• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      具有分布時滯脈沖Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析

      2015-12-07 02:53:52蘇亞坤
      關(guān)鍵詞:時滯時刻神經(jīng)元

      張 韜,蘇亞坤,朱 進(jìn)

      (渤海大學(xué) 數(shù)理學(xué)院,遼寧錦州 121000)

      Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)是由Cohen和Crossberg于1983年提出的[1],被廣泛地應(yīng)用于模式識別、記憶與信號處理、圖象處理與計算技術(shù)等領(lǐng)域。然而,在實際應(yīng)用中時滯、脈沖是不可避免的,且時滯、脈沖對神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性有著巨大的影響[2-8],因此有關(guān)時滯脈沖Cohen-Crossberg神經(jīng)網(wǎng)絡(luò)的研究[9-19]已逐漸引起人們的關(guān)注,研究脈沖型時滯神經(jīng)網(wǎng)絡(luò)具有極其重要的意義。

      1 問題描述及相關(guān)假設(shè)

      神經(jīng)網(wǎng)絡(luò)模型如下:

      初始條件x(t0+s)=φ(s),0≤τij(t)<τij(t)≤η<1,其中:x(t)=(x1(t),x2(t),…,xn(t))表示神經(jīng)元狀態(tài)向量;ai(·)表示放大函數(shù);bi(·)表示適當(dāng)?shù)男袨楹瘮?shù);fj,hj為神經(jīng)元的激勵函數(shù);C=(cij)n×n,D=(dij)n×n,W=(wij)n×n分別表示連接權(quán)矩陣、時滯連接權(quán)矩陣和分布時滯連接權(quán)矩陣。固定時刻tk滿足t1<t2<t3<…,且在 tk時刻,Δ x(t )Rn」表示在tk時刻的狀態(tài)變化,對所有的k∈N,Ik(0)=0。

      要求神經(jīng)網(wǎng)絡(luò)模型滿足以下假設(shè):

      1)存在正常數(shù) Lj,Hj,j=1,2,…,n 使得

      4)?σk≥0,k∈N,有

      5)?μ >1,有 μτ≤inf{tk-tk-1};

      6)max{ θk}≤M < e2λμτ,M 是常數(shù),θk=1+(2σk+);

      7)延遲核函數(shù) Kij,i,j=1,2…n是定義在[0,∞)上的實值非負(fù)函數(shù),滿足,其中λ是正常數(shù)。

      2 主要結(jié)果

      定理 在假設(shè)1)~7)下,如果?λ>0,正對角矩陣Q=diag(q1,…,qn),使得

      其中

      那么模型(1)的零解是全局指數(shù)穩(wěn)定的。

      證明 構(gòu)造如下Lyapunov-Krasovskii泛函:

      當(dāng) t≠tk時

      利用條件1)~3)和2ab≤a2+b2得

      由V'<0 知函數(shù) V(t,x(t))是單調(diào)遞減的,有 V(t,x(t))≤V(t0,x(t0)),

      又因為

      當(dāng)t=tk時,根據(jù)假設(shè)4)~6)和指數(shù)穩(wěn)定定義,有

      由模型的任意解x(t,t0,x0)可得

      由于μτ≤inf{tk-tk-1},μτ≤t1-t0,μτ≤t2-t1,…,μτ≤tk-1-tk-2,求和得 (k-1)μτ≤t1-t0+t2-t1+…

      3 數(shù)值算例

      考慮下面的系統(tǒng)

      其中 a1(x1(t))=3+sinx1(t),a2(x2(t))=4+cosx1(t)。

      [1]Cohen M A,Grossberg S.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Trans Syst Man Cybern,1983,13(5):815-826.

      [2]Liao X,Li C.Global attractivity of Cohen-Grossberg model with finite and infinite delays[J].Math Anal Appl,2006,315(1):244-262.

      [3]Huang T,Chan A,Huang Y,et al.Stability of Cohen-Grossberg neural networks with time varying delays[J].Neural Networks,2007,20(8):868-873.

      [4]Li T,F(xiàn)ei S.Stability analysis of Cohen-Grosserg neural networks with timevarying and distributed delays[J].Neurocomputing,2008,71:1069-1081.

      [5]Li K.Stability analysis for impulsive Cohen-Grossberg neural networks with time-varying delays and distributed delay[J].Nonlinear Anal Real World Appl,2009,10(5):2784-2798.

      [6]Zheng C D,Shan Q H,Wang Z.Novel stability criteria of Cohen-Grossberg neural networks with time-varying delays[J].Int J Circuit Theory Appl,2012,40(3):221-235.

      [7]Huang C X,Huang L H,He Y G.Mean square exponential stability of stochastic Cohen-Grossberg neural networks with unbounded distributed delays[J].Discrete Dynamics in Nature and Society,2010(20):1-15.

      [8]Wan L,Zhou Q.Exponential stability of stochastic reaction diffusion Cohen-Grossberg neural networks with delays[J].Applied Mathematics and Computation,2008,206(2):818-824.

      [9]Chen Y.Global Asymptotic Stability of Delayed Cohen-Grossberg Neural Networks[J].IEEE Transactions on Circuit and Systems-I:Fundamental Theory and Applications,2006,53(2):351-357.

      [10]Yang Z C,Xu D Y.Impulsive effects on stability of Cohen-Grossberg neural nettworks with variable delays[J].Applied Mathematics and Cumputation,2006,177(1):63-78.

      [11]Bai C Z.Stability analysis of Cohen-Grossberg BAM neural networks with delays and impulses[J].Chaos,Solitons and Fractals,2008,35(2):263-267.

      [12]Ping Z W,Lu J G.Global exponential stability of impulsive Cohen-Grossberg neural networks with continuously distributed delays[J].Chaos,Solitons and Fractals,2009,41(1):164-174.

      [13]Luo W P,Zhong S M,Yang J.Global exponential stability of impulsive Cohen-Grossberg neural networks with delays[J].Chaos,Solitons and Fractals,2009,42(2):1084-1091.

      [14]Li K L.Stability analysis for impulsive Cohen Grossberg neural networks with time varying delays and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(5):2784-2798.

      [15]Lou X Y,Cui B T.Global exponential stability analysis of delayed Cohen-Grossberg neural networks with distributed delay[J].International Journal of Systems Science,2007,38(7):601-609.

      [16]Song Q K,Cao J D.Robust Stability in Cohen Grossberg Neural Network with both Time Varying and Distributed Delays[J].Neural Process Lett,2008,27(2):179-196.

      [17]Wang B X,Jian J G,Jiang M H.Stability in Lagrange sense for Cohen-Grossberg neural networks with time-varying delays and finite distributed delays[J].Nonlinear AnaIysis:Hybrid Systems,2010,4(1):65-78.

      [18]Wu W,Cui B T,Lou X Y.Global exponential stability of Cohen-Grossberg neural networks with distributed delays[J].Mathematical and Computer Modelling,2008,47(9):868-873.

      [19]Lu K,Xu D,Yang Z.Global attraction and stability for Cohen-Grossberg neural networks with delays[J].Neural Networks,2006,19(10):1538-1549.

      猜你喜歡
      時滯時刻神經(jīng)元
      冬“傲”時刻
      《從光子到神經(jīng)元》書評
      自然雜志(2021年6期)2021-12-23 08:24:46
      捕獵時刻
      帶有時滯項的復(fù)Ginzburg-Landau方程的拉回吸引子
      躍動的神經(jīng)元——波蘭Brain Embassy聯(lián)合辦公
      基于二次型單神經(jīng)元PID的MPPT控制
      街拍的歡樂時刻到來了
      毫米波導(dǎo)引頭預(yù)定回路改進(jìn)單神經(jīng)元控制
      一階非線性時滯微分方程正周期解的存在性
      一類時滯Duffing微分方程同宿解的存在性
      承德市| 通化市| 呼玛县| 兰州市| 静海县| 甘洛县| 灯塔市| 岳阳市| 景谷| 治县。| 淳化县| 信阳市| 桃源县| 如皋市| 罗甸县| 犍为县| 高清| 南岸区| 丰县| 锡林郭勒盟| 昌都县| 贵德县| 柳林县| 松江区| 炎陵县| 濮阳县| 玛曲县| 瓮安县| 铁岭市| 平泉县| 吉首市| 登封市| 五大连池市| 尉犁县| 阳谷县| 黔西县| 西贡区| 盘锦市| 澄江县| 东阿县| 翁源县|