• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      改進(jìn)FBD法在無(wú)功功率補(bǔ)償設(shè)備中的應(yīng)用

      2016-02-21 06:05:00葉傅華王江濤陳國(guó)棟
      上海電氣技術(shù) 2016年4期
      關(guān)鍵詞:負(fù)序三相諧波

      葉傅華, 王江濤, 陳國(guó)棟

      上海電氣集團(tuán)輸配電分公司 上海 200042

      改進(jìn)FBD法在無(wú)功功率補(bǔ)償設(shè)備中的應(yīng)用

      葉傅華, 王江濤, 陳國(guó)棟

      上海電氣集團(tuán)輸配電分公司 上海 200042

      無(wú)功電流的檢測(cè)算法是影響無(wú)功功率補(bǔ)償設(shè)備響應(yīng)速度和穩(wěn)態(tài)精度的關(guān)鍵。對(duì)傳統(tǒng)FBD(Fryze-Buchholz-Depenbrock)法進(jìn)行了理論推導(dǎo),闡明了各頻次分量在FBD法下的表現(xiàn)機(jī)制,并在此基礎(chǔ)上提出了一種改進(jìn)FBD法,能夠簡(jiǎn)便有效地同時(shí)補(bǔ)償無(wú)功正負(fù)序電流。研制了一臺(tái)三相四線制無(wú)功功率補(bǔ)償設(shè)備——靜止無(wú)功發(fā)生器(SVG),對(duì)改進(jìn)FBD法進(jìn)行了試驗(yàn)分析,確認(rèn)了新方法的可行性和有效性。

      FBD法; 無(wú)功補(bǔ)償; 應(yīng)用

      1 課題背景

      無(wú)功功率補(bǔ)償器是一種補(bǔ)償負(fù)載感性無(wú)功以提高網(wǎng)側(cè)功率因數(shù)的電能質(zhì)量改善裝置。無(wú)功電流的檢測(cè)性能關(guān)系到整個(gè)補(bǔ)償設(shè)備的響應(yīng)時(shí)間與補(bǔ)償精度。

      基于瞬時(shí)無(wú)功功率理論[1]的d-q檢測(cè)算法運(yùn)用最為廣泛,在此基礎(chǔ)上衍生出的改進(jìn)算法也層出不窮。FBD檢測(cè)法[2]屬于時(shí)域檢測(cè)法的一種,由德國(guó)學(xué)者S.Fryze在20世紀(jì)初提出,并在F.Buchholz和M.Depenbrock等人的進(jìn)一步研究中逐漸形成體系,因此被稱為FBD法。這一方法實(shí)時(shí)性好,可以運(yùn)用在任意相電路中,且已有學(xué)者將其應(yīng)用于兩相電路中[3]。文獻(xiàn)[4]指出了瞬時(shí)無(wú)功功率理論只是FBD法的一個(gè)特例,并且FBD法不需要負(fù)載的坐標(biāo)變換,使其物理意義更清晰。

      近年來(lái),開(kāi)關(guān)電源、變頻器、不間斷電源等基于電力電子技術(shù)的設(shè)備得到了廣泛應(yīng)用。與此同時(shí),這類變換器給電網(wǎng)注入了大量諧波和無(wú)功。目前大部分電力電子設(shè)備采用數(shù)字信號(hào)處理器(DSP)作為核心控制器。在實(shí)際檢測(cè)中,很難將所需頻次的分量有效準(zhǔn)確地進(jìn)行提取。矩陣分解[5]、多d-q分解[6]實(shí)現(xiàn)起來(lái)較為復(fù)雜、數(shù)據(jù)量大,不易實(shí)現(xiàn)分相控制。對(duì)無(wú)功功率補(bǔ)償器而言,采用改進(jìn)FBD法后,設(shè)備可實(shí)現(xiàn)分相控制,同時(shí)軟件資源得到釋放,可以完成更多外圍功能,改善設(shè)備的人機(jī)交互體驗(yàn),從根本上降低了設(shè)備成本。

      2 FBD法原理

      FBD法的基本原理是:將實(shí)際電路中的負(fù)載等效為理想電導(dǎo),等效電導(dǎo)消耗電路中的所有功率。根據(jù)等效電導(dǎo)分解電流,從而得到各電流分量。令系統(tǒng)電壓為u=(u1,u2,…,um)T,電流矢量i=(i1,i2,…,im)T,矢量元素分別為各相電壓電流瞬時(shí)值。瞬時(shí)功率p∑(t)、瞬時(shí)總電壓‖u‖、等效電導(dǎo)Gp(t)、功率電流ip定義如下:

      (1)

      (2)

      (3)

      ip=Gp(t)u

      (4)

      容易證明ip是與系統(tǒng)電流i產(chǎn)生相同瞬時(shí)功率的電流分量,即:

      (5)

      在三相系統(tǒng)中運(yùn)用FBD法時(shí),利用鎖相環(huán)(PLL)可以得到與電網(wǎng)電壓同相位的同步矢量,這種歸一化處理能夠減小電網(wǎng)電壓波動(dòng)對(duì)計(jì)算結(jié)果的干擾[5]。

      假設(shè)經(jīng)過(guò)DSP鎖相后產(chǎn)生的理想三相電壓為:

      (6)

      同時(shí),假設(shè)檢測(cè)到的負(fù)載電流包含豐富的諧波成分為:

      (7)

      那么,根據(jù)FBD法,等效正序有功電導(dǎo)為:

      cos[(n+1)ωt+φcn]}

      (8)

      式(7)、式(8)中,Ian、Ibn、Icn為正序第n次諧波電流的峰值,φan、φbn、φcn為正序第n次諧波電流的初始相位。Gp(t)經(jīng)過(guò)低通濾波器(LPF)后得到直流分量為:

      (9)

      瞬時(shí)基波正序有功電流為:

      (10)

      同理,鎖相得到系統(tǒng)電壓相位后移后的參考電壓為:

      (11)

      代入負(fù)載電流,可得到等效正序無(wú)功電導(dǎo)為:

      sin[(n+1)ωt+φcn]

      (12)

      同理,經(jīng)過(guò)LPF后得到直流分量為:

      (13)

      瞬時(shí)基波正序無(wú)功電流為:

      (14)

      若為無(wú)功功率補(bǔ)償設(shè)備,利用上述公式,可以得到無(wú)功功率檢測(cè)控制框圖。根據(jù)推導(dǎo),不考慮電壓幅值的無(wú)功電流檢測(cè)框圖如圖1所示,圖中k為單位電壓點(diǎn)積:k===1.5。

      圖1 FBD法檢測(cè)負(fù)載無(wú)功電流框圖

      由上述推導(dǎo)可以看出,從本質(zhì)上而言,F(xiàn)BD法通過(guò)空間投影變換將m次諧波電流降為m-1次,基波電流變?yōu)橹绷鞣至?,諧波仍然是交流分量,再通過(guò)LPF便可得到基波電流分量[6]。

      3 改進(jìn)FBD法

      運(yùn)用傳統(tǒng)FBD法補(bǔ)償負(fù)載不平衡電流時(shí),需要另外構(gòu)建由系統(tǒng)電壓鎖相后得到的負(fù)序參考電壓,再利用同樣的原理,將計(jì)算得到的負(fù)載負(fù)序電流作為設(shè)備補(bǔ)償參考電流的一部分增加到控制算法中[7],這無(wú)疑增加了計(jì)算量和控制系統(tǒng)的復(fù)雜性。在三相四線制系統(tǒng)中,由于中性線(N線)的存在,三相獨(dú)立,即可以分相控制。于是假設(shè)負(fù)載電流中存在負(fù)序不平衡電流,重新定義負(fù)載電流為:

      (15)

      式中:Ian*、Ibn*、Icn*為負(fù)序第n次諧波電流的峰值;φan*、φbn*、φcn*為負(fù)序第n次諧波電流的初始相位。

      式(15)與式(11)點(diǎn)積為:

      (16)

      (17)

      (18)

      若對(duì)qa(t)、qb(t)、qc(t)分別濾波,則可分別得到直流分量,改進(jìn)FBD法檢測(cè)負(fù)載無(wú)功功率電流的控制框圖如圖2所示。仔細(xì)對(duì)比圖1和圖2,兩種算法框圖雖然只是作了線性變換,但改進(jìn)FBD法卻可以同時(shí)補(bǔ)償負(fù)載無(wú)功正序電流與負(fù)序電流。

      圖2 改進(jìn)FBD法檢測(cè)負(fù)載無(wú)功電流框圖

      圖2中,系統(tǒng)電壓經(jīng)過(guò)PLL構(gòu)造幅值為1的三相角度。采用改進(jìn)FBD法實(shí)現(xiàn)單相控制,能夠更有效地補(bǔ)償負(fù)載無(wú)功及負(fù)序電流,并且可以實(shí)現(xiàn)單相閉環(huán)比例積分控制。

      4 系統(tǒng)結(jié)構(gòu)

      研制了一臺(tái)低壓380V三相四線制靜態(tài)無(wú)功補(bǔ)償設(shè)備——靜止無(wú)功發(fā)生器(SVG),設(shè)備參數(shù)如表1所示。

      表1 SVG設(shè)備主要技術(shù)參數(shù)

      逆變器采用三電平拓?fù)浣Y(jié)構(gòu),有效減小輸出電流諧波,同時(shí)采用集成化三電平模塊,能夠減小設(shè)備體積,簡(jiǎn)化設(shè)計(jì)結(jié)構(gòu),輸出濾波器采用濾波效果較好的LCL結(jié)構(gòu)。整臺(tái)SVG為單元式結(jié)構(gòu),體積小,內(nèi)部組件為印制電路板形式,利于安裝維護(hù),且可多臺(tái)并聯(lián)使用。設(shè)備主電路結(jié)構(gòu)如圖3所示,SVG并聯(lián)在負(fù)載之前。

      圖3 SVG主電路

      設(shè)備控制系統(tǒng)總體架構(gòu)如圖4所示。采樣電路將主功率電路中的電壓電流信號(hào)以高精度輸入至核心控制器。核心控制器采用兩片DSP+現(xiàn)場(chǎng)可編程門陣列(FPGA)形式,DSP根據(jù)采樣電壓電流完成檢測(cè)、控制算法、保護(hù)、流程控制等功能,F(xiàn)PGA作為系統(tǒng)的中樞,為其余功能單元提供數(shù)據(jù)信息傳輸通道。核心控制器最終輸出絕緣柵雙極晶體管(IGBT)脈沖信號(hào),使主功率電路輸出需要補(bǔ)償?shù)碾娏?。同時(shí),設(shè)備能夠通過(guò)人機(jī)界面接收控制調(diào)試人員發(fā)出的啟停設(shè)備命令,并在界面上查詢?cè)O(shè)備運(yùn)行狀態(tài)、故障信息。散熱系統(tǒng)為整臺(tái)單元式SVG提供經(jīng)過(guò)縝密計(jì)算的散熱風(fēng)道,使系統(tǒng)能夠維持在正常的工作溫度。

      圖4 SVG控制系統(tǒng)總體架構(gòu)

      5 試驗(yàn)及分析

      搭建了一套試驗(yàn)設(shè)備,系統(tǒng)電壓380V,負(fù)載為一臺(tái)三相50A電抗器。圖5為SVG輸出電流,其中黃綠藍(lán)分別為A、B、C三相電流,紅色為N線電流。由圖5可以看出SVG的綜合補(bǔ)償效果。

      圖6中黃色為B相網(wǎng)側(cè)電流,綠色為B相負(fù)載電流,藍(lán)色為B相SVG電流。用Fluke儀表測(cè)試得到負(fù)載與網(wǎng)側(cè)電流及無(wú)功數(shù)據(jù),如表2所示。記錄的三次試驗(yàn)數(shù)據(jù)補(bǔ)償精度均可達(dá)到99%以上。

      圖6 SVG輸出、負(fù)載、網(wǎng)側(cè)電流對(duì)比

      表2 SVG補(bǔ)償精度測(cè)試

      圖7為突加50A負(fù)載電抗器后得到的負(fù)載A相電流(紅色)與SVG輸出A相電流(綠色),從圖7中可以看出,采用改進(jìn)FBD法的SVG響應(yīng)時(shí)間短于3ms。

      圖7 SVG響應(yīng)時(shí)間

      6 結(jié)論

      通過(guò)相關(guān)文獻(xiàn)[7-14]、理論推導(dǎo)和各項(xiàng)試驗(yàn)可以看出,采用改進(jìn)FBD法的靜態(tài)無(wú)功補(bǔ)償設(shè)備SVG具有較快的響應(yīng)速度、較高的補(bǔ)償精度,檢測(cè)過(guò)程使用一套變換公式就能同時(shí)計(jì)算出需要補(bǔ)償?shù)恼驘o(wú)功及負(fù)序負(fù)載電流,相比其它算法占用的DSP資源大大降低,可以說(shuō)是一種具有很強(qiáng)工程實(shí)用性的高效檢測(cè)算法。改進(jìn)FBD法在負(fù)載補(bǔ)償電流檢測(cè)中起到較好的補(bǔ)償作用,設(shè)備最終實(shí)現(xiàn)的各項(xiàng)性能指標(biāo)均能令人滿意。

      [1] AKAGI H, KANAZAWA Y, NABAE A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components[J]. IEEE Transactions on Industry Applications, 1984,ⅠA-20(3):625- 630.

      [2] DEPENBROCK M. The FBD-method, a Generally Applicable Tool for Analyzing Power Relations[J]. IEEE Transactions on Power Systems, 1993,8(2):381-387.

      [3] 孫卓,姜新建,朱東起.FBD法及其在牽引供電系統(tǒng)中的應(yīng)用.清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,43(3):361-365.

      [4] DEPENBROCK M, STAUDT V, WREDE H. A Theoretical Investigation of Original and Modified Instantaneous Power Theory Applied to Four-wire System[J]. IEEE Transactions on Industry Applications, 2003,39(4):1160-1168.

      [5] CHEN G D, ZHANG L, WANG R T, et al. A Novel SPLL and Voltage Sag Detection Based on LES Filters and Improved Instantaneous Symmetrical Components Method[J]. IEEE transactions on Power Electronics, 2015,30(3):1177-1188.

      [6] CHEN G D, ZHU M, CAI X. Medium-voltage Level Dynamic Voltage Restorer Compensation Strategy by Positive and Negative Sequence Extractions in Multiple Reference Frames[J]. IET on Power Electronics, 2014,7(7):1747-1758.

      [7] 陳峻嶺,姜新建,孫卓,等.基于FBD法的三相電力系統(tǒng)電流檢測(cè)方法的應(yīng)用[J].電力系統(tǒng)自動(dòng)化,2004,28(24):23-27.

      [8] 黃宇淇,孫卓,姜新建,等.FBD法及復(fù)合控制在有源濾波器中的應(yīng)用.電力系統(tǒng)自動(dòng)化,2006,30(7):65-68.

      [9] 胡楷,潘孟春,于晶榮.100kVA三相四線有源電力濾波器的研制.電工電能新技術(shù),2010,29(1):30-34.

      [10] 王鐵勝,尹忠東.他勵(lì)式磁控電抗器在不同工作狀態(tài)下的諧波問(wèn)題.上海電氣技術(shù),2016,9(2):23-26,30.

      [11] 賀龍祥,李益華.基于自適應(yīng)理論的FBD法在有源濾波器中的應(yīng)用[J].電力電容器與無(wú)功補(bǔ)償,2015,36(2):41-45,49.

      [12] 黃知超,蘇曉鵬,李俊,等.一種改進(jìn)的FBD指令電流檢測(cè)方法研究[J].電測(cè)與儀表,2015,52(6):33-38.

      [13] 施燁,吳在軍,竇曉波,等.基于自適應(yīng)原理的改進(jìn)型FBD濾波電流檢測(cè)算法[J].電網(wǎng)技術(shù),2014,38(4):1051-1058.

      [14] 王杰,鄭建勇,梅軍,等.基于FBD法的諧波檢測(cè)方法和低通濾波器的優(yōu)化設(shè)計(jì).電測(cè)與儀表,2010,47(7):50-55.

      Detection algorithm of reactive current is the key factor that may influence the response speed of reactive power compensation device and the accuracy of steady state. Via theoretical derivation of traditional FBD(Fryze-Buchholz-Depenbrock) method the performance mechanism of each frequency component in the FBD method was clarified and an improved FBD method was put forward on the basis that could compensate reactive current both in positive and negative sequence easily and efficiently. By the development of a three-phase four-wire reactive power compensation equipment—static var generator, the experimental analysis for the improved FBD method was conducted to confirm the feasibility and effectiveness of the new approach.

      FBD Method; Reactive Power Compensation; Application

      2016年6月

      葉傅華(1984— ),女,碩士,工程師,主要從事電能質(zhì)量治理、電力電子新能源產(chǎn)品開(kāi)發(fā)等工作, E-mail:38532361@qq.com

      TM76

      A

      1674-540X(2016)04-058-05

      猜你喜歡
      負(fù)序三相諧波
      汽輪發(fā)電機(jī)不同阻尼系統(tǒng)對(duì)負(fù)序能力的影響
      三相異步電動(dòng)機(jī)保護(hù)電路在停車器控制系統(tǒng)中的應(yīng)用
      單三相組合式同相供電系統(tǒng)的負(fù)序影響研究
      瞬時(shí)對(duì)稱分量法在負(fù)序電流檢測(cè)中的應(yīng)用與實(shí)現(xiàn)
      虛擬諧波阻抗的并網(wǎng)逆變器諧波抑制方法
      基于ELM的電力系統(tǒng)諧波阻抗估計(jì)
      兩級(jí)式LCL型三相光伏并網(wǎng)逆變器的研究
      基于ICA和MI的諧波源識(shí)別研究
      三相PWM整流器解耦與非解耦控制的對(duì)比
      基于DSP和FFT的三相無(wú)功功率測(cè)量
      迁安市| 莎车县| 称多县| 麦盖提县| 图木舒克市| 泸州市| 商丘市| 抚州市| 肥东县| 治多县| 新泰市| 孝义市| 乡城县| 汽车| 彰化市| 都江堰市| 南汇区| 犍为县| 阳东县| 常德市| 花莲县| 富裕县| 麻江县| 婺源县| 永胜县| 南涧| 云安县| 岗巴县| 汽车| 沅江市| 伊金霍洛旗| 黄骅市| 延庆县| 昌邑市| 长沙县| 重庆市| 屏山县| 仁化县| 金溪县| 广元市| 乌鲁木齐市|