半離散含多參數(shù)的Hilbert型不等式的改進(jìn)*
聶彩云
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)
摘要:利用權(quán)函數(shù)的方法、參量化的思想和加強(qiáng)的H?lder不等式對(duì)半離散的Hilbert-type 不等式作了改進(jìn),建立了一些新的不等式.
關(guān)鍵詞:Hilbert-type不等式;權(quán)系數(shù);H?lder不等式;β函數(shù)
文章編號(hào):1007-2985(2015)06-0005-03
中圖分類(lèi)號(hào):O178文獻(xiàn)標(biāo)志碼:A
DOI:10.3969/j.cnki.jdxb.2015.06.002
收稿日期:*2015-08-05
作者簡(jiǎn)介:聶彩云(1963—),女,湖南永順人,吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院副教授,主要從事函數(shù)論及應(yīng)用研究.
1問(wèn)題的提出
這里常數(shù)因子π是最佳值.
文獻(xiàn)中建立了一個(gè)新的Hilbert型不等式:
kλ1(α)‖f‖p,φ‖a‖q,ψ,
(1)
這里常數(shù)因子kλ1(α)是最佳值.
筆者利用改進(jìn)的H?lder不等式對(duì)(1)式進(jìn)行加強(qiáng),從而建立一些新的不等式.
2相關(guān)引理
0 證明過(guò)程見(jiàn)文獻(xiàn). 3主要結(jié)果 為方便起見(jiàn),再引入一些符號(hào): Φ(x)∶=(x-γ)p(1-λ1α)-1 ,ψ(n)∶=(n-β)q(1-λ2α)-1 , (2) (3) 證明由引理1和引理2,有 即(2)式成立. 由引理1,有 因此, 定理1得證. 注1(2)式即為(1)式的改進(jìn)式. 參考文獻(xiàn): [1]HUANG Qiliang,YANG Bicheng.On a More Accurate Half-Discrete Hilbert’s Inequality.Journal of Inequality and Applications,2012(1):106-117. [2]HE Leping,GAO Mingzhe,JIA Weijian.On a New Strengthened Hardy-Hilbert’s Inequality.Journal of Mathematical Research and Exposition,2006,26(2):276-282. [3]LIU Tuo,YANG Bicheng,HE Leping.On a Half-Discrete Reverse Mulholland-Type Inequality and an Extension.Journal of Inequalities and Applications,2014(1):103-111. [4]LIU Tuo,YANG Bicheng,HE Leping.On a Multidimensional Hilbert-Type Integral Inequality with Logarithe Function.Mathematical Inequalities & Applications,2015,18(4):1 219-1 234. Improved Half-Discrete Hilbert-Type Inequality with Multi-Parameters NIE Caiyun (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China) Abstract:By using weight functions,parametrization and sharpened H?lder’s inequality,some improvements of Hardy-Hilbert’s inequality are given,and a few new inequalities are established. Key words:Hilbert-type inequality;weight coefficient;H?lder inequality;βfunction (責(zé)任編輯向陽(yáng)潔)