賀繼剛,嚴(yán) 丹(綜述),王 平,李洪榮(審校)
(云南省第一人民醫(yī)院心臟大血管外科,昆明 650000)
分子生物學(xué)
GATA-4在心肌損傷修復(fù)中的作用機(jī)制研究進(jìn)展
賀繼剛,嚴(yán)丹(綜述),王平※,李洪榮(審校)
(云南省第一人民醫(yī)院心臟大血管外科,昆明 650000)
摘要:GATA-4是調(diào)控心臟基因表達(dá)的重要轉(zhuǎn)錄因子,參與了心臟正常發(fā)育、功能基因表達(dá)和心肌肥大的病理過(guò)程。GATA-4在心臟發(fā)育的早期起重要作用,抑制胚胎干細(xì)胞中GATA-4的表達(dá)可阻斷胚胎干細(xì)胞向心肌細(xì)胞分化,增強(qiáng)GATA-4的表達(dá)則增加胚胎干細(xì)胞向心肌細(xì)胞分化。并且GATA-4還具有抗細(xì)胞凋亡的作用,GATA-4在心肌肥大期間成體心肌細(xì)胞的凋亡過(guò)程中具有重要的作用。通過(guò)增加促存活基因的表達(dá),可改善細(xì)胞的存活。其在心肌損傷修復(fù)、缺血性心臟病治療等方面成為目前研究的熱點(diǎn)。
關(guān)鍵詞:GTTA-4;心肌細(xì)胞分化;分子機(jī)制
冠狀動(dòng)脈粥樣硬化性心臟病(冠心病)引起的心肌梗死已成為目前世界范圍內(nèi)的頭號(hào)“殺手”。 雖然目前對(duì)冠心病治療取得了一定的進(jìn)展,但其仍然是世界十大死亡原因之一,據(jù)世界衛(wèi)生組織統(tǒng)計(jì),2000~2012年,冠心病位居世界人口死亡原因首位[1-2]。采用干細(xì)胞治療心肌梗死已進(jìn)入臨床,但干細(xì)胞修復(fù)心臟損傷效果仍不確切。而GATA-4是調(diào)控心臟基因表達(dá)的重要轉(zhuǎn)錄因子,參與了心臟正常發(fā)育、功能基因表達(dá)和心肌肥大的病理過(guò)程。當(dāng)GATA-4被抑制后,心臟發(fā)育受阻,引起心臟缺損,細(xì)胞向心肌分化受阻[3-5]。GATA-4-/-的細(xì)胞可在房間隔缺損或室間隔缺損的心肌及心內(nèi)膜中檢測(cè)到[6-8]。在人類先天性心臟病中,GATA-4對(duì)心臟瓣膜及間隔的發(fā)育及形成具有重要的作用[9-10]?,F(xiàn)就GATA-4的構(gòu)成、分子生物學(xué)機(jī)制等研究進(jìn)展予以綜述。
1GATA-4的結(jié)構(gòu)、功能
GATA結(jié)合蛋白是具有Ⅳ型鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子。研究表明,在房間隔缺損患者中,特別容易觀察到GATA-4的C端鋅指結(jié)構(gòu)發(fā)生改變;而此區(qū)域是DNA連接區(qū),也是協(xié)同分子作用的區(qū)域,而DNA連接區(qū)域的改變也引發(fā)了轉(zhuǎn)錄活動(dòng)的下降[11]。脊椎動(dòng)物有兩類GATA結(jié)合蛋白,其中,GATA-1/2/3參與造血系統(tǒng)調(diào)控;GATA-4/5/6則參與心臟、腸及外胚組織中的基因表達(dá)調(diào)控。GATA- 4是調(diào)控心臟基因表達(dá)的重要轉(zhuǎn)錄因子,參與了心臟正常發(fā)育、功能基因表達(dá)和心肌肥大的病理過(guò)程。而GATA-4在心臟發(fā)育的早期起重要作用,抑制其表達(dá)可阻斷p19畸胎瘤細(xì)胞向心肌細(xì)胞分化,強(qiáng)表達(dá)則增強(qiáng)心肌分化[12]。通過(guò)采取反義策略對(duì)GATA-4進(jìn)行剔除可阻止前體心臟細(xì)胞的分化,而利用功能增益方法刺激GATA-4的表達(dá)可誘導(dǎo)出現(xiàn)異位收縮的心肌細(xì)胞,因此,這也表明GATA-4可介導(dǎo)心肌的分化、增殖和存活[13]。
2GATA-4的作用機(jī)制
2.1GATA-4通過(guò)NKx2.5促進(jìn)心肌分化GATA-4能夠通過(guò)鋅指C端和相鄰基本域與SMAD(sophila mothers against decapentaplegic)1/4的N端相互作用,利用細(xì)胞間的骨形態(tài)發(fā)生蛋白信號(hào)途徑協(xié)同激活細(xì)胞中的NKx2.5的啟動(dòng)子[14]。NKx2.5是一個(gè)同源框編碼的轉(zhuǎn)錄因子[15]。它對(duì)心臟及其轉(zhuǎn)導(dǎo)系統(tǒng)的正常發(fā)展是必要的[16]。它的突變可導(dǎo)致先天性心臟病、電生理功能的異常和動(dòng)物模型及人類的死亡[17]。據(jù)Zhang等[18]報(bào)道,脊椎動(dòng)物心臟發(fā)展來(lái)自于中胚層,并且需要早期來(lái)自于內(nèi)胚層誘導(dǎo)信號(hào)的分泌;在胚芽發(fā)生期,NKx2.5扮演著一個(gè)關(guān)鍵的轉(zhuǎn)錄因子,并且是從果蠅到人心臟形成的必要的角色;在小鼠模型中,NKx2.5在心臟發(fā)育早期表達(dá),且主要表達(dá)于咽中胚層第二心臟發(fā)生區(qū)及內(nèi)胚層的心臟發(fā)育區(qū),如果去除中胚層的NKx2.5,心臟無(wú)法發(fā)育,但如果重新植入NKx2.5則心臟又可以重新發(fā)育。在小鼠,如果剔除NKx2.5基因,則小鼠死于嚴(yán)重的心臟發(fā)育缺陷;如果人類的NKx2.5表達(dá)不足,則會(huì)引起嚴(yán)重的先天性心臟缺陷,包括房間隔缺損、右心室雙出口及法洛四聯(lián)癥[19]。在胚胎時(shí)期剔除NKx2.5,將導(dǎo)致心功能受損并發(fā)生擴(kuò)張性心肌病[20-21],表明NKx2.5在人類心臟發(fā)育及功能恢復(fù)上具有重要作用。NKx2.5在心臟發(fā)育早期就已經(jīng)表達(dá),并且它也可調(diào)節(jié)其他心臟轉(zhuǎn)錄因子的表達(dá),包括內(nèi)皮素轉(zhuǎn)移酶1、Jarid-2和β聯(lián)蛋白[22]。而NKx2.5還可通過(guò)Lrrc10(富含10個(gè)亮氨酸重復(fù)序列)基因表達(dá)增加心肌分子的表達(dá)。Lrrc10是小鼠、斑馬魚和人類的心臟特異性分子,在發(fā)育及成體心臟中強(qiáng)烈表達(dá)。Lrrc10 在斑馬魚的心臟發(fā)育和功能維持上有重要作用,Lrrc10可與心臟中的心肌肌動(dòng)蛋白相互作用,表明Lrrc10對(duì)維持人類心臟的生理及在人類心臟疾病中具有突出作用[23]。GATA因子能夠通過(guò)兩種途徑調(diào)節(jié)骨形態(tài)發(fā)生蛋白信號(hào)途徑:通過(guò)影響骨形態(tài)發(fā)生蛋白表達(dá)水平;通過(guò)和骨形態(tài)發(fā)生蛋白信號(hào)途徑下游影響因子相互作用[24-25]。骨形態(tài)發(fā)生蛋白是生長(zhǎng)轉(zhuǎn)化因子超家族成員,是目前調(diào)控小鼠胚胎干細(xì)胞自我更新和分化的重要控制因子。通過(guò)全基因組范圍分析骨形態(tài)發(fā)生蛋白信號(hào)通路啟動(dòng)子SMAD1/5和SMAD4,發(fā)現(xiàn)它們與大量的發(fā)育調(diào)節(jié)因子有很大的關(guān)聯(lián),如H3K27三甲基,H3K4三甲基標(biāo)記的調(diào)節(jié)因子[25]。
2.2GATA-4通過(guò)血清應(yīng)答因子(serum response factor,SRF)促進(jìn)心肌細(xì)胞分化SRF對(duì)心臟中胚層的發(fā)育至關(guān)重要[26]。SRF結(jié)合在血清應(yīng)答元件靶基因的啟動(dòng)子區(qū)域。該蛋白質(zhì)調(diào)節(jié)許多早基因的活性(例如c-fos基因),并由此參與細(xì)胞凋亡、細(xì)胞生長(zhǎng)和細(xì)胞分化等細(xì)胞周期的調(diào)控。這種基因是許多途徑下游的靶標(biāo),例如,絲裂原活化蛋白激酶通路通過(guò)三元復(fù)合因子與SRF相互作用。SRF被認(rèn)為是在胚胎發(fā)育過(guò)程中非常重要的,因?yàn)樗龠M(jìn)胚層的形成[27]。在成體哺乳動(dòng)物,SRF對(duì)心肌的生長(zhǎng)至關(guān)重要。SRF與其他蛋白質(zhì)(如類固醇激素受體)相互作用可通過(guò)調(diào)控類固醇促進(jìn)心肌生長(zhǎng);SRF與其他蛋白質(zhì)(如心肌素或胞外信號(hào)調(diào)節(jié)激酶1)相互作用也可增強(qiáng)或抑制血管平滑肌基因的表達(dá),對(duì)其生長(zhǎng)至關(guān)重要[28]。SRF能夠和GATA-4或NKx2.5協(xié)同激活心肌中的心鈉素基因和α-肌動(dòng)蛋白基因[29]。研究表明,GATA-4可與NKx2.5、SRF形成一個(gè)復(fù)合物,可更加有效激活心臟的基因[30-31]。而SRF也可有效征募NKx2.5和GATA-4,從而激活心臟前體細(xì)胞與胚胎干細(xì)胞的α-肌動(dòng)蛋白的啟動(dòng)子,而且此復(fù)合物還可增加SRF-DNA結(jié)合域的親和力[31]。GATA-4還可通過(guò)和肌細(xì)胞增強(qiáng)因子2產(chǎn)生形態(tài)結(jié)合,激活心房利鈉肽的啟動(dòng)子[32]。研究表明,在HeLa細(xì)胞和原始心肌細(xì)胞中,GATA-4及Tbx5的共同表達(dá)可協(xié)同激活心房利鈉肽的啟動(dòng)子,而這種作用也可在Tbx5與NKx2.5相互作用中觀察到[33]。
2.3GATA-4通過(guò)核因子激活的T細(xì)胞(nuclear factor of activated T-cells,NFAT)促進(jìn)心肌細(xì)胞分化GATA-4鋅指的C端及DNA的結(jié)合域和NFAT-3相互作用可激活心臟基因促其表達(dá)[34]。核因子是轉(zhuǎn)錄因子的總稱,在調(diào)節(jié)免疫反應(yīng)中有重要的作用。NFAT家族中的一個(gè)或多個(gè)成員表達(dá)于免疫系統(tǒng)的大多數(shù)細(xì)胞。NFAT還參與心肌、骨骼肌以及神經(jīng)系統(tǒng)的發(fā)展。NFAT轉(zhuǎn)錄因子家族包括NFAT-1、NFAT-2、NFAT-3、NFAT-4和NFAT-5五個(gè)成員。NFAT-1通過(guò)鈣信號(hào)調(diào)節(jié)NFAT-4,鈣信號(hào)對(duì)NFAT活化至關(guān)重要。鈣調(diào)蛋白是一個(gè)公認(rèn)的鈣傳感器蛋白,對(duì)鈣信號(hào)轉(zhuǎn)導(dǎo)至關(guān)重要,可通過(guò)絲氨酸/蘇氨酸磷酸酶鈣調(diào)磷酸酶被激活[35]。通過(guò)對(duì)NFAT蛋白富含絲氨酸的區(qū)域和N端的SP-重復(fù)序列迅速脫磷酸化,可激活絲氨酸/蘇氨酸磷酸酶鈣調(diào)磷酸酶,從而導(dǎo)致核定位信號(hào)的暴露,使NFAT的構(gòu)象變化。NFAT蛋白質(zhì)的構(gòu)象是與細(xì)胞質(zhì)和激酶相反的。必須抑制NFAT的活性,才能激活激酶(如蛋白激酶A)和糖原合成酶激酶3。NFAT蛋白質(zhì)的DNA結(jié)合能力弱,因此為了有效地結(jié)合DNA,NFAT蛋白必須和其他核駐留轉(zhuǎn)錄因子合作。NFAT轉(zhuǎn)錄因子的重要特性是與其他信號(hào)通路(如蛋白激酶C)的鈣信號(hào)結(jié)合和匹配。另外,蛋白激酶C信號(hào)途徑整合參與組織特異性基因表達(dá)的發(fā)育過(guò)程[36]。
2.4GATA-4通過(guò)p300促進(jìn)心肌細(xì)胞分化轉(zhuǎn)錄調(diào)節(jié)因子p300的廣泛表達(dá)能夠和GATA-4直接相互作用,協(xié)同激活在纖維網(wǎng)狀細(xì)胞中的心房利鈉肽、α-肌球重鏈蛋白和β-肌球重鏈蛋白的啟動(dòng)子[37]。p300是反應(yīng)結(jié)合蛋白家庭的成員,它具有組蛋白乙酰轉(zhuǎn)移酶活性,并作為轉(zhuǎn)錄共活化劑和許多DNA結(jié)合因子相互作用。最近,HeLa細(xì)胞和幼稚心肌細(xì)胞體外研究表明,GATA-4和堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子相互作用,形成一個(gè)復(fù)雜的復(fù)合物促進(jìn)心臟的發(fā)育,并且堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子與p300的相互作用對(duì)GATA-4和堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子相互作用是必要的;功能協(xié)同作用結(jié)果表明,p300需要GATA的啟動(dòng)子內(nèi)的位點(diǎn)而不是堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子內(nèi)的位點(diǎn)[38]。相對(duì)Nkx2.5、NFAT-3、MEF-2和SRF,通過(guò)GATA結(jié)合蛋白2的C端鋅指與GATA-4的N端鋅指相互作用,p300可結(jié)合任一鋅指。因此,p300可作為多亞基蛋白的組裝支架,形成特異性復(fù)合物,推動(dòng)心臟發(fā)育而賦予更多的特異性[39]。
2.5GATA-4通過(guò)YY1促進(jìn)心肌細(xì)胞分化另一個(gè)普遍表達(dá)的是調(diào)節(jié)鋅指蛋白YY1,其能夠激活和抑制轉(zhuǎn)錄,也可引起DNA彎曲和染色質(zhì)重塑[40]。轉(zhuǎn)錄調(diào)節(jié)因子YY1和GATA-4的DNA結(jié)合域協(xié)同作用能夠反式激活在HeLa和非洲綠猴腎細(xì)胞中的腦鈉肽的啟動(dòng)子[41]。然而,YY1與GATA-4的相互作用是取決于YY1的DNA結(jié)合結(jié)構(gòu)域,并且由CBP(CSK-binding protein)/p300的類蛋白質(zhì)來(lái)介導(dǎo)。在非洲爪蟾轉(zhuǎn)基因,泛心肌心臟特異性標(biāo)志物的肌球蛋白輕鏈的表達(dá)依賴于GATA、SRF和YY1的組合;在體外,GATA-4和SRF可同時(shí)結(jié)合到肌球蛋白輕鏈啟動(dòng)子;在外胚層,同時(shí)過(guò)表達(dá)GATA-4和SRF導(dǎo)致該啟動(dòng)子的協(xié)同活化;在啟動(dòng)子區(qū)的YY1結(jié)合位點(diǎn)與SRE位點(diǎn)重疊,導(dǎo)致XMLC2啟動(dòng)子活性弱化,因此GATA-4 與YY1相互作用對(duì)心臟發(fā)育至關(guān)重要[42]。
2.6GATA-4通過(guò)FOG-2促進(jìn)心肌細(xì)胞分化在心臟發(fā)育時(shí),F(xiàn)OG-2可促進(jìn)GATA-4的轉(zhuǎn)錄活性。FOG-2蛋白N端阻遏結(jié)構(gòu)域和GATA-4不同的結(jié)構(gòu)域相結(jié)合可以促進(jìn)GATA-4轉(zhuǎn)錄。FOG-2可以物理性與GATA-4相互作用,而GATA-4也可與p300相互結(jié)合,表明FOG-2可與p300競(jìng)爭(zhēng)結(jié)合[43]。GATA-4和FOG-2之間相互作用可激活或抑制GATA-4的啟動(dòng)子,激活或抑制效果的產(chǎn)生依賴心臟啟動(dòng)子和細(xì)胞系的不同及在反應(yīng)體系中是否有p300的存在[44]。p300與FOG-2均可單獨(dú)與GATA-4相互作用,促進(jìn)其表達(dá),但如果兩者同時(shí)存在則會(huì)發(fā)生相互結(jié)合,從而弱化GATA-4的激活。FOG-2可與GATA-4 N端鋅指相互作用促進(jìn)心臟發(fā)育[45]。
3GATA-4抗細(xì)胞凋亡及機(jī)制
有證據(jù)表明,GATA-4在心肌肥大期間成體心肌細(xì)胞的凋亡過(guò)程中具有重要的作用[46]。心肌病是由于心肌細(xì)胞肥大、凋亡所引起的。在心肌細(xì)胞肥大過(guò)程中,抑制GATA-4的表達(dá),可減少核的積累,核內(nèi)的GATA-4可減少細(xì)胞的胞吐分泌作用。通過(guò)對(duì)GATA-4的磷酸化和外運(yùn)蛋白1,可使糖原合成酶激酶-3下降,而影響心肌細(xì)胞的肥大;通過(guò)促存活基因(肝細(xì)胞生長(zhǎng)因子、內(nèi)皮素1)可激活依賴分裂原活化抑制劑/細(xì)胞外調(diào)節(jié)蛋白激酶的信號(hào)途徑,而經(jīng)由絲氨酸105的磷酸化可增加GATA-4 DNA連接域的活性[46]。而后,抗凋亡基因的表達(dá)會(huì)增加,因此可改善細(xì)胞的存活。與此相反,當(dāng)心肌細(xì)胞發(fā)生凋亡時(shí),GATA-4的表達(dá)是下降的[47],表明細(xì)胞的凋亡可通過(guò)恢復(fù)GATA-4的作用而被減弱,GATA-4可調(diào)節(jié)成體心臟細(xì)胞的存活。目前認(rèn)為影響細(xì)胞的凋亡主要有兩條途徑:通過(guò)以胱天蛋白酶8活化為代表的死亡受體通路,如Fas通路;以細(xì)胞色素C釋放及胱天蛋白酶9活化為代表的線粒體信號(hào)通路[48]。而GATA-4是通過(guò)哪條途徑改善了細(xì)胞的凋亡,目前尚不清楚。
4小結(jié)
GATA-4是調(diào)控心臟基因表達(dá)的重要轉(zhuǎn)錄因子,其通過(guò)多條途徑和多種轉(zhuǎn)錄因子相互作用,主要是和NKx2.5、SRF、NFAT、p300、YY1相互作用進(jìn)一步通過(guò)分裂原活化抑制劑/細(xì)胞外調(diào)節(jié)蛋白激酶等信號(hào)途徑共同促進(jìn)干細(xì)胞向心肌細(xì)胞分化。并且GATA-4還可以促進(jìn)促存活基因的表達(dá),因此具有抗細(xì)胞凋亡的作用,其在心肌損傷修復(fù)、缺血性心臟病治療等方面成為目前研究的熱點(diǎn)。
參考文獻(xiàn)
[1]World Health Organization.The top 10 causes of death[EB/OL].[2014-03-21].http://www.who.int/mediacentre/factsheets/fs310/en/index.html.
[2]Nadim S,Kean S,Chiew W,etal.Screening for asymptomatic coronary heart disease in the young ′at risk′population:who and how?[J].IJC Heart Vasculature,2014,27(3):21-25.
[3]Zhang H,Toyofuku T,Kamei J,etal.GATA-4 regulates cardiac morphogenesis through transactivation of the N-cadherin gene[J].Biochem Biophys Res Commun,2013,312(4):1033-1038.
[4]Kuo CT,Morrisey EE,Anandappa R,etal.GATA4 transcription factor is required for ventral morphogenesis and heart tube formation[J].Genes Dev,1997,11(8):1048-1060.
[5]Narita N,Bielinska M,Wilson DB.Cardiomyocyte differentiation by GATA-4 deficient embryonic stem cells[J].Development,1997,124(19):3755-3764.
[6]Narita N,Bielinska M,Wilson DB.Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 defici-ency in the mouse[J].Dev Biol,1997,189(2):270-274.
[7]Pehlivan T,Pober BR,Brueckner M,etal.GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease[J].Am J Med Genet,1999,83(3):201-206.
[8]Garg V,Kathiriya IS,Barnes R,etal.GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J].Nature,2003,424(6947):443-447.
[9]Suzuki YJ,Evans T.Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor[J].Life Sci,2004,74(15):1829-1838.
[10]Morisco C,Seta K,Hardt SE,etal.Glycogen synthase kinase 3 beta regulates GATA4 in cardiac myocytes[J].J Biol Chem,2001,276(30):28586-28597.
[11]Tsang AP,Visvader JE,Turner CA,etal.FOG,a multitype zinc finger protein,acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation[J].Cell,1997,90(1):109-119.
[12]Hirai M,Ono K,Morimoto T,etal.FOG-2 competes with GATA-4 for transcriptonal coactivator p300 and represses hyertrophie respenses in cardiac myecytes[J].J Biol Chem,2004,279(36):37640-37650.
[13]Peterkin T,Gibson A,LooseM,etal.The roles of GATA-4,-5 and -6 in vertebrate heart development[J].Semin Cell Dev Biol,2005,16(1):83-94.
[14]Brown CO,Chi X,Garcia-Gras E,etal.The cardiac determination factor,Nkx2-5 is activated by mutual,cofactors GATA-4 and Smad1/4 via a novel upstream enhancer[J].J Biol Chem,2004,279 (11):10659-10669.
[15]Pikkarainen S,Tokola H,Kerkel? R,etal.GATA transcription factors in the developing and adult heart [J].Cardiovasc Res,2004,63(2):196-207.
[16]Harvey RP,Lai D,Elliott D,etal.Homeodomain factor Nkx2-5 in heart development and disease[J].Cold Spring Harb Symp Quant Biol,2002,67:107-114.
[17]Terada R,Warren S,Lu JT,etal.Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation[J].Cardiovasc Res,2011,91(2):289-299.
[18]Zhang L,Nomura-Kitabayashi A,Sultana N,etal.Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development[J].Dev Biol,2014,390(1):68-79.
[19]Takeda M,Briggs LE,Wakimoto H,etal.Slow progressive conduction and contraction defects in loss of Nkx2-5 mice after cardiomyocyte terminal differentiation[J].Lab Invest,2009,89(9):983-993.
[20]Harrelson Z,Kaestner KH,Evans SM.Foxa2 mediates critical functions of prechordal plate in patterning and morphogenesis and is cell autonomously required for early ventral endoderm morphogenesis[J].Biol Open,2012,1(3):173-181.
[21]Riazi AM,Takeuchi JK,Hornberger LK,etal.NKX2-5 regulates the expression of beta-catenin and GATA4 in ventricular myoc-ytes[J].PLoS One,2009,4(5):e5698.
[22]Mysliwiec MR,Carlson CD,Tietjen J,etal.Jarid2(jumonji,AT rich interactive domain 2) regulates NOTCH1 expression via histone modification in the developing heart[J].J Biol Chem,2012,287 (2):1235-1241.
[23]Brodya MJ,Cho E,Mysliwiec MR,etal.Lrrc10 is a novel cardiac-specific target gene of Nkx2-5 and GATA4[J].J Mol Cell Cardiol,2013,62:237-246.
[24]Estruch R,Ros E,Salas-Salvado J,etal.Primary prevention of cardiovascular disease with a Mediterranean diet[J].N Engl J Med,2013,368(14):1279-1290.
[25]Arsenian S,Weinhold B,Oelgeschl?ger M,etal.Serum response factor is essential for mesoderm formation during mouse embryogenesis[J].EMBO J,1998,17(21):6289-6299.
[26]McBride K,Nemer M.Regulation of the ANF and BNP promoters by GATA factors:lessons learned for cardiac transcription[J].Can J Physiol Pharmacol,2001,79(8):673-681.
[27]Koegel H,von Tobel L,Sch?fer M,etal.Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice[J].J Clin Invest,2009,119(4):899-910.
[28]Li S,Czubryt MP,McAnally J,etal.Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice[J].Proc Natl Acad Sci U S A,2005,102(4):1082-1087.
[29]Sepulveda JL,Vlahopoulos S,Iyer D,etal.Combinatorial expression of GATA4,Nkx2.5 and serum response factor directs early cardiac gene activity[J].J Biol Chem,2002,277(28):25775-
25782.
[30]Nishida W,Nakamura M,Mori S,etal.A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes[J].J Biol Chem,2002,277(9):7308-7317.
[31]Morin S,Charron F,Robitaille L,etal.GATA-dependent recruitment of MEF2 proteins to target promoters[J].EMBO J,2000,19(9):2046-2055.
[32]Hiroi Y,Kudoh S,Monzen K,etal.Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation[J].Nat Genet,2001,28(3):276-280.
[33]Molkentin JD,Lu JR,Antos CL,etal.A calcineurin-dependent transcriptional pathway for cardiac hypertrophy[J].Cell,1998,93(2):215-228.
[34]Dai YS,Markham BE.p300 functions as a coactivator of transcription factor GATA-4[J].J Biol Chem,2001,276(40):37178-
37185.
[35]Fougère M,Gaudineau B,Barbier J,etal.NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene[J].Oncogene,2010,29(15):2292-2301.
[36]Gaudineau B,F(xiàn)ougère M,Guaddachi F,etal.Lipocalin 2(LCN2),the TNF-like receptor TWEAKR and its ligand TWEAK act downstream of NFAT1 to regulate breast cancer cell invasion[J].J Cell Sci,2012,125(Pt 19):4475-4486.
[37]Bhalla SS,Robitaille L,Nemer M.Cooperative activation by GATA-4 and YY1 of the cardiac B-type natriuretic peptide promoter[J].J Biol Chem,2001,276(14):11439-11445.
[38]Dai YS,Cserjesi P,Markham BE,etal.The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism[J].J Biol Chem,2002,277(27):24390-24398.
[39]Vo N,Goodman RH.CREB-binding protein and p300 in transcriptional regulation[J].J Biol Chem,2001,276(17):13505-13508.
[40]Svensson EC,Tufts RL,Polk CE,etal.Molecular cloning of FOG-2:a modulator of transcription factor GATA-4 in cardiomyocytes[J].Proc Natl Acad Sci U S A,1999,96(3):956-961.
[41]Lu JR,McKinsey TA,Xu H,etal.FOG-2,a heart- and brain-enriched cofactor for GATA transcription factors[J].Mol Cell Biol,1999,19(6):4495-4502.
[42]Morceau F,Schnekenburger M,Dicato M,etal.GATA-1:friends,brothers,and coworkers[J].Ann N Y Acad Sci,2004,1030:537-554.
[43]Thomas MJ,Seto E.Unlocking the mechanisms of transcription factor YY1:are chromatin modifying enzymes the key?[J].Gene,1999,236(2):197-208.
[44]Suzuki YJ.Stress-induced activation of GATA-4 in cardiac muscle cells[J].Free Radic Biol Med, 2003,34(12):1589-1598.
[45]Latinkic BV,Cooper B,Smith S,etal.Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development[J].Development,2004,131(3):669-679.
[46]Kim Y,Ma AG,Kitta K,etal.Anthracycline-induced suppression of GATA-4 transcription factor:implication in the regulation of cardiac myocyte apoptosis[J].Mol Pharmacol,2003,63(2):368-377.
[47]Cai BZ,Meng FY,Zhu SL,etal.Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways[J].Toxicol Lett,2010,193(2):173-178.
[48]He J,Teng X,Yu Y,etal.Injection of Sca-1+/CD45+/CD31+mouse bone mesenchymal stromal-like cells improves cardiac function in a mouse myocardial infarct model[J].Differentiation,2013,86(1/2):57-64.
Research Progress of Role of GATA-4 in Cardiac Injury RepairHEJi-gang,YANDan,WANGPing,LIHong-rong.(DepartmentofCardiovascularSurgery,YunnanFirstPeople′sHospital,Kunming650000,China)
Abstract:GATA-4 is an important transcription factor.It can regulate cardiac gene expression and is involved in the normal development of the heart,expression of function gene and the pathological process of cardiac hypertrophy.In early heart development,GATA-4 plays an important role.Inhibiting GATA-4 expression can block the differentiation of embryonic stem cells into cardiomyocytes,while enhancing GATA-4 expression can increase myocardial differentiation.In addition,there is considerable evidence that GATA-4 plays an important role in adult cardiomyocyte apoptosis with cardiac hypertrophy.Through increased expression of pro-survival genes,cell survival can be improved.It has become a hot spot in cardiac repair,and treatment of ischemic heart disease.
Key words:GTTA-4; Cardiomyocyte differentiation; Molecular mechanisms
收稿日期:2015-02-09修回日期:2015-04-07編輯:鄭雪
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81460073);云南省科技廳-昆明醫(yī)科大學(xué)應(yīng)用基礎(chǔ)研究聯(lián)合專項(xiàng)資金(2014FB089)
doi:10.3969/j.issn.1006-2084.2015.22.001
中圖分類號(hào):R379.9
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)22-4033-04