虞桂平
·綜述·
PEBP4蛋白的表達及與肺鱗狀細胞癌分化轉(zhuǎn)移的關(guān)系
虞桂平
肺癌是一種嚴重威脅人類健康的疾病,尤其是肺鱗狀細胞癌。因此,必須尋找更加精確、有效的分子標(biāo)志物,為肺癌的早期發(fā)現(xiàn)、預(yù)后判斷以及靶向治療等提供科學(xué)依據(jù)。PEBP4屬于磷脂酰乙醇胺結(jié)合蛋白(PEBP)家族的成員,不僅參與MAPK信號通路的抑制作用,還參與JNK通路的抑制,促進AKT的激活。最近研究資料還顯示,PEBP4蛋白的過表達與多種腫瘤的發(fā)生、發(fā)展以及侵潤轉(zhuǎn)移相關(guān)。該文對PEBP4表達與肺鱗狀細胞癌分化轉(zhuǎn)移的關(guān)系進行了綜述。
肺癌; 分化轉(zhuǎn)移; PEBP4蛋白; 信號通路
肺癌是一種嚴重威脅人類健康的疾病,隨著肺癌發(fā)病率和病死率的不斷升高,肺癌越來越引起廣大研究者的關(guān)注[1-2]。肺癌原發(fā)于支氣管黏膜和肺泡[3],是常見的惡性腫瘤,其發(fā)病率和病死率居于各種惡性腫瘤之首。2007年全球總計新發(fā)肺癌約150萬例,占全部腫瘤的12%[4]。隨著環(huán)境污染的進一步惡化和控?zé)煹牟焕伟┑陌l(fā)病率在我國呈上升趨勢,2000年至2005年,我國肺癌發(fā)病人數(shù)增加11.6萬,增長30.4%[5]。肺癌在過去30年間增加了4倍之多,已取代肝癌成為我國腫瘤死亡的首位病因。
近30年來,肺癌治療方面有了很大的進步,但肺癌生存率仍然不容樂觀[6]。腫瘤轉(zhuǎn)移是惡性腫瘤的重要生物學(xué)特征。大多數(shù)癌癥患者死于轉(zhuǎn)移性癌而并非原發(fā)性癌[7]。肺癌轉(zhuǎn)移不僅是惡化的標(biāo)志,而且是治療失敗與死亡的重要原因[8]。深入研究肺鱗狀細胞癌侵襲轉(zhuǎn)移的分子機制,尋找理想的用于早期診斷或判斷預(yù)后的標(biāo)志物,探索有效的治療手段,具有重要的臨床意義。腫瘤標(biāo)志物對于惡性腫瘤,特別是對于肺癌的輔助診斷價值已得到同行的公認,在肺癌的不同發(fā)展階段釋放入血的標(biāo)志物種類和數(shù)量存在很大的不同,目前國內(nèi)外學(xué)者都傾向于篩選有價值的腫瘤標(biāo)志物進行檢測。為此,我們必須尋找更加精確、有效的分子標(biāo)志物,為肺癌的早期發(fā)現(xiàn)、預(yù)后判斷以及靶向治療等提供科學(xué)依據(jù)[9]。
一、PEBP4的結(jié)構(gòu)和功能
磷脂酰乙醇胺結(jié)合蛋白4(phosphatidylethanolamine-binding protein 4,PEBP4)是磷脂酰乙醇胺結(jié)合蛋白(phosphatidylethanolaminebinding protein,PEBP)家族的一個新成員。1984年,Bernier等從牛腦中提取到一個相對分子量為21 000~23 000的胞質(zhì)可溶性蛋白質(zhì),由于其與磷脂酰乙醇胺具有較高的親和力而被命名為PEBP[8]。PEBP家族是由一類具有與磷脂酰乙醇胺(phosphatidylethanolamine,PE)結(jié)合能力的堿性蛋白所組成。這類蛋白廣泛表達于多種植物和動物,如秀麗線蟲、果蠅以及哺乳動物等[8]。PEBP的氨基酸序列與其他蛋白無明顯序列相似性,這顯示它在結(jié)構(gòu)與功能上均具有特性。此后,不斷有研究發(fā)現(xiàn)PEPP不僅在細胞膜的構(gòu)建與重塑過程中發(fā)揮重要作用,還在信號轉(zhuǎn)導(dǎo)、神經(jīng)系統(tǒng)分化、發(fā)育等生理和病理過程中扮演一定角色。PEBP的結(jié)構(gòu)在生物界是中高度保守的,分別對5種哺乳動物(人、猴、牛、大鼠、小鼠)的PEBP進行測序后發(fā)現(xiàn),彼此之間的氨基酸序列同源性超過90%。不同種屬的PEBP家族成員都具有非常相類似的結(jié)構(gòu)域:即由1個大的β-折疊與連接在兩側(cè)相對較小的β-折疊以及2個C端α-螺旋組成。在此結(jié)構(gòu)中,存在一個高度保守的磷酸鹽結(jié)合袋,對PEBP的功能非常重要[10-11]。
PEBP家族又可分為不同的亞家族,主要包括RKIP(Raf-1kinase inhibitor protein)、PEBP4和線粒體核糖體蛋白質(zhì)L38(mitochondrial ribosomal proteinL38,MRPL38)等,不同的亞家族具有既相似又不同的生物學(xué)功能。例如,RKIP蛋白屬于PEBP家族,該家族成員從細菌到人超過400多個。RKIP不僅能夠結(jié)合小分子配體化合物,也能夠結(jié)合蛋白質(zhì),如Raf-1、MEK和ERK激酶。Yeung等[12]發(fā)現(xiàn),Raf-1激酶主要通過其結(jié)構(gòu)域Ⅰ和Ⅱ結(jié)合RKIP,而RKIP的多個蛋白區(qū)域參與結(jié)合Raf-1,主要位于RKIP的BspEI-PpuMI片段(K77-G108)上。RKIP與Raf-1結(jié)合后,可以阻止Raf-1的N區(qū)(331~349a.a(chǎn).)被Ras激酶磷酸化,導(dǎo)致MEK與Raf-1分離,從而阻止MEK的磷酸化和激活。RKIP相關(guān)的亞家族(包括RKIP/PEBP1、PEBP2和PEBP4)均能夠抑制MAPK信號通路[12]。其中RKIP/PEBP1蛋白的表達具有促進凋亡、阻止癌細胞轉(zhuǎn)移的功能[13],而PEBP4蛋白的表達則具有抑制凋亡的功能[14]。
人PEBP4是通過大規(guī)模隨機測序方法從人骨髓基質(zhì)細胞(bone marrow stromal cell,BMSC)cDNA文庫分離得到的。采用X線晶體衍射對人PEBP(hPEBP)的結(jié)構(gòu)進行測定后,發(fā)現(xiàn)該蛋白由4個n螺旋與9個β折疊構(gòu)成,主要特征是具有1個較大的中心β折疊區(qū),由6個β折疊片以希臘鑰匙模型形式(Greek-key motif)存在,在區(qū)域末端有1個結(jié)合口袋.與推定的膜結(jié)合表面相鄰,被認為是重要的配體結(jié)臺位點。其余的3個β折疊組成了1個小的反平行日片,組裝在中心口片的轉(zhuǎn)角處。在4個α螺旋中,1個位于氨基端。1個位于羧基端,另2個α螺旋組裝在中心β折疊片的兩邊,其中羧基末端的α螺旋可部分調(diào)節(jié)配體結(jié)合位點與膜磷酸鹽等配體的結(jié)合[15]。數(shù)據(jù)庫檢索顯示該蛋白結(jié)構(gòu)巾的折疊區(qū)與其他已確認的蛋白家族均不同。人類PEBP4基因定位于染色體8p21.3,其mRNA長901bp,可表達出含227AA的蛋白,主要表達于哺乳動物的睪丸、心臟、骨骼肌和甲狀腺等組織,少量表達于肺、肝、脊髓、腦、腎上腺和骨髓等組織[16],在質(zhì)膜生物合成、神經(jīng)發(fā)育、精子發(fā)生、細胞凋亡等生理、病理過程中發(fā)揮重要作用[17]。最近的研究資料顯示,PEBP4的高表達與多種腫瘤的發(fā)生、發(fā)展以及浸潤轉(zhuǎn)移相關(guān)。PEBP4在乳腺癌、卵巢癌和前列腺癌等癌癥的細胞和組織中的表達均高于正常對照組,在腫瘤組織中高表達的PEBP4可能使腫瘤細胞對腫瘤壞死因子(tumor necrosis factor-α,TNF-α)和腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)引起的凋亡起抵抗作用[17]。
二、PEBP4與腫瘤的表達
Liu等[18]研究發(fā)現(xiàn),PEBP4在乳腺癌細胞株MCF-7細胞中高表達,PEBP4可以通過增強雌激素受體(estrogen receptor,ER)α的轉(zhuǎn)錄激活能力,抑制蛋白酶體對ERα的降解,從而促進腫瘤細胞的增殖,而且PEBP4的這種效應(yīng)不依賴于它對ERKl/2和Akt磷酸化的調(diào)控。Qiu等[19]研究發(fā)現(xiàn),PEBP4在卵巢癌和前列腺癌細胞中的表達均高于其在正常對照組中的表達,在正常組織中PEBP4和溶酶體共定位,在TNF-α的刺激下則可以移位至細胞膜,與Raf-1和MEK1相互作用,抑制MAPK的信號通路;PEBP4在成纖維細胞系L929中過表達可以抑制TNF-α誘導(dǎo)的凋亡[20],保護卵巢癌細胞系CaoV-3,對抗由TRAIL引起的凋亡[21]。最近研究還發(fā)現(xiàn),PEBP4在視網(wǎng)膜神經(jīng)節(jié)細胞中特異表達,可以促進細胞的遷移;PEBP4能夠促進乳腺癌細胞轉(zhuǎn)移到肺[22]。另外,抑制PEBP4在MCF-7細胞中的內(nèi)源性表達,可以減少保護性蛋白如Bcl2和Bcl-xL的表達,增強凋亡相關(guān)蛋白p53、p21CIP/WAF和Bcl-2相關(guān)X蛋白(BCL2-associated X protein,Bax)等的表達[23]。由此可見,PEBP4蛋白在腫瘤的發(fā)生、發(fā)展過程中起重要作用。但有關(guān)PEBP4是否在肺鱗狀細胞癌中表達以及是否在肺鱗狀細胞癌的發(fā)生、發(fā)展中起重要作用,目前未見相關(guān)報道。
肺癌常見的組織學(xué)類型有很多種,包括鱗狀細胞癌、腺癌、大細胞癌和小細胞癌。一般肺癌診斷時疾病多已處于晚期,但是近年來,隨著影像學(xué)技術(shù)的發(fā)展、支氣管鏡技術(shù)的提高、肺癌篩查和肺癌早期診斷分子標(biāo)志物的應(yīng)用,早期肺癌的診斷,特別是肺癌的癌前病變的檢出率明顯增高,這為肺癌的治愈提供了希望[24]。目前,臨床上采用以化療為主的綜合療法治療晚期非小細胞肺癌(non-small cell lung cancer,NSCLC)已獲得廣泛共識,但即使是一線含鉑方案化療也只能獲得8~11個月的生存期以及35%~40%的1年存活率[25]。
臨床上通過免疫組織化學(xué)法分析癌基因p63以及甲狀腺轉(zhuǎn)錄因子-1(thyroid transcription factor-1,TTF-1)的表達水平來協(xié)助診斷肺鱗癌。肺鱗癌均表達p63而不表達TTF1[26]。最近證據(jù)[27]表明p40(p63的同型異構(gòu)體抗體)對鱗狀細胞核特異性更高(ΔNP63),比傳統(tǒng)p63抗體更敏感。還有一些鱗狀細胞免疫標(biāo)志物也被廣泛應(yīng)用于臨床實踐,如高分子量的細胞角蛋白5/6(cytokeratin 5/6,CK5/6),但由于組織學(xué)差異和染色分級系統(tǒng)不完善,其診斷的特異性和敏感性還有待進一步研
究[28]。
因此,本研究擬通過RT-PCR、免疫組織化學(xué)、流式細胞儀檢測細胞周期和Western Blot方法檢測PEBP4蛋白和mRNA在肺鱗狀細胞癌組織及其癌旁相對正常組織中的表達情況,探討PEBP4與肺鱗狀細胞癌的發(fā)生發(fā)展、侵潤轉(zhuǎn)移以及分化之間的關(guān)系,以期為肺鱗狀細胞癌的早期診斷以及靶向治療等提供實驗依據(jù)[29]。
PEBP4與Raf-1和MEK相互作用形成一個三元復(fù)合物,從而抑制Raf-1-MEK1/2-ERK1/2信號轉(zhuǎn)導(dǎo)通路[30,31]。另外,PEBP4不僅參與MAPK信號通路的抑制作用,還參與JNK通路的抑制,促進AKT的激活[32]。
促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAP激酶,MAPK)鏈是真核生物的信號傳遞網(wǎng)絡(luò)中非常重要的途徑之一,在基因表達調(diào)控以及細胞質(zhì)功能活動中能夠發(fā)揮關(guān)鍵作用。MAPK鏈現(xiàn)在認為由3類蛋白激酶MAP3KMAP2K-MAPK組成,均通過依次磷酸化將上游信號傳遞至下游應(yīng)答分子[32]。
MAPK信號通路包括MAP激酶(MAPK)、MEK激酶(MEKK、MKKK或MAPK激酶激酶)和MAPK激酶(MEK、MKK或MAPK激酶)。在哺乳動物中,已經(jīng)發(fā)現(xiàn)5種不同的MAPK信號轉(zhuǎn)導(dǎo)通路。其中ERK1/2信號轉(zhuǎn)導(dǎo)通路負責(zé)調(diào)控細胞生長和分化,JNK和p38MAPK信號轉(zhuǎn)導(dǎo)通路能夠在炎癥與細胞凋亡等應(yīng)激反應(yīng)中發(fā)揮重要作用[33]。MAPK屬于Ser/Thr蛋白激酶的一種,能夠在多種不同的信號轉(zhuǎn)導(dǎo)途徑中充當(dāng)一種共同的信號轉(zhuǎn)導(dǎo)成份,并且在細胞周期調(diào)控中發(fā)揮重要的作用。目前,MAPK家族中至少有4個成員已被純化和深入地研究,如p42mapk、p44erk1、p54MAPK和p44mpk。MAPK還能夠促進血管內(nèi)皮細胞增殖及新血管生成。新血管生成后可為腫瘤提供更多的血液和營養(yǎng),加速腫瘤細胞的生長,促進癌細胞的擴散[34]。
活化的AKT可以磷酸化Bcl-2家族中的Bad,引起B(yǎng)ad與伴侶蛋白(Chaperone)14-3-3結(jié)合,從而阻斷Bad與Bcl-2或Bcl-xL形成二聚體,使Bad不能發(fā)揮促細胞凋亡作用[35];Akt可以磷酸化NF-κB,激活它的轉(zhuǎn)錄功能,使促進細胞存活的Bcl-2家族成員Bcl-xL表達增強,從而促進細胞存活[36]。PEBP4在多種腫瘤組織中高表達,由此削弱了JNK的抗腫瘤作用,促進細胞的生長和增殖,大大促進了AKT的激活,抑制細胞的凋亡。由此可見,PEBP4蛋白與腫瘤細胞的增殖凋亡相關(guān)。
PEBP4可以促進AKT的激活,通過AKT/mTOR/p70s6k途徑活化p70s6k,促進肌動蛋白的細絲重構(gòu),促進細胞運動;活化的AKT還可以經(jīng)P13K/AKT/mTOR途徑,上調(diào)MMP-2的表達,增加NF-κB的轉(zhuǎn)錄活性,增加MMP-9產(chǎn)量,同時NF-κB還能上調(diào)COX-2的表達;過表達的PEBP4也可以直接上調(diào)COX-2的表達,而COX-2可以激活缺氧誘導(dǎo)因子-1(hypoxia inducible factor 1,HIF-1)、抑制內(nèi)細胞凋亡,誘導(dǎo)血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP)等促血管生成相關(guān)因子的表達,促進腫瘤血管的生成[37]。另外,AKT還可以下調(diào)E-鈣黏素的轉(zhuǎn)錄,促使上皮間葉細胞轉(zhuǎn)換,使細胞間的黏附減少,增加了細胞的運動性和侵襲性[38]。由此可見,PEBP4蛋白與腫瘤細胞的侵襲轉(zhuǎn)移相關(guān)。
三、問題和展望
PEBP4的過表達在肺鱗狀細胞癌的發(fā)生發(fā)展以及侵潤轉(zhuǎn)移過程中可能起著重要的作用。有必要進一步深入了解PEBP4在肺鱗狀細胞癌的發(fā)生發(fā)展以及侵潤轉(zhuǎn)移過程的具體機制,以便進一步認識肺鱗狀細胞癌的發(fā)生發(fā)展,為肺鱗狀細胞癌的治療提供新策略和新靶點,為抗腫瘤藥物的開發(fā)提供新的方向。
1 Gower AC,Steiling K,Brothers JF,et al.Transcriptomic studies of the airway field of injury associated with smokingrelated lung disease[J].Proc Am Thorac Soc,2011,8(2):173-179.
2 Hassanein M,Rahman JS,Chaurand P,et al.Advances in Proteomic Strategies toward the Early Detection of Lung Cancer[J].Proc Am Thorac Soc,2011.8(2):183-188.
3 Sundar IK,Mullapudi N,Yao H,et al.Lung cancer and its association with chronic obstructive pulmonary disease:update on nexus of epigenetics[J].Curr Opin Pulm Med,2011,17(4):279-85.
4 Garcia M,Jemal A,Ward EM.Global cancer facts &figures 2007[R].Atlanta,GA:Amercian Cancer Society,2007.
5 楊玲,李連弟,陳育德.中國肺癌死亡趨勢分析及發(fā)病、死亡的估計與預(yù)測[J].中國肺癌雜志,2005,8(4):274-278.
6 GiangrecoA,Groot KR,Janes SM.Lung cancer and lung stem cells:strange bedfellows?[J]Am J Respir Crit Care Med,2007,175(6):547-553.
7 Al-Mulla F,Bitar MS,Al-Maghrebi M,et al.Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3beta[J].Cancer Res,2011.71(4):1334-1343.
8 Garcia R,Grindlay J,Rath O,et al.Regulation of human myoblast differentiation by PEBP4[J].EMBO Rep,2009,10(3):278-284.
9 Kikuchi R,Kawahigashi H,Ando T,et al.Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering[J].Plant Physiol,2009,149(3):1341-1353.
10 Zaravinos A,Chatziioannou M,Lambrou GI,et al.Implication of RAF and RKIP genes in urinary bladder cancer[J].Pathol Oncol Res,2011,17(2):181-190.
11 Liu H,Qiu J,Li N,et al.Human phosphatidylethanolaminebinding protein 4promotes transactivation of estrogen receptor alpha(ERalpha)in human cancer cells by inhibiting proteasome-dependent ERalpha degradation via association with Src[J].J Biol Chem,2010,285(29):21934-21942.
12 Yeung K,Janosch P,McFerran B,et al.Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein[J].Mol Cell Biol,2000,20(9):3079-3085.
13 Li H,Wang X,Li N,et al.hPEBP4resists TRAIL-induced apoptosis of human prostate cancer cells by activating Akt and deactivating ERK1/2pathways[J].J Biol Chem,2007,282(7):4943-4950.
14 Qian Y,Corum L,Meng Q,et al.PI3Kinduced actin filament remodeling through Akt and p70S6K1:implication of essential role in cell migration[J].Am J Physiol Cell Physiol,2004,286(1):C153-C163.
15 Cao C,Manganas C,Ang SC,et al.Video-assisted thoracic surgery versus open thoracotomy for non-small cell lung cancer:a meta-analysis of propensity score-matched patients[J].Interact CardioVasc Thorac Surg,2013,16(3):244-249.
16 Sangha R,Butts C.L-BLP25:apeptide vaccine strategy in non small cell lung cancer[J].Clin Cancer Res.2007,13(15Pt 2):s4652-s4654.
17 Chyan W,Zhang DY,Lippard SJ,et al.Reaction-based fluorescent sensor for investigating mobile Zn2+in mitochondria of healthy versus cancerous prostate cells[J].Proc Natl Acad Sci U S A,2014,111(1):143-148.
18 Cho Y,Turner ND,Davidson LA,et al.Colon cancer cell apoptosis is induced by combined exposure to the n-3fatty acid docosahexaenoic acid and butyrate through promoter methylation[J].Exp Biol Med(Maywood),2014,239(3):302-310.
19 Wang WY,Albert CJ,F(xiàn)ord DA.Alpha-chlorofatty acid accumulates in activated monocytes and causes apoptosis through reactive oxygen species production and endoplasmic reticulum stress[J].Arterioscler Thromb Vasc Biol,2014,34(3):526-532.
20 Lee PJ,Rudenko D,Kuliszewski MA,et al.Survivin gene therapy attenuates left ventricular systolic dysfunction in doxorubicin cardiomyopathy by reducing apoptosis and fibrosis[J].Cardiovasc Res,2014,101(3):423-433.
21 Gatti L,Cossa G,Tinelli S,et al.Improved apoptotic cell death in drug-resistant non-small-cell lung cancer cells by tumor necrosis factor-related apoptosis-inducing ligand-based treatment[J].J Pharmacol Exp Ther,2014,348(3):360-371.
22 Zhao X,Zhang Y,Li X,et al.Variations of thioredoxin system contributes to increased susceptibility to apoptosis in cardiomyocytes of type 2diabetic rats[J].Acta Biochim Biophys Sin(Shanghai),2014,46(4):318-329.
23 Dalal S,Zha Q,Daniels CR,et al.Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors,mitochondrial death pathway,and endoplasmic reticulum stress[J].Am J Physiol Heart Circ Physiol,2014,306(8):H1182-H1191.
24 Schwarzer C1,Ravishankar B,Patanwala M,et al.Thapsigargin blocks Pseudomonas aeruginosa homoserine lactone-induced apoptosis in airway epithelia[J].Am J Physiol Cell Physiol,2014,306(9):C844-C855.
25 Weinberg E,Maymon T,Weinreb M.AGEs induce caspasemediated apoptosis of rat BMSCs via TNFαproduction and oxidative stress[J].J Mol Endocrinol,2014,52(1):67-76.
26 Wang Q,Zhang M,Ding Y,et al.Activation of NAD(P)H oxidase by tryptophan-derived 3-h(huán)ydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo[J].Circ Res,2014,114(3):480-492.
27 Rao AJ,Johnston TR,Harris AH,et al.Inhibition of chondrocyte and synovial cell death after exposure to commonly used anesthetics:chondrocyte apoptosis after anesthetics[J].Am J Sports Med,2014,42(1):50-58.
28 Chen YH,Li ZH,Tan Y,et al.Prenatal exposure to decabrominated diphenyl ether impairs learning ability by altering neural stem cell viability,apoptosis,and differentiation in rat hippocampus[J].Hum Exp Toxicol,2014Feb 24.[Epub ahead of print]
29 Roscioli E,Hamon R,Ruffin RE,et al.Cellular inhibitor of apoptosis-2is a critical regulator of apoptosis in airway epithelial cells treated with asthma-related inflammatory cytokines[J].Physiol Rep,2013,1(5):e00123.
30 Lv J,Zhang P,Zhang Y,et al.Maternal high-salt intake during pregnancy reprogrammed renin-angiotensin system-mediated cardiomyocyte apoptosis in the adult offspring heart[J].Reprod Sci,2014,21(1):52-62.
31 Kroon AA,Delriccio V,Tseu I,et al.Mechanical ventilationinduced apoptosis in newborn rat lung is mediated via FasL/Fas pathway[J].Am J Physiol Lung Cell Mol Physiol,2013,305(11):L795-L804.
32 Kang SS,Ha SJ,Kim ES,et al.Effect of nerve growth factor on the in vitro induction of apoptosis of human conjunctival epithelial cells by hyperosmolar stress[J].Invest Ophthalmol Vis Sci,2014,55(1):535-541.
33 Hecquet CM,Zhang M,Mittal M,et al.Cooperative interaction of trp melastatin channel transient receptor potential(TRPM2)with its splice variant TRPM2short variant is essential for endothelial cell apoptosis[J].Circ Res,2014,114(3):469-479.
34 Sun C,Zhang YY,Tang CL,et al.Chemokine CCL28induces apoptosis of decidual stromal cells via binding CCR3/CCR10in human spontaneous abortion[J].Mol Hum Reprod,2013,19(10):676-686.
35 Ziaei A,Schmedt T,Chen Y,et al.Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy:a novel treatment[J].Invest Ophthalmol Vis Sci,2013,54(10):6724-6734.
36 Xiao Z,Ko HL,Goh EH,et al.hnRNP K suppresses apoptosis independent of p53status by maintaining high levels of endogenous caspase inhibitors[J].Carcinogenesis,2013,34(7):1458-1467.
37 Hu N,Dong M,Ren J.Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance:role of mitochondrial injury and apoptosis[J].Am J Physiol Regul Integr Comp Physiol,2014,306(10):R761-R71.
38 Xu G1,Duan Z,Chen G,et al.Role of mitogen-activated protein kinase cascades in 2,3,7,8-tetrachlorodibenzo-p-dioxininduced apoptosis in neuronal pheochromocytoma cells[J].Hum Exp Toxicol,2013,32(12):1278-1291.
Expression of PEBP4protein and its relationship with differentiation and metastasis of squamous cell carcinoma of lung
Yu Guiping.Department of Thoracic and Cardiac Surgery,Jiangyin Hospital,Medical College of Southeast University,Jiangyin 214400,China Corresponding author:Yu Guiping,Email:xiaoyuer97103@163.com
Lung cancer,especiallysquamous cell carcinoma of lung,is a diseasewhich posesserious threat to human beings.Therefore,more accurate and effective molecular markersshould befoundin order to provide a scientific basis forthe early detection,prognosisprediction and targeted therapyof lung cancer.Phosphatidylethanolamine-binding protein 4(PEBP4)belongs to the phosphatidylethanolamine binding protein family members,whichnot onlyinhibitsthe MAPK signaling pathway,but also participatesin the inhibition of JNK pathway andpromotion of AKTactivation.It has been recently reported thattheoverexpression of PEBP4protein is relatedtothe development and metastasis of a variety of tumors.This review discusses the relationship between the expression of PEBP4and differentiation and metastasis of squamous cell carcinoma of lung.
Lung cancer; Differentiation and metastasis; PEBP4; Signaling pathway
2016-03-10)
(本文編輯:周珠鳳)
10.3877/cma.j.issn.2095-8773.2016.03.10
江蘇省第四期“333工程”培養(yǎng)資金資助(BRA2014043);2015年吳階平醫(yī)學(xué)基金會臨床科研專項資助基金
214400 東南大學(xué)醫(yī)學(xué)院附屬江陰醫(yī)院胸心外科
虞桂平,Email:xiaoyuer97103@163.com
虞桂平.PEBP4蛋白的表達及與肺鱗狀細胞癌分化轉(zhuǎn)移的關(guān)系[J/CD].中華胸部外科電子雜志,2016,3(3):177-181.