993,57:402~414.
[7]Zhu J K,Shi J,Bressan R A,etal.Expression of anAtriplexnummulariagene encoding aprotein homologous to the bacterial molecular chaperone DnaJ [J].The Plant Cell,1993,5:341~349.
[8]Kazutoyo T,Masaki K,Bernd B,etal.The human DnaJ homologue dj2facilitates mitochondrial protein import and luciferase refolding [J].The Journal of Cell Biology,1997,139:1089~1095.
[9]Rajan V B,D’Silva P.ArabidopsisthalianaJ-class heat shock proteins:cellular stress sensors [J].Functional &Integrative Genomics,2009,9:433~446.
[10]Park Y,Lee S Y,Seok H Y,etal.EMF1interacts with EIP1,EIP6or EIP9involved in the regulation of flowering time inArabidopsis[J].Plant and Cell Physiology,2011,52:1376~1388.
[11]Suetsugu N,Kagawa T,Wada M.An auxilin-like J-domain protein,JAC1,regulates phototropin-mediated chloroplast movement inArabidopsis[J].Plant Physiology,2005,139:151~162.
[12]Kong F,Deng Y,Zhou B,etal.A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress [J].Journal of Experimental Botany,2014,65:143~158.
[13]Yang Y,Qin Y,Xie C,etal.TheArabidopsisChaperone J3regulates the plasma membrane H+-ATPase through interaction with the PKS5kinase [J].The Plant Cell,2010,22:1313~1332.
[14]Zhou W,Zhou T,Li M X,etal.TheArabidopsisJ-protein AtDjB1facilitates thermo tolerance by protecting cells against heat-induced oxidative damage [J].New Phytologist,2012,194:364~378.
[15]Zhao X,Liu X.G,Wang A.R.Bioinformatic analysis of the DnaJ protein family in rice [J].Subtropical Agriculture Research,2011,7:206~211.
[16]Chai T.Y,Zhang Y.X.Advance in DnaJ-like proteins [J].Chinese Bulletin of Life Science,1999,11:172~175.
[17]Walsh P,Bursac D,Law Y C,etal.The J-protein family:modulating protein assembly,disassembly and translocation [J].EMBO Report,2004,5:567~571.
[18]Alexander S,Korszun R,Hartl F U,etal.A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates [J].The EMBO Journal,1996,15:408~417.
[19]Bogdan K,Krzysztof L,Daniel W,etal.Structure-function analysis of the Zinc Finger region of the DnaJ molecular chaperone [J].Journal of Biological Chemistry,1996,271:14840~14848.
[20]Qiu X B,Shao Y M,Miao S,etal.The diversity of the DnaJ/Hsp40family,the crucial partners for Hsp70chaperones [J].Cell Molecular Life Science,2006,63:2560~2570.
[21]Szabo A,Langer T,Schrder H,etal.The ATP hydrolysis-dependent reaction cycle of theEscherichiacoliHsp70system DnaK,DnaJ,and GrpE [J].Proceedings of the National Academy of Sciences,1994,91:10345~10349.
[22]Wawrzyn W A,Banecki B,Wall D,etal.ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates [J].Journal of Biological Chemistry,1995,270:19307~19311.
[23]Craig E A,Eisenman H C,Hundley H A.Ribosome-tethered molecular chaperones:the first line of defense against protein misfolding?[J]Current Opinion in Microbiology,2003,6:157~162.
[24]Sahi C,Craig E.A.Network of general and specialty J protein chaperones of the yeast cytosol[J].Proceedings of the National A-cademy of Sciences,2007,104:7163~7168.
[25]Carla F M,Raden D,Zacchi N,etal.The SaccharomycescerevisiaeYFR041C/ERJ5gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum [J].Biochimica et Biophysica Acta,2007,1773:232~242.
[26]Yamamoto M,Maruyama D,Endo T,etal.Arabidopsisthalianahas a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants [J].Plant and Cell Physiology,2008,49:1547-1562.
[27]D'silva P D,Schilke B,Walter W,etal.J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix [J].Proceedings of the National Academy of Sciences USA,2003,100:13839~13844.
[28]D'silva P R,Schilke B,Walter W,etal.Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane [J].Proceedings of the National Academy of Sciences USA,2005,102:12419~12424.
[29]Liu J,Whitham S A.Overexpression of a soybean nuclear localized type III DnaJ domain-containing HSP40reveals its roles in cell death and disease resistance [J].The Plant Journal,2013,74:110~121.
[30]Chen K M,Piippo M,Holmstr M M,etal.A chloroplast-targeted DnaJ protein AtJ8is negatively regulated by light and has rapid turnover in darkness [J].Journal of Plant Physiology,2011,168:1780~1783.
[31]John C,Sedbrook R C,Patrick H M.ARG1(Altered Response to Gravity)encodes a DnaJ-like protein that potentially interacts with the cytoskeleton [J].Proceedings of the National Academy of Sciences USA,1999,96:1140~1145.
[32]Guan C,Rosen E S,Boonsirichai K,etal.The ARG1-LIKE2gene ofArabidopsisfunctions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway [J].Plant Physiology,2003,133:100~112.
[33]Boonsirichai K,Sedbrook J C,Chen R,etal.ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes [J].The Plant Cell,2003,15:2612~2625.
[34]Jin Y.I,Awad W,Petrova K,etal.Regulated release of ERdj3from unfolded proteins by BiP [J].The EMBO Journal,2008,27:2873~2882.
[35]Shen Y,Meunier L,Hendershot L M.Identification and characterization of a novel endoplasmic reticulum(ER)DnaJ homologue,which stimulates ATPase activity of BiP in vitro and is induced by ER Stress [J].Journal of Biological Chemistry,2002,277:15947~15956.
[36]Srivastava R,Deng Y,Howell S H.Stress sensing in plants by the ER stress sensor transducer,bZIP28 [J].Frontiers in Plant Science,2014,5:1~6.
[37]Ham B K,Park J M,Lee S B,etal.Tobacco Tsip1,a DnaJ-type Zn finger protein,is recruited to and potentiates Tsi1-mediated transcriptional activation [J].Plant Cell,2006,18:2005~2020.
[38]Hofius D,Maier A T,Dietrich C,etal.Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants [J].Journal of Virology,2007,81:11870~11880.
[39]Von Bargen S,Salchert K,Paape M,etal.Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin,kinesin and DnaJ-like chaperones [J].Plant Physiology and Biochemistry,2001,39:1083~1093.
[40]Shimizu T,Yoshii A,Sakurai K,etal.Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus [J].Archives of Virology,2009,154:959~967.
[41]Koramutla M,Kaur A,Negi M,etal.Elicitation of jasmonate-mediated host defense inBrassicajuncea(L.)attenuates population growth of mustard aphidLipaphiserysimi(Kalt.)[J].Planta,2014,240:177~194.
[42]Wang G,Cai G,Kong F,etal.Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance toPseudomonassolanacearumin transgenic tobacco [J].Plant Physiology and Biochemistry,2014,82:95~104.
[43]Jelenska J,Yao N,Vinatzer B A,etal.A J domain virulence effector ofPseudomonassyringaeremodels host chloroplasts and suppresses defenses [J].Current Biology,2007,17:499~508.
[44]Rampuria S,Joshi U,Palit P,etal.Construction and analysis of an SSH cDNA library of early heat-induced genes ofVignaaconitifoliavariety RMO-40 [J].Genome,2012,55:783~796.
[45]Kong F,Deng Y,Wang G,etal.LeCDJ1,a chloroplast DnaJ protein,facilitates heat tolerance in transgenic tomatoes [J].Journal of Integrative Plant Biology,2014,56:63~74.
[46]So H A,Chung E,Lee J H.Molecular characterization of soybean GmDjp1encoding a type III J-protein induced by abiotic stress[J].Genes &Genomics,2013,35:247~256.
[47]So H.A,Chung E,Lee J H.ArabidopsisatDjC53encoding a type III J-protein plays a negative role in heat shock tolerance [J].Genes &Genomics,2014,36:1~12.
[48]Schafleitner R,Gutierrez Rosales R O,Gaudin A,etal.Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress [J].Plant Physiology and Biochemistry,2007,45:673~690.
[49]Rodrigues F A,Laia M L,Zingaretti S M.Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants[J].Plant Science,2009,176:286~302.
[50]Thumma B R,Sharma N,Southerton S G.Transcriptome sequencing ofEucalyptuscamaldulensisseedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection [J].BMC Genomics,2012,13:364.
[51]Wang X,Jia N,Zhao C,etal.Knockout of AtDjB1,a J-domain protein fromArabidopsisthaliana,alters plant responses to osmotic stress and abscisic acid [J].Physiologia Plantarum,2014:152:286~300.
[52]Zhao Z C,Zhang W R,Yan J P,etal.Over-expression ofArabidopsisDnaJ(Hsp40)contributes to NaCl-stress tolerance [J].African Journal of Biotechnology,2010,9:972~978.
[53]Sharma S K,Goloubinoff P,Christen P.Heavy metal ions are potent inhibitors of protein folding [J].Biochemical and Biophysical Research Communications,2008,372:341~345.
[54]Chai T,Zhang Y,Zhao W.Cloning of cDNA and expression analysis of a DnaJ-like gene under heavy metal stress in bean [J].Progress in Natural Science,2000,10:198~205.
[55]Venkatachalam P,Srivastava A K,Raghothama K G,etal.Genes induced in response to mercury-ion-exposure in heavy metal hyperaccumulatorSesbaniadrummondii[J].Environmental Science & Technology,2009,43:843~850.
[56]Zhen Y,Qi J,Wang S,etal.Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean[J].Physiologia Plantarum,2007,131:542~554.
[57]Cancado G M A,Nogueira F T S,Camargo S R.Gene expression profiling in maize roots under aluminum stress [J].Biologia Plantarum,2008,52:475~485.
[58]Goodwin S B,Sutter T R.Microarray analysis ofArabidopsisgenome response to aluminum stress [J].Biologia Plantarum,2009,53:85~99.
[59]Dechassa D,Soliman K M,Taylor R W,etal.Gene expression profiling in soybean under aluminum stress:genes differentially expressed between Al-tolerant and Al-sensitive genotypes [J].American Journal of Molecular Biology,2011,1:156~173.