陶景蓮 李麗娟 邵宗鴻
(天津醫(yī)科大學(xué)總醫(yī)院,天津300052)
?
TIM3在腫瘤微環(huán)境中作用的研究進(jìn)展①
陶景蓮李麗娟邵宗鴻
(天津醫(yī)科大學(xué)總醫(yī)院,天津300052)
惡性腫瘤嚴(yán)重影響人類健康,目前腫瘤的治療手段包括放療、化療及分子靶向性治療[1]。細(xì)胞免疫系統(tǒng)對腫瘤細(xì)胞的殺傷過程包括:腫瘤細(xì)胞的識別、腫瘤抗原被呈遞給T細(xì)胞、T細(xì)胞激活及特異性殺傷腫瘤細(xì)胞。在這個(gè)過程中,T細(xì)胞的激活需要協(xié)同刺激信號,而這些信號需要“免疫檢查點(diǎn)”的調(diào)控[2], “免疫檢查點(diǎn)”分子研究較多的有:T細(xì)胞免疫球蛋白黏液素3(TIM3)、細(xì)胞毒性T淋巴細(xì)胞抗原-4(CTLA-4)、程序性細(xì)胞死亡因子-1(PD-1)及其配體(PD-L1)等,它們在腫瘤微環(huán)境的免疫調(diào)節(jié)中起重要作用,本文將對其在腫瘤微環(huán)境中的作用展開綜述。
1TIM3及其信號轉(zhuǎn)導(dǎo)通路
1.1TIM3分子生物學(xué)特性T細(xì)胞免疫球蛋白黏液素3(T cell immunoglobulin and mucin-3,TIM3)在2002年[3]第一次被發(fā)現(xiàn),TIM3是TIM家族成員,由301個(gè)氨基酸組成的Ⅰ型膜蛋白。TIM分子的共同結(jié)構(gòu)包括:免疫球蛋白N末端可變區(qū)、黏蛋白結(jié)構(gòu)域、跨膜區(qū)和胞內(nèi)區(qū)。其胞外部分包括一個(gè)富含半胱氨酸的免疫球蛋白樣區(qū)域和一個(gè)黏蛋白區(qū)域(黏蛋白區(qū)富含蘇氨酸、絲氨酸和脯氨酸),在免疫球蛋白可變區(qū)由4個(gè)半胱氨酸組成的高度保守的不同于其他免疫球蛋白超家族成員的獨(dú)特裂隙:它可以與磷脂酰絲氨酸(PS)結(jié)合。TIM3選擇性地表達(dá)在分泌IFN-γ的T輔助細(xì)胞(Th1和Th17)、T調(diào)控細(xì)胞(Treg)、樹突狀細(xì)胞(DCs)、單核細(xì)胞、肥大細(xì)胞、NK細(xì)胞、腫瘤浸潤性淋巴細(xì)胞(TILs)上,在腫瘤細(xì)胞上亦有表達(dá),如黑色素瘤、胃癌、B細(xì)胞淋巴瘤[4-6]。
1.2半乳凝素-9(Galectin-9)Galectin-9是TIM-3的配體,屬于半乳凝素家族,Galectins即半乳糖苷結(jié)合蛋白,現(xiàn)有14種亞型,由大約130個(gè)高度保守的氨基酸序列組成糖識別結(jié)構(gòu)域。Galectin-9由2個(gè)串聯(lián)的糖識別結(jié)構(gòu)域(CRD)通過一條肽鏈相連,相對分子質(zhì)量為36 kD,具有β半乳糖結(jié)合活性。
Galectin-9具有調(diào)節(jié)生物學(xué)功能的多樣性,如細(xì)胞的聚集與黏附、腫瘤細(xì)胞的凋亡等。當(dāng)TIM3與其配體Galectin-9結(jié)合,可抑制Th1和Th17擴(kuò)增,促進(jìn)Th1凋亡、CD8+T細(xì)胞功能耗竭,誘導(dǎo)髓源性抑制細(xì)胞(Myeloid-derived suppressor cells,MDSC)的大量擴(kuò)增,從而直接和/或間接地促進(jìn)外周免疫耐受,抑制機(jī)體抗腫瘤免疫[7]。在腫瘤形成的早期,TIM3+CD4+T細(xì)胞分泌IFN-γ而具有抗腫瘤作用;而在腫瘤形成的中晚期,TIM3+Treg細(xì)胞增殖,從而阻礙癌巢中效應(yīng)T細(xì)胞發(fā)揮功能[8]。
1.3高遷移率族蛋白B1(High-mobility group protein 1,HMGB1)在TIM3+DCs或TIM3-DCs,用重組Galectin-9或Galectin-9單克隆抗體處理,卻不能抑制核酸介導(dǎo)的細(xì)胞因子的產(chǎn)生, 提示TIM3 調(diào)節(jié)Toll 樣受體(Toll-like receptor,TLR)介導(dǎo)的固有免疫應(yīng)答并不依賴 Galectin-9,而依賴HMGB1。腫瘤浸潤性DC高表達(dá)TIM3與HMGB1特異性結(jié)合,減少腫瘤死亡細(xì)胞的核酸進(jìn)入到DC細(xì)胞中,從而抑制核酸引起的抗腫瘤免疫反應(yīng)[9]。
1.4TIM3信號轉(zhuǎn)導(dǎo)通路關(guān)于TIM3誘導(dǎo)免疫耐受機(jī)制的研究,Huang等[10]發(fā)現(xiàn)T細(xì)胞表癌胚抗原細(xì)胞黏附分子1(Carcinoembryonic antigen cell adhesion molecule 1, Ceacam-1)和TIM3存在共表達(dá)的特性, BAT-3是TIM3下游的一個(gè)抑制性分子,它可以與TIM3進(jìn)行結(jié)合從而抑制TIM3的活性。在Ceacam-1刺激之后,TIM3轉(zhuǎn)基因小鼠T細(xì)胞中TIM3與BAT3的相互作用減弱,提示在Ceacam-1的作用下TIM3得到了活化。在人工誘導(dǎo)的小鼠大腸癌模型中,Ceacam-1+TIM3+細(xì)胞比例遠(yuǎn)高于其他類群的CD4+T細(xì)胞,大腸癌對TIM3轉(zhuǎn)基因小鼠的致死率是100%,遠(yuǎn)高于野生型小鼠及Ceacam-1-/-小鼠,共同阻斷Ceacam-1和TIM3則可改善抗腫瘤免疫功能從而清除腫瘤細(xì)胞,提示Ceacam-1與TIM-3聯(lián)合作用導(dǎo)致T細(xì)胞對腫瘤細(xì)胞產(chǎn)生免疫耐受。WU等[11]用TIM3去刺激黑色素瘤細(xì)胞后,腫瘤細(xì)胞上的IκB和NF-κB的表達(dá)均增加,而在給予TIM3抗體后其表達(dá)卻抑制,表明內(nèi)皮細(xì)胞上的TIM3可以通過活化NF-κB信號通路來促進(jìn)黑色素瘤細(xì)胞的轉(zhuǎn)移。
在自身免疫性疾病中,TIM3可以通過抑制巨噬細(xì)胞向M1極化,從而減輕調(diào)節(jié)炎癥在腸病(IBD)模型鼠的炎癥反應(yīng)及淋巴細(xì)胞的浸潤,而阻斷TIM3則會(huì)造成腸道炎癥反應(yīng)加重。在TLR-4基因敲除IBD模型鼠中,阻斷TIM3則不會(huì)出現(xiàn)腸道炎癥反應(yīng)的加重及巨噬細(xì)胞向M1極化的增加,這提示TLR-4參與了TIM3信號通路的轉(zhuǎn)導(dǎo)[12]。
在慢性感染中,TIM3單抗阻斷H.pylori感染和疫苗接種小鼠體內(nèi)TIM3信號通路從而上調(diào)TLR4、MyD88的表達(dá),并促進(jìn)NF-κB活化,降低Treg的數(shù)量,上調(diào)Th1免疫反應(yīng),提示TIM3與TLR4信號通路呈負(fù)性調(diào)控關(guān)系[13,14]。然而在結(jié)核桿菌感染過程中,TIM3+T細(xì)胞卻可產(chǎn)生更強(qiáng)的細(xì)胞因子,利于清除巨噬細(xì)胞內(nèi)的結(jié)核桿菌,同時(shí)通過TIM3/Gal-9通路刺激巨噬細(xì)胞產(chǎn)生IL-1β,從而上調(diào)TNF 和TNFR1,激活caspase-3,限制結(jié)核菌在胞內(nèi)的增殖[15,16]。
2TIM3在腫瘤微環(huán)境中的免疫抑制作用
2.1抑制Th1和Th17細(xì)胞TIM3特異性表達(dá)于活化的Th1細(xì)胞,受轉(zhuǎn)錄因子T-bet的調(diào)節(jié)[17]。Ge RT等[18]人闡述了TIM3誘導(dǎo)Th1細(xì)胞凋亡的主要機(jī)制:當(dāng)Th0細(xì)胞極化為Th1細(xì)胞后高表達(dá)TIM3,將其與重組TIM4共培養(yǎng)便會(huì)在Th1細(xì)胞表面形成TIM3-TIM4復(fù)合體,該復(fù)合體促進(jìn)Th1細(xì)胞p300磷酸化,上調(diào)FasL從而促進(jìn)Th1細(xì)胞的凋亡。
將Th1和Th17細(xì)胞分別暴露在不同濃度的特異性抗原HEL(Hen egg lyzosome)中,發(fā)現(xiàn)Th1細(xì)胞對活化誘導(dǎo)的細(xì)胞死亡(Activated induced cell death,AICD)比Th17更敏感。檢測Th1和Th17細(xì)胞的mRNA,發(fā)現(xiàn)Th1細(xì)胞中TIM3 mRNA轉(zhuǎn)錄高于Th17細(xì)胞[19]。
2.2誘導(dǎo)CD8+T細(xì)胞“耗竭”CD8+T細(xì)胞“耗竭”是指T細(xì)胞在受到抗原刺激后不能大量增殖并產(chǎn)生細(xì)胞毒性和細(xì)胞因子。事實(shí)上,TIM3、PD-1、LAG-3和Ceacam-1[9]等抑制性分子在CD8+T細(xì)胞和腫瘤浸潤性淋巴細(xì)胞(TILs)上共表達(dá),尤其是TIM3和PD-1,應(yīng)用TIM3和PD-1雙通路阻斷劑Runx1、IRF5和IRF7等基因開始上調(diào)[20],可以明顯遏制腫瘤生長,若僅阻斷PD-1通路,其抗腫瘤效應(yīng)降低[21,22],可能由于TIM3單抗同時(shí)阻斷了癌巢內(nèi)TIM3+Treg細(xì)胞的歸巢從而降低了Treg的免疫抑制功能[23]。黑色素瘤患者外周血中TIM3+CD8+T和TIM3-CD8+T細(xì)胞均較正常人分泌IFN-γ和TNF-α水平低[24]。TIM3阻斷劑聯(lián)合PD-1阻斷劑可以增強(qiáng)黑色素瘤疫苗中腫瘤抗原特異性CD8+T的活性[25-27]。靜脈注射MVA-MUC1(Modified Vaccinia virus Ankara viral vector expressing the human mucin 1 tumor-associated xeno-antigen)給腎癌小鼠,發(fā)現(xiàn)MVA-MUC1聯(lián)合TLR9激動(dòng)劑可以促進(jìn)MUC1-CD8+T細(xì)胞增殖,下調(diào)TILs 的TIM3和PD-1,從而控制腫瘤的體積[28]。
在細(xì)胞免疫治療臨床實(shí)驗(yàn)中IL-12可誘導(dǎo)NK和T細(xì)胞產(chǎn)生IFN-γ,曾一度成為抗腫瘤的理想藥物,后發(fā)現(xiàn)其臨床反應(yīng)不容樂觀,主要由于IL-12誘導(dǎo)T細(xì)胞高表達(dá)TIM3引起T細(xì)胞耗竭從而限制了IL-12的應(yīng)用[6];嵌合抗原受體T細(xì)胞免疫療法(Chimeric antigen receptor T-cell immunotherapy,CAR-T)在急性淋巴細(xì)胞白血病和淋巴瘤中取得良好療效,Moon等[29]嘗試將CAR-T注射入間皮瘤免疫缺陷小鼠體內(nèi)觀察其對實(shí)體腫瘤的療效時(shí)發(fā)現(xiàn)腫瘤的體積雖然縮小,卻不能完全清除腫瘤并治愈小鼠,且這些CAR-T細(xì)胞移到腫瘤微環(huán)境外其功能可逆,仍然是腫瘤微環(huán)境誘導(dǎo)這些T細(xì)胞表達(dá) TIM3、PD-1、 LAG3、2B4等免疫抑制分子,限制了CAR-T在實(shí)體腫瘤中的應(yīng)用。
2.3促進(jìn)Treg成為高度免疫抑制的細(xì)胞群在腫瘤微環(huán)境中,TIM3+Treg細(xì)胞具有高度免疫抑制作用[19],卵巢癌的患者腫瘤浸潤性TIM3+Treg通過大量分泌IL-10從而抑制CD8+T細(xì)胞胞內(nèi)IFN-γ水平,促進(jìn)機(jī)體的腫瘤免疫耐受,應(yīng)用TIM3阻斷劑可以逆轉(zhuǎn)CD8+T細(xì)胞的功能,同時(shí)應(yīng)用IL-10阻斷劑可以部分逆轉(zhuǎn)CD8+T細(xì)胞的功能[30]。在體內(nèi)共阻斷TIM3和PD-1信號通路可以下調(diào)Treg的免疫抑制功能分子,如穿孔素等,降低Treg活性,上調(diào)IRFs(IFN的干擾素轉(zhuǎn)錄因子);且TIM3+Treg在腫瘤組織內(nèi)的積累先于CD8+T細(xì)胞的“枯竭”,在這個(gè)時(shí)間窗祛除Treg能夠避免CD8+T細(xì)胞 “耗竭”[31]。然而,TIM3亦可以通過促進(jìn)Treg細(xì)胞凋亡而重新建立免疫平衡狀態(tài),促進(jìn)前炎癥反應(yīng)和抗腫瘤免疫功能[32]。
2.4促進(jìn)MDSCs大量擴(kuò)增TIM3還可以通過誘導(dǎo)MDSCs的增殖間接抑制免疫應(yīng)答。 MDSCs是一群CD11b+Gr-1+異質(zhì)性髓系來源的細(xì)胞,具有強(qiáng)大的T細(xì)胞免疫反應(yīng)抑制功能,它們的出現(xiàn)與腫瘤的不良預(yù)后密切相關(guān)[33]。MDSCs分為兩個(gè)亞群:單核細(xì)胞來源的Ly6G-Ly6Chigh細(xì)胞和粒細(xì)胞來源的Ly6G+Ly6Clow細(xì)胞。轉(zhuǎn)基因過表達(dá)TIM3則抑制T細(xì)胞功能,同時(shí)出現(xiàn)形態(tài)學(xué)上符合粒細(xì)胞來源MDSCs細(xì)胞的CD11b+Ly6G+細(xì)胞增加[34];剔除TIM3后,CD11b+Ly-6G+細(xì)胞恢復(fù)至正常水平,免疫反應(yīng)恢復(fù)正常;過表達(dá)Gal-9同樣會(huì)導(dǎo)致CD11b+Ly6G+細(xì)胞增殖和免疫抑制。提示TIM3/Gal-9信號通路可以通過調(diào)節(jié)MDSCs的增殖來調(diào)節(jié)免疫反應(yīng)。在動(dòng)物模型中,阻斷TIM3同時(shí)激活CD137(由激活T細(xì)胞產(chǎn)生的系統(tǒng)共刺激分子,促進(jìn)T細(xì)胞增殖)信號后,卵巢癌腫瘤微環(huán)境中Treg及MDSCs均減少,CD4+T和CD8+T細(xì)胞分泌IFN-γ增多[35]。
2.5TIM3與天然免疫細(xì)胞在腫瘤免疫中的作用天然免疫是腫瘤免疫的第一道防線,DCs通過HMGB1介導(dǎo)的內(nèi)吞作用清除具有免疫源性的核酸等物質(zhì)。無論在動(dòng)物模型還是在腫瘤患者的DCs上均有TIM3過表達(dá)[9],腫瘤患者TIM3高表達(dá)于DCs較腫瘤浸潤性CD8+T細(xì)胞出現(xiàn)得更早,水平更高,而正常人TIM3在DCs上表達(dá)率極低。TIM3與核酸競爭性結(jié)合在HMGB1的同一個(gè)結(jié)構(gòu)域,阻礙核酸與HMGB1形成復(fù)合物,核酸不與HMGB1形成復(fù)合物則無法被TLR(如TLR3、TLR7和TLR9配體、DNA和RNA的細(xì)胞質(zhì)傳感器)識別,白介素受體相關(guān)激酶(Interleukin receptor associated kinase,IRAK)通路被阻斷,進(jìn)而阻斷IRF3和NF-κB,在體內(nèi)外激活以及IFN-β1和IL-12的產(chǎn)生,導(dǎo)致固有免疫抑制和腫瘤免疫逃逸[36,37,38]。
在體內(nèi)聯(lián)合應(yīng)用TIM3單克隆抗體與順鉑可顯著減小腫瘤的體積,且TIM3+DCs的缺失可增強(qiáng)順鉑的抗腫瘤作用[9]。因此,TIM3阻斷劑與免疫源性核酸或細(xì)胞毒性藥物的聯(lián)合應(yīng)用有望提高抗腫瘤療效。
2.6TIM3在腫瘤細(xì)胞上的表達(dá)及意義TIM3不僅表達(dá)于免疫細(xì)胞,在卵巢癌、腦膜瘤、黑色素瘤等腫瘤細(xì)胞中也有過表達(dá)[38,40,41],并直接促進(jìn)腫瘤的增長。下調(diào)TIM3的表達(dá)可以明顯抑制Hela細(xì)胞的侵襲和轉(zhuǎn)移[42]。TIM3的過表達(dá)均與肺癌、胃癌、前列腺癌和宮頸癌的不良預(yù)后密切相關(guān)[42-45]。在血液系統(tǒng)腫瘤中,TIM3過表達(dá)于急性髓系白血病的白血病干細(xì)胞[46,47]、MDS患者的造血干細(xì)胞上,且TIM3+造血干細(xì)胞具有低分化、低凋亡及高增殖的惡性生物學(xué)特征[48]。
綜上所述,TIM3作為重要的免疫調(diào)控因子,其免疫調(diào)節(jié)具有多樣性:參與Th1和Th17細(xì)胞的凋亡,CD8+T細(xì)胞的耗竭,促進(jìn)Treg細(xì)胞和MDSC大量擴(kuò)增,阻礙DCs活化及分化,它的存在不利于機(jī)體的抗腫瘤免疫,阻斷TIM3信號或聯(lián)合處理其他協(xié)同刺激信號可有效抑制腫瘤生長。目前對TIM3的調(diào)控因素及其下游的信號通路仍需進(jìn)一步鑒別。作為與PD-1、CTLA-4相似的分子,TIM-3有望成為免疫治療腫瘤的靶點(diǎn)分子,提高腫瘤患者的生活質(zhì)量。
參考文獻(xiàn):
[1]Wolchok JD,Kluger H,Callahan MK,etal.Nivolumab plus ipilimumab in advanced melanoma[J].N Engl J Med,2013,369:122-133.
[2]Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12:252-264.
[3]Monney L,Sabatos CA,Gaglia JL,etal.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J].Nature,2002, 415(6871):536-541.
[4]Ngiow SF,Teng MW,Smyth MJ.Prospects for TIM3-targeted antitumor immunotherapy[J].Cancer Res,2011,71:6567-71.[5]Yan J,Zhang Y,Zhang JP,etal.Tim-3 expression defines regulatory T cells in human tumors[J].PLoS One,2013,8:e58006.
[6]Yang ZZ,Grote DM,Ziesmer SC,etal.IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma[J].J Clin Invest,2012,122:1271-1282.
[7]Sakuishi K,Jayaraman P,Behar SM,etal. Emerging Tim-3 functions in antimicrobial and tumor immunity[J].Trends Immunol,2011,32:345-349.
[8]Homet Moreno B,Ribas A.Anti-programmed cell death protein-1/ligand-1 therapy in different cancers[J].Br J Cancer,2015,112:1421-1427.
[9]Chiba S,Baghdadi M, Akiba H,etal.Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alar min HMGB1[J].Nat Immunol,2012,13(9):832-842.
[10]Huang YH,Zhu C,Kondo Y,etal.CEACAM1 regulates TIM-3-mediated tolerance and exhaustion[J].Nature,2015,517(7534):386-390.
[11]Wu FH,Yuan Y,Li D,etal.Endothelial cell-expressed Tim-3 facilitates metastsis of melanoma cells by activating the NF-κB pathway[J].Oncology Reports,2010,24:693-699.
[12]Jiang X,Yu J,Shi Q,etal.Time-3 promotes intestinal homeostasis in DSS colitis by inhibiting M1 polarization of macrophages[J].Chin Immunol,2015,160(2):328-335.
[13]Y Xie.The influence of blocking Tim-3 signal pathway on immune pathopoiesis of H.pylori infection and TLRs signal pathway[J].J Gastroenterol Hepatol,2011,25(suppl 2):A268.
[14]Xie Y,Zhou NJ,Gong YF,etal.The influence of blocking Tim-3 signal pathway on immune protection of H.pylori vaccine and Th immune respond[J].Helicobacter,2011,16:140.
[15]Sada-Ovalle I,Chávez-Galán L,Torre-Bouscoulet L,etal.The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis[J].J Immunol,2012,189(12):5896-5902.
[16]Jayaraman P,Sada-Ovalle I,Nishimura T,etal.IL-1β promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation[J].J Immunol,2013,190(8):4196-4204.
[17]Anderson AC,Lord GM,Dardalhon V,etal.T-bet,a Thl transcription factor regulates the expression of Tim-3[J].Eur J Immunol,2010,40:859-866.
[18]Ge RT,Zeng L,Mo LH,etal.Interaction of TIM4 and TIM3 induces T helper 1 cell apoptosis[J].Immunol Res,2016,64(2):470-475.
[19]Tan C,Ramaswamy M,Shi G,etal.Inflammation-inducing Th1 and Th17 cells differ in their expression patterns of apoptosis-related molecules[J].Cell Immunol,2011, 271(2):210-213.
[20]Byrne WL,Mills KH,Lederer JA,etal. Targeting regulatory T cells in cancer[J].Cancer Res,2011,71:6915-6920.
[21]Sakuishi K,Apetoh L,Sullivan JM,etal. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J].J Exp Med,2010,207:2187-2194.
[22]Zhou Q,Munger ME,Veenstra Rg,etal.Coexpression of Tim-3 and PD-1 identifies a CD8 T-cell exhaustion phenotype in mice with disse minated acute myelogenous leukemia[J].Blood,2011,117:4501-4510.
[23]Gao X,Zhu Y,Li G,etal.TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression[J].PLoS One,2012,7:e30676.
[24]Legat A,Speiser DE,Pircher H,etal.Inhibitory receptor expression depends more do minantly on differentiation and activation than “exhaustion” of human CD8 T cells[J].Front Immunol,2013,4:455.
[25]Barber DL,Wherry EJ,Masopust D,etal.Restoring function in exhausted CD8 T cells during chronic viral infection[J].Nature,2006, 439(7077):682-687.
[26]Blackburn,Shawn D,Freeman GJ,etal.Selective expansion of a subset of exhausted CD8 T cells by a PD-L1 blockade[J].PNAS,2008, 105(39):15016-15021.
[27]Baitsch L,Baumgaertner P,Devêvre E,etal.Exhaustion of tumor-specific CD8 Tcells in metastases from melanoma patients[J].J Clin Invest,2011,121(6):2350-2360.
[28]Fend L,Gatard-Scheikl T,Kintz J,etal.Intravenous injection of MVA virus targets CD8+lymphocytes to tumors to control tumor growth upon combinatorial treatment with a TLR9 agonist[J].Cancer Immunol Res,2014,2(12):1163-1174.
[29]Moon EK,Wang LC,Dolfi DV,etal.Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J].Clin Cancer Res,2014,20(16):4262-4273.
[30]Bu M,Shen Y,Seeger WL,etal.Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8+T cellinflammation than their peripheral counterparts,a function dependent on TIM3 expression[J].Tumour Biol,2016,37(3):3949-3956.
[31]Sakuishi K,Ngiow SF,Sullivan JM,etal.TIM3+FOXP3+regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer[J].Oncoimmunology,2013,2(4):e23849.
[32]Hafler DA,Kuchroo V.TIMs:Central regulators of immune responses[J].J Exp Med,2008,205:2699-2701.
[33]Gabrilovich DI,Nagaraj S.Myeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev Immunol,2009, 9(3):162-174.
[34]Dardalhon V,Anderson AC,Karman J,etal.Tim-3/galectin-9 pathway:regulation of Th1 immunity through promotion of CD11b+Ly6G+myeloid cells[J].J Immunol,2010, 185(3):1383-1392.
[35]Guo Z,Cheng D,Xia Z,etal.Combined TIM3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer[J].J Transl Med,2013,11(1):215.
[36]張晨光,任峰,王輝.HMGBl與其受體分子信號轉(zhuǎn)導(dǎo)通路的研究進(jìn)展[J].中國免疫學(xué)雜志,2014,30(2):275-279.
[37]Liang Y,Lei Z,Zhang H.Toll-like receptor 4 is associated with seizures following ischemia with hyperglycemia[J].Brain Res,2014,1590:75-84.
[38]Shi Z,Lian A,Zhang F.Nuclear factor-κB activation inhibitor attenuates ischemia reperfusion injury and inhibits HMGB1 expression [J].Inflamm Res,2014,63(11):919-925.
[38]Wu J,Liu C,Qian S,etal.The expression of Tim-3 in peripheral blood of ovarian cancer[J].DNA Cell Biol,2013,32:648-653.
[40]Fang L,Lowther DE,Meizlish ML,etal.The immune cell infiltrate populating meningiomas is composed of mature,antigen-experienced T and B cells[J].Neuro Oncol,2013,15:1479-1490.
[41]Hodi FS,O′Day SJ,McDermott DF,etal.Improved survival with ipilimumab in patients with metastatic melanoma[J].N Engl J Med,2010,363:711-723.
[42]Cao Y,Zhou X,Huang X,etal.Tim-3expression in cervical cancer promotes tumor metastasis[J].PLoS One,2013,8:e53834.
[43]Zhuang X,Zhang X,Xia X,etal.Ectopic expression of TIM-3 in lung cancers:A potential independent prognostic factor for patients with NSCLC[J].Am J Clin Pathol,2012,137:978-985.
[44]Jiang J,Jin MS,Kong F,etal.Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer[J].PLoS One,2013,8:e81799.
[45]Piao YR,Jin ZH,Yuan KC,etal.Analysis of Tim-3 as a therapeutic target in prostate cancer[J].Tumour Biol,2014,35:11409-11414.
[46]Kikushige Y,Akashi K.TIM3 as a therapeutic target for malignant stem cells in acute myelogenous leukemia[J].Ann N Y Acad Sci,2012,1266:118-123.
[47]Jan M,Chao MP,Cha AC,etal.Prospective separation of normal and leukemic stem cells based on differential expression of TIM3,a human acute myeloid leukemia stem cell marker[J].Proc Natl Acad Sci USA,2011,108(12):5009-5014.
[48]Tao JL,Li LJ,Fu R,etal.Elevated TIM3+hematopoietic stem cells in untreated myelodysplastic syndrome displayed aberrant differentiation,overproliferation and decreased apoptosis[J].Leuk Res,2014,38(6):714-721.
[收稿2015-11-30修回2016-01-04]
(編輯倪鵬)
doi:10.3969/j.issn.1000-484X.2016.07.032
作者簡介:陶景蓮(1982年-),女,博士,主治醫(yī)生,主要從事血液內(nèi)科學(xué)方面研究,E-mail:taojingliantt@163.com。 通訊作者及指導(dǎo)教師:邵宗鴻(1958年-),男,教授,主要從事血液內(nèi)科學(xué)方面研究,E-mail:shaozonghong@sina.com。
中圖分類號R730.3
文獻(xiàn)標(biāo)志碼A
文章編號1000-484X(2016)07-1070-04
①本文為國家自然科學(xué)基金資助項(xiàng)目(81570111)、國家自然科學(xué)青年基金資助項(xiàng)目(81500101)、天津市應(yīng)用基礎(chǔ)研究項(xiàng)目資助(15JCYBJC24300)和天津醫(yī)科大學(xué)總醫(yī)院青年孵育基金(ZYYFY2014026)。