洪英棟
(福建省晉江市英林中心小學(xué)晉江市362256
在2011年,幾何直觀作為教學(xué)核心概念而被應(yīng)用在《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》中。作為現(xiàn)階段義務(wù)教育階段的數(shù)學(xué)教學(xué)的指導(dǎo)性文件,《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》的作用是顯而易見的,對(duì)小學(xué)數(shù)學(xué)教師而言,在未來教學(xué)中,應(yīng)在幾何直觀教學(xué)法的指導(dǎo)下,不斷優(yōu)化相關(guān)內(nèi)容,以進(jìn)一步提高教學(xué)效果。但就現(xiàn)階段小學(xué)數(shù)學(xué)教學(xué)而言,受多方面因素影響,教學(xué)中存在師生互動(dòng)較差、學(xué)生積極性不高等問題,如何正確應(yīng)用幾何直觀教學(xué)法,成為數(shù)學(xué)教師普遍關(guān)注的重點(diǎn)。本文將以此為背景,對(duì)小學(xué)生幾何直觀教學(xué)的相關(guān)問題進(jìn)行討論。
從字面意義上來看,幾何直觀教學(xué)法主要分為兩方面內(nèi)容,即“幾何”與“直觀”,是指用身體器官直接感受圖形。由此可見,幾何直觀教學(xué)法的關(guān)鍵,就是用圖形來真實(shí)的反應(yīng)某一問題,本文認(rèn)為圖形反應(yīng)問題主要包括以下幾方面內(nèi)容:
在數(shù)學(xué)教學(xué)中,直觀意味著需要直接對(duì)某一特定事物進(jìn)行處理,對(duì)五年級(jí)學(xué)生而言,其已基本具備直觀欣賞、操作的能力。例如,學(xué)生能夠根據(jù)數(shù)學(xué)流程圖,簡(jiǎn)單的完成計(jì)算操作等。因此,在現(xiàn)階段的幾何直觀教學(xué)中,直觀的概念是比較寬泛的。同時(shí),“直觀”的特點(diǎn)已經(jīng)很早出現(xiàn)在數(shù)學(xué)教學(xué)中,例如教師通過黑板擦、講臺(tái)等直觀物體,讓學(xué)生理解長(zhǎng)方形、正方形的表象;通過三支火柴,制作一個(gè)三角形,并對(duì)三角形施加外力,讓學(xué)生了解三角結(jié)構(gòu)的穩(wěn)定等。對(duì)教師而言,在展示“直觀”的這一特性時(shí),應(yīng)進(jìn)一步拓寬視野,選擇與教學(xué)內(nèi)容相一致的圖形呈現(xiàn)方式。
著名數(shù)學(xué)家華羅庚先生曾這樣分析過“數(shù)形”:數(shù)形結(jié)合百般好,數(shù)形分離萬事休。由此可見,“數(shù)”與“形”的結(jié)合,真實(shí)反應(yīng)了數(shù)學(xué)教學(xué)中的兩方面屬性,并成為現(xiàn)階段數(shù)學(xué)教學(xué)中的重點(diǎn)研究?jī)?nèi)容。以分?jǐn)?shù)學(xué)習(xí)為例,在學(xué)習(xí)的表現(xiàn)形式中,教師通常先在黑板上畫一個(gè)圓,再用一條直徑將圓平均分成兩個(gè)部分,這樣學(xué)生就能夠直接的掌握的含義。幾何直觀與數(shù)形已體現(xiàn)在數(shù)學(xué)教學(xué)的多個(gè)方面,但教師必須要走出完全用圖形解釋數(shù)學(xué)計(jì)算的誤區(qū),避免出現(xiàn)片面認(rèn)識(shí)數(shù)形結(jié)合的現(xiàn)象。
幾何直觀教學(xué)法的關(guān)鍵,就是通過圖形來解釋教學(xué)內(nèi)容,進(jìn)而引申出另外一個(gè)重要的內(nèi)容——空間?!稑?biāo)準(zhǔn)》在描述幾何直觀與空間的過程中,明確提出:能運(yùn)用圖像有效的描述問題,再結(jié)合固定的內(nèi)容實(shí)現(xiàn)獨(dú)立操作。但總體而言,空間與幾何直觀分屬于不同的范疇,兩者的側(cè)重點(diǎn)必然會(huì)存在差異,因此,教師在教學(xué)過程中,除了要借助真實(shí)的空間物體外(如黑板擦、書桌等),也要激發(fā)學(xué)生思維,讓學(xué)生在腦海中建立一個(gè)與教學(xué)內(nèi)容相一致的空間,最終實(shí)現(xiàn)有效教學(xué)。
在現(xiàn)階段小學(xué)數(shù)學(xué)教學(xué)中,教師應(yīng)在教學(xué)大綱的指導(dǎo)下,結(jié)合學(xué)生的年齡特點(diǎn),進(jìn)一步優(yōu)化教學(xué)方法。本文結(jié)合幾何直觀教學(xué)法的相關(guān)內(nèi)容,提出以下幾點(diǎn)應(yīng)用措施。
直觀展示是數(shù)學(xué)教學(xué)中一種常見的方法,教師通過列舉生活中的可見物或圖像展示物,以具體的事物為媒介,最終將所要表達(dá)的內(nèi)容展示出來,而學(xué)生可根據(jù)媒介內(nèi)容,快速的了解本堂課學(xué)習(xí)的內(nèi)容,有利于進(jìn)一步提高教學(xué)效果。
以北師大版五年級(jí)(上)第三單元的分?jǐn)?shù)學(xué)習(xí)為例,教師可利用各種直觀的圖形,幫助同學(xué)學(xué)習(xí)。教師在上課之前,可先引用一個(gè)小故事,再引入本堂課所要學(xué)習(xí)的內(nèi)容。例如,教師在上課之前,可以提問:“同學(xué)們,小明同學(xué)今天過生日,他的爸爸給他買了一塊蛋糕,這個(gè)蛋糕一共有2斤重,但是他們家一共有7個(gè)人,那么每個(gè)人應(yīng)該平均得到多少蛋糕呢?”由于學(xué)生未學(xué)習(xí)相關(guān)內(nèi)容,因此無法回答這個(gè)問題。教師看到學(xué)生的表現(xiàn)后,可以說:“那么,我們來幫助小明同學(xué)解決這個(gè)問題,請(qǐng)大家把書翻到**頁,我們來學(xué)習(xí)《分?jǐn)?shù)》?!贝龑W(xué)生準(zhǔn)備好之后,教師可在黑板上畫一個(gè)圓,并說道:“大家請(qǐng)看,我們假設(shè)這個(gè)圓就是那個(gè)蛋糕,小明家一共7個(gè)人,為了公平起見,小明需要將蛋糕分成多少份呢?”。此時(shí),學(xué)生會(huì)異口同聲的回答道:“7份!”,在得到學(xué)生的答案后,教師可以現(xiàn)在黑板上書寫“7”,再問學(xué)生:“那么每個(gè)人應(yīng)該得到幾份蛋糕呢?”,學(xué)生會(huì)回答:“1份!”,教師可在黑板上書寫:“1”。之后,教師可向同學(xué)們?cè)敿?xì)講述這個(gè)分?jǐn)?shù)的基本構(gòu)成:“小明將這個(gè)平均蛋糕分成7份,每人的1份,那么每個(gè)人所得到的蛋糕數(shù)量就是總數(shù)的七分之一?!?/p>
通過直觀的形象展示,學(xué)生能在較短時(shí)間內(nèi)容掌握整個(gè)教學(xué)內(nèi)容的重點(diǎn),再通過一定的知識(shí)引入藝術(shù),將同學(xué)思維引入到本堂課中,學(xué)生能在較短時(shí)間中掌握教學(xué)內(nèi)容,有利于進(jìn)一步提高教學(xué)效果。
圖1 分?jǐn)?shù)教學(xué)中的計(jì)算例題統(tǒng)計(jì)
針對(duì)性的數(shù)學(xué)教學(xué),主要是通過針對(duì)特定的知識(shí)點(diǎn),開展具有全方位的教學(xué)活動(dòng),保證學(xué)生掌握知識(shí)的全面性。同樣以《分?jǐn)?shù)》教學(xué)為例,教師為進(jìn)一步鞏固教學(xué)效果,在講解知識(shí)點(diǎn)之后,可根據(jù)教學(xué)要求,在黑板上書寫、描繪一系列試題(如圖1),并邀請(qǐng)幾位同學(xué)走上講臺(tái)來解答。在解答結(jié)束之后,教師再詳細(xì)講述解題的解題過程。同時(shí),教師可利用多媒體等多種輔助教學(xué)工具,為同學(xué)展示真實(shí)的分?jǐn)?shù)表達(dá)含義。也有利于進(jìn)一步提高教學(xué)效果。
經(jīng)過數(shù)形結(jié)合的計(jì)算方法,學(xué)生能夠接觸到大量的直觀試題,通過現(xiàn)場(chǎng)計(jì)算,學(xué)生解題能力明顯提升。
適當(dāng)?shù)耐卣菇虒W(xué)想象空間,不但能夠提高教學(xué)效果,也能激發(fā)學(xué)生的想象空間,具有較高的應(yīng)用價(jià)值。
以北師大版五年級(jí)(上)第五單元《圖形的面積》計(jì)算為例。教師在講述基本知識(shí)點(diǎn)之后,可以提問:“農(nóng)民伯伯家里有一片菜園,這個(gè)菜園的長(zhǎng)是6m,寬是5m,同學(xué)們知道這片菜園的面積嗎?”。同學(xué)經(jīng)過學(xué)習(xí),能夠快速的回答出準(zhǔn)確的面積。教師得到同學(xué)答案之后,可以再問:“假設(shè)這片菜園的中間有一片圓形的番茄地,番茄地的直徑與菜園的寬度相等,那么同學(xué)們知道這片番茄地的面積嗎?”。這一問題雖然沒有提及具體的數(shù)值的,但同學(xué)經(jīng)過簡(jiǎn)單分析之后,依然能較快的回答問題。最后,教師可以問:“后來啊,農(nóng)民伯伯發(fā)現(xiàn)菜園的面積不夠了,他打算在未來的一段時(shí)間內(nèi),擴(kuò)大菜地的面積,他的方法是:每個(gè)月增加菜園2m長(zhǎng)度,那么幾個(gè)月之后,菜園的面積會(huì)達(dá)到60m2?”與之前的問題相比,這個(gè)問題的難度明顯加深,但學(xué)生可通過列舉計(jì)算方程依然可以解除問題的答案。
在整個(gè)教學(xué)過程中,學(xué)生的思維會(huì)跟著教師的問題高速運(yùn)轉(zhuǎn),并在腦海中形成菜園的場(chǎng)景,將死板的課堂內(nèi)容延伸到外界,有利于提高教學(xué)效果。
本文簡(jiǎn)單分析了幾何直觀教學(xué)法在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用,對(duì)教師而言,教師在教學(xué)過程中必須要結(jié)合本年級(jí)學(xué)生的年齡特點(diǎn),進(jìn)一步優(yōu)化教學(xué)內(nèi)容,并將思維、運(yùn)動(dòng)等因素融入到教學(xué)中,保證教學(xué)的準(zhǔn)確性、有效性。
[1]馮崇和.幾何直觀:探索解決小學(xué)數(shù)學(xué)問題的重要手段[J].內(nèi)蒙古師范大學(xué)學(xué)報(bào)(教育科學(xué)版),2014,27(08):120-123.
[2]張雪莉.談?wù)剮缀沃庇^在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用[J].陜西教育(教學(xué)設(shè)計(jì)與反思),2014(09):28-29.
[3]楊孝斌,任勁松.幾何直觀的教育價(jià)值及其教學(xué)建議[J].宜賓學(xué)院學(xué)報(bào),2013,13(06):101-103.
[4]趙厚華.簡(jiǎn)約而又豐盈——“幾何直觀”的概念解析及其教學(xué)建構(gòu)[J].數(shù)學(xué)之友(教學(xué)園地),2013(20):7-10.