尤雯雯,徐曉斌,張麗慧,楊 怡
(杭州師范大學(xué)醫(yī)學(xué)院藥理學(xué)教研室,浙江杭州 310036)
亞精胺調(diào)控細(xì)胞自噬在衰老和神經(jīng)退行性疾病中的作用研究進(jìn)展
尤雯雯,徐曉斌,張麗慧,楊 怡
(杭州師范大學(xué)醫(yī)學(xué)院藥理學(xué)教研室,浙江杭州 310036)
亞精胺普遍存在于動(dòng)植物細(xì)胞中,發(fā)揮廣泛的生物學(xué)作用。自噬是細(xì)胞內(nèi)重要的降解途徑之一,細(xì)胞通過自噬-溶酶體通路,清除長壽命蛋白和受損細(xì)胞器,維持細(xì)胞內(nèi)環(huán)境穩(wěn)定。大量研究結(jié)果表明,亞精胺調(diào)控的細(xì)胞自噬參與眾多生理病理過程,其表達(dá)水平異常又可加速衰老、誘發(fā)神經(jīng)退行性疾病等。本文對亞精胺誘導(dǎo)細(xì)胞自噬的病理生理學(xué)作用進(jìn)行綜述,并以衰老和神經(jīng)退行性疾病為例,闡釋亞精胺調(diào)控的細(xì)胞自噬與人類生理病理的相關(guān)性。
亞精胺;自噬;衰老;神經(jīng)退行性疾病
多胺廣泛分布于動(dòng)物、植物、細(xì)菌和真菌等所有生命體內(nèi),對維持生物體內(nèi)環(huán)境穩(wěn)態(tài)具有重要生理功能。動(dòng)物細(xì)胞中常見的多胺類化合物主要有精胺、亞精胺和腐胺3種[1-2]。早在1678年,Anto?nie van Leeuwenhoek首次從精液中分離鑒定出精胺,亞精胺和腐胺也相繼被確認(rèn)[3]。
亞精胺〔結(jié)構(gòu)簡式H2N(CH2)3NH(CH2)4NH2〕是一種具有生物活性的低分子脂肪族含氨基的多胺化合物,普遍存在于組織細(xì)胞中。細(xì)胞內(nèi)的亞精胺主要以結(jié)合形式存在,而游離態(tài)的亞精胺含量較少[4]。亞精胺細(xì)胞生物學(xué)功能諸多,參與調(diào)控細(xì)胞增殖、分化和死亡,也可以通過應(yīng)對環(huán)境的應(yīng)激壓力,保護(hù)細(xì)胞免受氧化損傷。自噬是依賴于溶酶體的細(xì)胞分解代謝途徑,細(xì)胞通過降解受損蛋白質(zhì)、衰老細(xì)胞器等,維持內(nèi)環(huán)境穩(wěn)態(tài)[5]。亞精胺在誘導(dǎo)細(xì)胞自噬活化方面的效能是近年來研究的熱點(diǎn)。據(jù)報(bào)道,亞精胺可通過誘導(dǎo)細(xì)胞自噬延長多種模式生物的壽命,具有抗衰老作用[6]。除此之外,細(xì)胞和動(dòng)物水平的研究結(jié)果也表明,在神經(jīng)系統(tǒng)退行性疾病動(dòng)物模型中,適宜濃度的亞精胺補(bǔ)給對疾病治療有著較好的功效。反之,生物體內(nèi)調(diào)節(jié)多胺的機(jī)制被破壞,導(dǎo)致亞精胺濃度異常,也可能誘發(fā)各種病理狀況。由于亞精胺是一種天然存在的多胺,生理含量的亞精胺具有天然、有效、安全和無毒性作用等優(yōu)點(diǎn),因而將其作為藥物開發(fā)也具有一定的應(yīng)用前景。
亞精胺的合成起始于精氨酸。精氨酸在精氨酸酶的作用下水解去一分子尿素生成鳥氨酸,鳥氨酸再經(jīng)鳥氨酸脫羧酶(ornithine decarboxylase,ODC)脫去羧基形成腐胺,催化該反應(yīng)的ODC是腐胺合成的限速酶,而二氟甲基鳥氨酸(difluorometh?ylornithine,DFMO)是ODC的抑制劑,通過抑制ODC的催化作用,將減少亞精胺的生物合成[7]。腐胺在亞精胺合酶(spermidine synthase,SPDS)的作用下生成亞精胺。合成后的亞精胺在精胺合酶的作用下轉(zhuǎn)化為精胺。細(xì)胞內(nèi)的亞精胺可以通過特定渠道進(jìn)行降解[2]。例如,亞精胺在亞精胺/精胺N1-乙酰轉(zhuǎn)移酶(spermidine/spermine N1-acetyl transferase,SSAT)的催化下,形成N1-乙酰亞精胺,再由多胺氧化酶(polyamine oxidase,PAO)氧化性降解為腐胺。細(xì)胞通過調(diào)節(jié)亞精胺的生物合成和代謝、攝取和外排,嚴(yán)格控制細(xì)胞內(nèi)亞精胺的水平[8]。正常細(xì)胞的精胺濃度約1 mmol·L-1,亞精胺和腐胺濃度較精胺更高。
合成后的多胺在細(xì)胞生理pH值下以多聚陽離子的形式存在,可以與帶負(fù)電荷的分子(如DNA、RNA、蛋白質(zhì)和磷脂等)相互結(jié)合,從而發(fā)揮廣泛的細(xì)胞生物學(xué)作用,參與調(diào)節(jié)DNA復(fù)制、轉(zhuǎn)錄、翻譯及翻譯后修飾、離子通道門控和保持膜的穩(wěn)定性等[9]。亞精胺與細(xì)胞眾多生命活動(dòng)息息相關(guān),它不僅調(diào)控細(xì)胞的增殖和分化,還可通過調(diào)節(jié)細(xì)胞應(yīng)激,避免有害物質(zhì)對細(xì)胞造成的損傷,起一定細(xì)胞保護(hù)效應(yīng)[2]。
2.1 細(xì)胞自噬
自噬是真核生物對細(xì)胞內(nèi)物質(zhì)進(jìn)行降解以維持細(xì)胞穩(wěn)態(tài)的重要調(diào)控機(jī)制。自噬發(fā)生時(shí),細(xì)胞內(nèi)的一些受損蛋白或細(xì)胞器被雙層膜結(jié)構(gòu)的吞噬泡包裹,形成包含底物的自噬體結(jié)構(gòu),自噬體再與溶酶體融合,借助溶酶體內(nèi)的酶將底物進(jìn)行降解并循環(huán)利用[10]。細(xì)胞自噬需要保持在一個(gè)適度活化的水平,過度的自噬可能誘發(fā)自噬性細(xì)胞死亡,而自噬不足同樣也可能導(dǎo)致底物降解不充分,引起細(xì)胞損傷。自噬異常與疾病的發(fā)生發(fā)展相關(guān)[11-12];而精細(xì)化調(diào)控細(xì)胞內(nèi)的自噬活性,對人類疾病的防治具有重要意義[13]。
2.2 亞精胺對自噬的活化作用
近年來研究發(fā)現(xiàn),亞精胺可在酵母[6,14]、線蟲[6,15]、果蠅[6,15-18]和小鼠[6,19-22]等多種模式生物以及人體細(xì)胞[23]中觸發(fā)自噬活化(表1)。上述研究證實(shí),在亞精胺的作用下,細(xì)胞內(nèi)自噬相關(guān)基因(autophagy-related genes,Atg)表達(dá)上調(diào),含有自噬標(biāo)志的輕鏈蛋白3(light chain protein 3,LC3)的熒光報(bào)告基因載體標(biāo)記的自噬體數(shù)量明顯增多,自噬體膜型蛋白LC3-Ⅱ表達(dá)增加,自噬流增強(qiáng),底物(如p62/SQSTM1等)降解充分。這些結(jié)果表明亞精胺具備自噬激動(dòng)效應(yīng)。
2.3 亞精胺誘導(dǎo)自噬活化的作用機(jī)制
2008年,研究人員在老年酵母中發(fā)現(xiàn),亞精胺通過抑制組蛋白乙酰轉(zhuǎn)移酶,引發(fā)組蛋白H3脫乙?;饔茫^而上調(diào)自噬相關(guān)轉(zhuǎn)錄物的表達(dá),增強(qiáng)細(xì)胞自噬活性[6]。Morselli等[24]的研究進(jìn)一步證實(shí)了亞精胺通過乙?;揎椪{(diào)節(jié)自噬活性。該研究結(jié)果顯示,亞精胺可對細(xì)胞質(zhì)、線粒體和細(xì)胞核中560個(gè)包含賴氨酸的基團(tuán)進(jìn)行乙?;揎?,影響375種蛋白的乙?;癄顟B(tài),其中包括170種與自噬相關(guān)的蛋白。哺乳動(dòng)物雷帕霉素靶蛋白1(mam?malian target of rapamycin 1,mTOR1)是細(xì)胞自噬的負(fù)性調(diào)控因子。Pietrocola等[23]的研究指出,亞精胺可抑制mTOR1,解除其對自噬的負(fù)調(diào)控作用,激活自噬通路。此外,賴氨酸乙酰轉(zhuǎn)移酶EP300是內(nèi)源性的自噬抑制因子,亞精胺通過抑制EP300,活化細(xì)胞自噬[23]。也有結(jié)果顯示,亞精胺對自噬的調(diào)控作用與促進(jìn)叉頭盒蛋白O(fork head box protein O,F(xiàn)OXO)靶基因轉(zhuǎn)錄,影響Akt信號(hào)通路活性密切相關(guān)[21]。盡管大量實(shí)驗(yàn)證據(jù)提示,亞精胺的生物學(xué)作用與其誘導(dǎo)自噬活化密切相關(guān),也有研究指出,亞精胺可通過自噬非依賴的途徑,調(diào)節(jié)酵母、線蟲和果蠅等模式生物的交配、受精和氧化應(yīng)激等生理過程[25-26]。
表1 不同模式生物中亞精胺對自噬的調(diào)控作用
衰老是自然界的普遍現(xiàn)象,也是生物體結(jié)構(gòu)和功能隨時(shí)間衰退的必然過程。衰老細(xì)胞表現(xiàn)為細(xì)胞周期停滯、細(xì)胞增殖能力減弱、細(xì)胞應(yīng)激作用降低、衰老相關(guān)基因表達(dá)上調(diào)等特點(diǎn),細(xì)胞則喪失永久性分裂能力[27-28]。近年來的研究結(jié)果提示,自噬在抗衰老中扮演著重要的角色[29]。細(xì)胞依賴正常的自噬途徑清除衰老或損壞的細(xì)胞器和突變蛋白,實(shí)現(xiàn)細(xì)胞代謝和細(xì)胞器的更新,以此維持細(xì)胞生存;抑制自噬則加速衰老進(jìn)程[30-31]。目前公認(rèn)的抗衰老方法主要包括限制熱量攝入、增強(qiáng)運(yùn)動(dòng)以及使用藥物治療[32]。研究證實(shí),西羅莫司和白藜蘆醇(resveratrol)可通過激動(dòng)自噬,延長哺乳動(dòng)物的壽命[33-34]。值得注意的是,天然物質(zhì)亞精胺也具有活化自噬的作用。動(dòng)物體內(nèi)的多胺含量隨年齡增長不斷減少,補(bǔ)充富含亞精胺的食物,可能可以延緩衰老。Eisenberg等[6]發(fā)現(xiàn),在多種模式生物中,亞精胺可誘導(dǎo)自噬,抵抗衰老;該作用可能與染色質(zhì)介導(dǎo)的基因表達(dá)相關(guān)[35]。在缺失自噬關(guān)鍵基因atg7的果蠅,或是缺失Beclin 1(atg6)的線蟲中,亞精胺無法延長此類動(dòng)物的壽命,說明亞精胺的抗衰老效應(yīng)有賴其對自噬的活化[6]。此外,給老年果蠅喂食亞精胺,可有效阻止果蠅記憶能力的下降,發(fā)揮抗衰老效應(yīng)[17]。因此,亞精胺可能通過激動(dòng)細(xì)胞自噬,加速對衰老或受損細(xì)胞器及蛋白的清除速率來對抗衰老。由此可見,補(bǔ)充適量亞精胺,或許能產(chǎn)生延年益壽的功效[30,36]。
神經(jīng)退行性疾病是一種由于神經(jīng)元死亡所致的神經(jīng)系統(tǒng)病理損傷,常見的與衰老相關(guān)的神經(jīng)退行性病變包括阿爾茨海默?。ˋlzheimer disease,AD)和帕金森病(Parkinson disease,PD)等。其共同特點(diǎn)表現(xiàn)為神經(jīng)元胞體以及突起緩慢、漸進(jìn)性退變、突觸損傷和異常蛋白聚集物的形成[37-38]。研究發(fā)現(xiàn),在神經(jīng)退行性疾病患者腦內(nèi)多胺含量出現(xiàn)異常。一項(xiàng)研究結(jié)果顯示,AD患者大腦顳葉皮質(zhì)中亞精胺水平顯著增加[39]。與正常人群相比,PD患者腦脊液中的亞精胺含量明顯減少[40],而紅細(xì)胞中的亞精胺卻顯著增多[41]。SSAT是精胺和亞精胺代謝的限速酶,其酶活性的降低將引起多胺的蓄積[42],影響細(xì)胞生存。研究發(fā)現(xiàn),PD患者腦內(nèi)SSAT活性顯著下調(diào)[43]??紤]到亞精胺對蛋白合成和細(xì)胞生長的重要作用,異常上調(diào)的亞精胺水平,可能反映了一種機(jī)體的自我防御機(jī)制;但也不能排除這種現(xiàn)象可能僅僅是一種病理表現(xiàn)。
細(xì)胞自噬途徑可以清除錯(cuò)誤折疊蛋白和異常蛋白聚集物,如β淀粉樣蛋白和α-突觸核蛋白等,而神經(jīng)退行性疾病常伴隨出現(xiàn)細(xì)胞內(nèi)自噬功能障礙[44-45]?;罨?xì)胞自噬或許可以成為相關(guān)疾病防治的策略之一。亞精胺具有自噬激動(dòng)作用,通過加強(qiáng)自噬對底物的降解,對抗蛋白聚集物的神經(jīng)毒性,發(fā)揮潛在的神經(jīng)保護(hù)作用[15]。盡管如此,內(nèi)源性多胺類物質(zhì),同樣也參與著AD和PD等疾病的病理發(fā)生機(jī)制。研究顯示,亞精胺可以加速β淀粉樣蛋白纖維化的形成[46]和α-突觸核蛋白的聚集[47]。因此,細(xì)胞內(nèi)亞精胺的濃度需維持在一個(gè)平衡狀態(tài),發(fā)揮良好的細(xì)胞自噬活化作用以及疾病防治效果。
大量實(shí)驗(yàn)證據(jù)證實(shí),亞精胺在調(diào)控細(xì)胞自噬方面具有重要作用。亞精胺介導(dǎo)的自噬活化為衰老及與衰老相關(guān)的神經(jīng)退行性疾病提供新的藥物治療途徑。盡管對亞精胺的研究已取得了可觀的進(jìn)展,還有很多問題有待澄清。如亞精胺對自噬活化的分子調(diào)控機(jī)制、亞精胺抗衰老及抗神經(jīng)退行性疾病的治療濃度等尚不明確。隨著對以上問題更深入的探討,將會(huì)對促進(jìn)人類健康和相關(guān)疾病的防治以及新型藥物的研發(fā)作出貢獻(xiàn)。
[1]MoschouPN,Roubelakis-AngelakisKA.Polyamines and programmed cell death[J].J Exp Bot,2014,65(5):1285-1296.
[2]Miller-Fleming L,Olin-Sandoval V,Campbell K,Ralser M.Remaining mysteries of molecular biology:the role of polyamines in the cell[J].J Mol Biol,2015,427(21):3389-3406.
[3]Bachrach U.The earlyhistoryofpolyamine research[J].Plant Physiol Biochem,2010,48(7):490-495.
[4]Davis RH,Morris DR,Coffino P.Sequestered end products and enzyme regulation:the case of orni?thine decarboxylase[J].Microbiol Rev,1992,56(2):280-290.
[5]Bento CF,Renna M,Ghislat G,Puri C,Ashkenazi A,Vicinanza M,et al.Mammalian autophagy:How does it work?[J/OL].Annu Rev Biochem,(2016-02-08)[2016-04-01]http://www.annualreviews. org/doi/pdf/10.1146/annurev-biochem-060815-014556
[6]Eisenberg T,Knauer H,Schauer A,Buettner S,Ruckenstuhl C,Carmona-Gutierrez DA,et al. Induction of autophagy by spermidine promotes longevity[J].Nat Cell Biol,2009,11(11):1305-1314.
[7]Linsalata M,Orlando A,Russo F.Pharmacologi?cal and dietary agents for colorectal cancer chemo?prevention:effects on polyamine metabolism(re?view)[J].Int J Oncol,2014,45(5):1802-1812.
[8]Pegg AE.Mammalian polyamine metabolism and function[J].IUBMB Life,2009,61(9):880-894.
[9] Igarashi K,Kashiwagi K.Modulation of cellular function by polyamines[J].Int J Biochem Cell Biol,2010,42(1):39-51.
[10]Klionsky DJ,Abdelmohsen K,Abe A,Abedin MJ,Abeliovich H,Arozena AA,et al.Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J].Autophagy,2016,12(1):1-222.
[11]Yang Y,Wang SS,Wei EQ,Zhang LH.Autophagy in neuritic degeneration[J].Chin J Pharmacol Toxicol(中國藥理學(xué)與毒理學(xué)雜志),2015,29(2):191-201.
[12]Yang YH,Bao Y,Jiang XX.Autophagy and new strategy for cancer prevention and treatment[J].Chin J Pharmacol Toxicol(中國藥理學(xué)與毒理學(xué)雜志),2015,29(2):179-190.
[13]Rubinsztein DC,Codogno P,Levine B.Autophagy modulation as a potential therapeutic target for diverse diseases[J].Nat Rev Drug Discov,2012,11(9):709-730.
[14]Speldewinde SH,Doronina VA,Grant CM.Au?tophagy protects againstde novoformation of the[PSI+]prion in yeast[J].Mol Biol Cell,2015,26(25):4541-4551.
[15]Buettner S,Broeskamp F,Sommer CA,Habernig L,Alavian-Ghavanini AA,Eisenberg T,et al.Spermi?dine protects against alpha-synuclein neurotoxicity[J].Cell Cycle,2014,13(24):3903-3908.
[16]Sigrist SJ,Carmona-Gutierrez D,Gupta VK,Mertel S,Eisenberg T,Madeo F.Spermidinetriggered autophagy ameliorates memory during aging[J].Autophagy,2014,10(1):178-179.
[17]Gupta VK,Scheunemann L,Eisenberg T,Mertel S,Bhukel A,Koemans TS,et al.Restoring poly amines protects from age-induced memory impairment in an autophagy-dependent manner[J].Nat Neurosci,2013,16(10):1453.
[18] Minois N,Rockenfeller P,Smith TK.Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition[J].PLoS One,2014,9(7):e102435.
[19] Larocca TJ,Gioscia-Ryan RA,Hearon J,Seals DR.The autophagy enhancer spermidine reverses arterial aging[J].Mech Ageing Dev,2013,134(7-8):314-320.
[20]Wang IF,Guo BS,Liu YC,Wu C,Tsai KJ,Shen C. Autophagy activators rescue and alleviate patho?genesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43[J].Proc Natl Acad Sci USA,2012,109(37):15024-15029.
[21]Chrisam M,Pirozzi M,Castagnaro S,Blaauw B,Polishchuck R,Cecconi F,et al.Reactivation of autophagy by spermidine ameliorates the myopath?ic defects of collagen VI-null mice[J].Autophagy,2015,11(12):2142-2152.
[22]Puleston DJ,Zhang H,Powell TJ,Lipina E,Sims S,Panse I,et al.Autophagy is a critical regulator of memory CD8+T cell formation[J].Elife Sci,(2014-11-11)[2016-3-25]http://xueshu.baidu.com/s?wd=paperuri%3A%2869a40f3440e9a73bbfd4b9 aa5fc0c6f9% 29&filter=sc_long_sign&tn=SE_xue?shusource_2kduw22v&sc_vurl=http%3A%2F%2F pubmedcentralcanada.ca%2Fpmcc%2Farticles% 2FPMC4225494225493% 2Fpdf% 2Felife03706. pdf&ie=utf-8&sc_us=5618710394033740658
[23]Pietrocola F,Lachkar S,Enot DP,Niso-Santano M,Sica V,Izzo V,et al.Spermidine induces au?tophagy by inhibiting the acetyltransferase EP300[J].Cell Death Differ,2015,22(3):509-516.
[24]Morselli E,Marino G,Bennetzen MV,Megalou E,Schroeder SA,Benit P,et al.Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome[J].J Cell Biol,2011,192(4):615-629.
[25]Bauer MA,Carmona-Gutierrez D,Ruckenstuhl C,Reisenbichler A,Megalou EV,Magnes C,et al. Spermidine promotes mating and fertilization effi?ciency in model organisms[J].Cell Cycle,2013,12(2):346-352.
[26]MinoisN,Carmona-Gutierrez D,BauerMA,Rockenfeller P,Eisenberg T,Brandhorst S,et al. Spermidine promotes stress resistance inDrosoph?ila melanogasterthrough autophagy-dependent and-independent pathways[J].Cell Death Dis,2012,3:139.
[27]Bernadotte A,Mikhelson VM,Spivak IM.Markers of cellular senescence.Telomere shortening as a marker of cellular senescence[J].Aging(Albany NY),2016,8(1):3-11.
[28]Diloreto R,Murphy CT.The cell biology of aging[J].Mol Biol Cell,2015,26(25):4524-4531.
[29]Gelino S,Hansen M.Autophagy-an emerging antiaging mechanism[J].J Clin Exp Pathol,2012,(Suppl 4):006.
[30]Rubinsztein DC,Marino G,Kroemer G.Autopha?gy and aging[J].Cell,2011,146(5):682-695.
[31] Martinez-Lopez N,Athonvarangkul D,Singh R. Autophagy and aging[J].Adv Exp Med Biol,2015,847:73-87.
[32]Bravo-San Pedro JM,Senovilla L.Immunostimu?latory activity of lifespan-extending agents[J].Aging(Albany NY),2013,5(11):793-801.
[33]Harrison DE,Strong R,Sharp ZD,Nelson JF,Astle CM,F(xiàn)lurkey K,et al.Rapamycin fed late in life extends lifespan in genetically heterogeneous mice[J].Nature,2009,460(7253):392-395.
[34]Baur JA,Pearson KJ,Price NL,Jamieson HA,Lerin C,Kalra A,et al.Resveratrol improves health and survival of mice on a high-calorie diet[J].Nature,2006,444(7117):337-342.
[35]Kaeberlein M.Spermidine surprise for a long life[J].Nat Cell Biol,2009,11(11):1277-1278.
[36]Madeo F,Eisenberg T,Buettner SA,Kroemer G. Spermidine a novel autophagy inducer and longevi?ty elixir[J].Autophagy,2010,6(1):160-162.
[37]Yang Y,Coleman M,Zhang LH,Zheng XA. Autophagy in axonal and dendritic degeneration[J].Trends Neurosci,2013,36(7):418-428.
[38]Shen DN,Zhang LH,Wei EQ,Yang Y.Autophagy in synaptic development,function,and pathology[J].Neurosci Bull,2015,31(4):416-426.
[39]Morrison LD,Kish SJ.Brain polyamine levels are altered in Alzheimer′s disease[J].Neurosci Lett, 1995,197(1):5-8.
[40]Paik MJ,Ahn YH,Lee PH,Kang H,Park CB,Choi S,et al.Polyamine patterns in the cerebro?spinal fluid of patients with Parkinson′s disease and multiple system atrophy[J].Clin Chim Acta,2010,411(19-20):1532-1535.
[41]Gomes-TrolinC, NygrenI, AquiloniusSM,Askmark H.Increased red blood cell polyamines in ALS and Parkinson′s disease[J].Exp Neurol,2002,177(2):515-520.
[42]Niiranen K,Keinanen TA,Pirinen E,Heikkinen S,Tusa M,F(xiàn)atrai S,et al.Mice with targeted disruption of spermidine/spermine N-1-acetyltransferase gene maintain nearly normal tissue polyamine homeosta?sis but show signs of insulin resistance upon aging[J].JCellMolMed,2006,10(4):933-945.
[43]Lewandowski NM,Ju SL,Verbitsky M,Ross B,Geddie ML,Rockenstein E,et al.Polyamine path?way contributes to the pathogenesis of Parkinson disease[J].Proc Natl Acad Sci USA,2010,107(39):16970-16975.
[44]Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases[J].Nat Rev Neurosci,2015,16(6):345-357.
[45]Martini-Stoica H,Xu Y,Ballabio A,Zheng H.The autophagy-lysosomal pathway in neurodegenera?tion:a TFEB perspective[J].Trends Neurosci,2016,39(4):221-234.
[46]Luo J,Yu CH,Yu H,Borstnar R,Kamerlin SC,Graslund A,et al.Cellular polyamines promote amyloid-beta(Abeta)peptide fibrillation and modu?late the aggregation pathways[J].ACS Chem Neurosci,2013,4(3):454-462.
[47]Antony T,Hoyer W,Cherny D,Heim G,Jovin TM,Subramaniam V.Cellular polyamines pro?mote the aggregation of alpha-synuclein[J].J Biol Chem,2003,278(5):3235-3240.
Spermidine-mediated autophagy induction in aging and neurodegenerative diseases:research progress
YOU Wen-wen,XU Xiao-bin,ZHANG Li-hui,YANG Yi
(Department of Pharmacology,School of Medicine,Hangzhou Normal University,Hangzhou 310036,China)
Spermidine,presented widely in animal and plant cells,plays a variety of biologicalroles.Autophagy is a pivotal intracellular degradative pathway.Autophagy-lysosome pathway contrib?utes to maintenance of intracellular homeostasis via clearance of long-lived proteins and damaged cel?lular organelles.There is much evidence that spermidine-modulated autophagy is involved in the regu?lation of several pathophysiological processes.However,the abnormal level of spermidine may accelerate aging and lead to the development of neurodegenerative diseases.Here,we reviewed the pathophysiological significance of spermidine in mediating autophagy induction.In addition,the association between spermidine-induced autophagy and pathophysiological processes(e.g.aging and neurodegenerative diseases)was discussed.
spermidine;autophagy;aging;neurodegenerative diseases
s:YANG Yi,E-mail:yyang@hznu.edu.cn,Tel:(0571)28865673;ZHANG Li-hui,E-mail:lhzhang@hznu.edu.cn,Tel:(0571)28861603
R966
A
1000-3002-(2016)10-1102-06
10.3867/j.issn.1000-3002.2016.10.003
Foundation item:The project supported by National Natural Science Foundation of China(81401043);National Natural Science Foundation(81671188);Zhejiang Provincial Natural Science Foundation of China(LY17H310005);Zhejiang Provincial Natural Science Foundation of China(LY17H160027);the Key Laboratory of Hangzhou City Project(20090233T12);and Program of“Xinmiao”Talents in Zhejiang Province of China(2016R423061);
2016-04-05 接受日期:2016-08-03)
(本文編輯:喬 虹)
國家自然科學(xué)基金(81401043);國家自然科學(xué)基金(81671188);浙江省自然科學(xué)基金(LY17H310005);浙江省自然科學(xué)基金(LY17H160027);杭州市重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(20090233T12);浙江省新苗人才計(jì)劃資助(2016R423061)
尤雯雯,女,藥學(xué)專業(yè)本科生,主要從事神經(jīng)藥理學(xué)研究;楊怡,女,博士,副教授,碩士生導(dǎo)師,主要從事神經(jīng)藥理學(xué)研究;張麗慧,女,博士,教授,碩士生導(dǎo)師,主要從事神經(jīng)藥理學(xué)研究。
楊 怡,E-mail:yyang@hznu.edu.cn,Tel:(0571)28865673;張麗慧,E-mail:lhzhang@hznu.edu.cn,Tel:(0571)28861603