郭成, 丁卯松, 韓筱爽
( 延邊大學(xué) 科學(xué)技術(shù)學(xué)院, 吉林 延吉 133002 )
帶有分?jǐn)?shù)階邊值條件的分?jǐn)?shù)階差分方程的正解
郭成, 丁卯松, 韓筱爽*
( 延邊大學(xué) 科學(xué)技術(shù)學(xué)院, 吉林 延吉 133002 )
研究了一類帶有分?jǐn)?shù)階邊值條件的分?jǐn)?shù)階差分方程正解的存在性問題.首先利用分?jǐn)?shù)階差分方程理論和邊值條件給出了解的結(jié)構(gòu),其次分析了Green函數(shù)的一些性質(zhì),最后利用錐上的不動點(diǎn)定理證明了該問題正解的存在性.
分?jǐn)?shù)階邊值條件; Green函數(shù); 正解
分?jǐn)?shù)階微積分廣泛應(yīng)用于信號處理與控制、流體力學(xué)、分形理論、分?jǐn)?shù)階PID控制器設(shè)計等科學(xué)研究領(lǐng)域.近年來隨著分?jǐn)?shù)階差分方程模型的不斷出現(xiàn),以及對微分方程近似計算的需要,分?jǐn)?shù)階差分方程邊值問題逐漸成為學(xué)者們關(guān)注的研究課題.分?jǐn)?shù)階差分方程的邊值條件種類很多,如帶有兩點(diǎn)邊值條件[1]、局部邊值條件[2]和非局部邊值條件[3]的分?jǐn)?shù)階差分方程,其中即使邊值條件帶有差分方程結(jié)構(gòu)也大多是整數(shù)階次.文獻(xiàn)[4]研究了帶有分?jǐn)?shù)階邊值條件的差分方程,對其邊值條件進(jìn)行分析,并把它歸結(jié)為非局部類型.本文在前人的研究基礎(chǔ)上,討論了方程格林函數(shù)的一些性質(zhì),并利用錐上的不動點(diǎn)定理證明了該邊值問題存在正解.
考慮如下帶有分?jǐn)?shù)階邊值條件的分?jǐn)?shù)階差分方程的邊值問題:
(1)
引理1 對于?t,v∈R, 如果t(v),t(v-1)都有定義,則有Δt(v)=v t(v-1).
定義2 對于v>0, 函數(shù)f的分?jǐn)?shù)階(v階)和分定義為
定義3 對于N∈N, 0≤N-1 Δvf(t)=ΔNΔv-Nf(t), t∈Na+N-v. 引理2 設(shè)f是定義在Na上的實(shí)函數(shù), μ,v>0, 則有 Δ-v(Δ-μf(t))=Δ-(v+μ)f(t)=Δ-μ(Δ-vf(t)), t∈Na+μ+v. 引理3 令0≤N-1 ① ‖Ty‖≤‖y‖, y∈P∩?Ω1, ‖Ty‖≥‖y‖, y∈P∩?Ω2; ② ‖Ty‖≥‖y‖, y∈P∩?Ω1, ‖Ty‖≤‖y‖, y∈P∩?Ω2, 定理1[4]設(shè)h∶[v-1,v+b]Nv-1×R→R, 則問題 (2) 是問題(2)的格林函數(shù).這里 T1={(t,s)∈[v-2,v+b+1]Nv-2×[0,b+1]N0: 0≤s T2={(t,s)∈[v-2,v+b+1]Nv-2×[0,b+1]N0: 0≤t-v+1 定理2 Green函數(shù)G(t,s)具有以下性質(zhì): (I) G(t,s)>0, (t,s)∈[v-2,v+b+1]Nv-1×[0,b+1]N0; (II) maxt∈[v-2,v+b+1]Nv-1G(t,s)=G(s+v-1,s), 其中s∈[0,b+1]N0; (III) 存在γ∈(0,1), 使得mint∈TG(t,s)≥γmaxt∈[v-1,v+b+1]Nv-1G(t,s)=γ G(s+v-1,s). 即G(t,s)>0.綜上,結(jié)論(I)成立. 則有ΔtG(t,s)<0, 即G(t,s)≤G(s+v-1,s).綜上,結(jié)論(II)成立. (H1) f(t,y)≥0且連續(xù); 定義B上的錐 引理5 假設(shè)條件(H1)成立,則對于?y∈P有Ty∈P0.特別地,算子T是錐P0到P0上的映射. 定理3 (I)如果條件(H1)和(H2)成立,則問題(1)至少有一個非零解y∈P0; (II) 如果條件(H1)和(H3)成立,則問題(1)至少有一個非零解y∈P0. [1] Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Difference Equ Appl, 2011,17(4):445-456. [2] Goodrich C S. Solutions to a discrete right-focal boundary value problem[J]. Int J Difference Equ, 2010,5:195-216. [3] Goodrich C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J]. J Comput Math Appl, 2011,61(21):191-202. [4] Goodrich C S. On a fractional boundary value problem with fractional boundary conditions[J] . J Applied Mathematics Letters, 2012,25:1101-1105. [5] Miller K S, Ross B. Fractional difference calculus, procedings of the internations symposium on Univalent functions[J]. Fractional Calculus and their Applications Nihon University, 1988,1(4):139-152. [6] Atici F M, Eloe P W. A transform method in discrete fractional calculus[J]. Int J Difference Equ, 2007,2(2):165-176. [7] Atici F M, Eloe P W. Initial value problems in discrete fractional calculus[J].Proc Amer Math Soc, 2009,137:981-989. [8] 時寶,張德存,蓋久明.微分方程理論及其應(yīng)用[M] .北京:國防工業(yè)出版社,2005:13. [9] 程金發(fā).分?jǐn)?shù)階差分方程理論[M].廈門:廈門大學(xué)出版社,2010. Existence of positive solution for a fractional difference equations with fractional boundary value condition GUO Cheng, DING Maosong, HAN Xiaoshuang* (InstituteofScienceandTechnology,YanbianUniversity,Yanji133002,China) We study the existence of positive solutions of the boundary value problem for a fractional difference equation with fractional boundary value condition. Firstly, according to the theory of fractional difference equation and its boundary conditions, we got the structure of solutions, then analyze some properties of the Green’s function, at last, the existence of the positive solutions of the problem is proved by using the fixed point theorem in cones. fractional order boundary value condition; Green’s function; positive solution 2014-09-21 基金項(xiàng)目: 延邊大學(xué)自然科學(xué)基金資助項(xiàng)目(延大科合字2013第11號) 1004-4353(2015)01-0025-05 O175.6 A *通信作者: 韓筱爽(1980—),女,講師,研究方向?yàn)榭煽啃耘c微分方程理論.2 Green函數(shù)及其性質(zhì)
3 正解的存在性