解小寧,王昭生,王紅麗,岳治國
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061;2.陜西廣播電視大學(xué),西安 710119;3.陜西省人工影響天氣辦公室,西安 710015)
云微物理特性及云滴有效半徑參數(shù)化:一次降水層狀云的飛機(jī)觀測(cè)資料結(jié)果
解小寧1,王昭生1,王紅麗2,岳治國3
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061;2.陜西廣播電視大學(xué),西安 710119;3.陜西省人工影響天氣辦公室,西安 710015)
全球及區(qū)域氣候模式中云滴有效半徑的參數(shù)化對(duì)于理解云的輻射效應(yīng)特別是氣溶膠間接效應(yīng)是非常重要的。本文利用延安地區(qū)(位于中國西北地區(qū))一次降水層狀云的飛機(jī)觀測(cè)資料,首先給出該次過程的云微物理特性包括云滴數(shù)濃度(Nc),云水含量(Qc),云滴的半徑(Rm),體積半徑(Rv),以及有效半徑(Re),云滴譜離散度(ε)以及Re/Rv比值因子β;并指出云滴譜離散度ε與云滴數(shù)濃度Nc有著很好的遞減關(guān)系式,所對(duì)應(yīng)的關(guān)系式可以表述為ε= 0.579 - 7.42×10-4Nc+ 4.2×10-7Nc2。進(jìn)一步,發(fā)現(xiàn)云滴尺度譜采用Lognormal分布函數(shù),Gamma分布函數(shù)以及Weibull分布函數(shù)所參數(shù)化的云滴有效半徑與觀測(cè)結(jié)果較為一致。值得指出的是,基于Lognormal分布函數(shù)的參數(shù)化能夠更好地描述云滴有效半徑。該云滴有效半徑的參數(shù)化結(jié)果將會(huì)加強(qiáng)對(duì)于氣溶膠在中國西北地區(qū)間接輻射強(qiáng)迫的認(rèn)識(shí)。
云滴尺度譜分布;云滴譜離散度;云滴有效半徑
云作為地氣系統(tǒng)最重要的組成部分之一,覆蓋了地球表面的60%以上,極大反射和吸收太陽短波和地面長波輻射,進(jìn)而影響地氣系統(tǒng)的輻射平衡;以及影響局域、全球降水的時(shí)空分布。云滴有效半徑定義為云滴尺度譜分布的3階積分與2階積分的比值,直接決定著云光學(xué)厚度、單次散射比和非對(duì)稱因子等重要的云光學(xué)物理量(e.g., Martin et al,1994;Liu and Daum,2002;Deng et al,2009;Xieand Liu,2013;解小寧等,2015)。
云滴有效半徑(Re)的參數(shù)化對(duì)于天氣氣候模式,有著非常重要的作用。因此,精確參數(shù)化Re是目前非常熱門的話題,也是減少氣候模式中云描述不確定性的一個(gè)重要途徑。Slingo(1990)指出云滴有效半徑從10 μm減少到8 μm基本上就可以抵消2倍CO2帶來的溫室效應(yīng)。然而,在目前的大部分天氣氣候模式中,云滴有效半徑都采用常數(shù)或者是云滴數(shù)濃度與云水含量的函數(shù)來描述。一般的,云滴有效半徑Re可以寫成如下體積半徑Rv的表達(dá)式,
β是Re/Rv比值因子。利用飛機(jī)的觀測(cè)結(jié)果,Martin et al(1994)給出β是常數(shù),在大陸和海洋上有差異,大陸對(duì)應(yīng)β值比海洋的β值要大一些。在其他的飛機(jī)觀測(cè)研究中,同時(shí)也證明β作為常數(shù),可以有效地描述云滴有效半徑(Deng et al,2009;Nair et al,2012)。另外,Deng et al(2009)同時(shí)也指出,利用Rv的多項(xiàng)式擬合的參數(shù)化,可以減少與觀測(cè)結(jié)果的偏差。另外,通過假設(shè)云滴的尺度譜分布,可以解析得到Re/Rv比值因子β(例如,Liu and Daum,2000;Liu et al,2002)。通常云滴尺度譜分布可以采用Lognormal 分布函數(shù),Weibull 分布函數(shù),Gamma分布函數(shù)來描述。本研究將利用不同的云滴譜尺度分布函數(shù)得到的β以及常數(shù)β描述的云滴有效半徑與飛機(jī)觀測(cè)資料進(jìn)行對(duì)比分析。
本文將利用延安地區(qū)一次降水層狀云的飛機(jī)觀測(cè)得到的云滴尺度譜分布,主要是針對(duì)暖云部分,給出該次過程的云微物理特性包括云滴數(shù)濃度,云水含量,云滴的半徑,體積半徑,以及有效半徑,云滴譜離散度以及Re/Rv比值因子,并得到云滴譜離散度與云滴數(shù)濃度的關(guān)系。進(jìn)一步,得到基于不同云滴尺度譜分布函數(shù)(Lognormal函數(shù),Gamma函數(shù)以及Weibull函數(shù))所描述的云滴有效半徑的理論參數(shù)化,并與飛機(jī)觀測(cè)得到的云滴有效半徑進(jìn)行對(duì)比分析。
本節(jié)中,將利用2003年9月17號(hào)延安一次降水層狀云的飛機(jī)觀測(cè)的云滴尺度譜分布,研究該次過程的云微物理特性及云滴譜離散度的變化規(guī)律。具體的飛機(jī)飛行路徑、時(shí)間以及氣象條件在文獻(xiàn)(王揚(yáng)鋒等,2007)中可以看到。該次飛機(jī)觀測(cè)所用的儀器是PMS粒子測(cè)量系統(tǒng)的FSSP-100探頭,該探頭所測(cè)得的云滴直徑范圍2— 47 μm。在這里,云區(qū)域定義為云滴數(shù)濃度大于等于10 cm-3,流體水含量大于等于0.01 g · m-3(Gultepe et al,1996)。云微物理特性包括云滴數(shù)濃度(Nc),云水含量(Qc),云滴的半徑(Rm),體積半徑(Rv),以及有效半徑(Re),云滴譜離散度(ε)以及Re/Rv比值因子β。這些云微物理量分別定義為如下的數(shù)學(xué)表達(dá)式:
其中:ni是FSSP-100觀測(cè)到第i個(gè)檔粒子數(shù),ri是第i個(gè)檔半徑的上限和下限半徑的平均值,ρw是流體水的密度,ρw=1g · cm-3。
表1給出了該次過程云微物理量的統(tǒng)計(jì)值,包括云滴數(shù)濃度Nc,云水含量Qc,平均半徑Rm,平均體積半徑Rv,平均有效半徑Re,以及相對(duì)離散度ε,和Re/Rv比值因子β的最大值(Max),平均值(Mean),中值(Median),及標(biāo)準(zhǔn)偏差(STDEV)。該次降水層狀云觀測(cè)結(jié)果顯示,云滴數(shù)濃度Nc的最大值為561 cm-3,平均值為183 ± 91 cm-3。云水含量Qc的最大值為0.129 g · m-3,相應(yīng)的平均值0.034 ± 0.021 g · m-3。平均半徑Rm的最大值為5.33 μm,而平均值為2.96 ± 0.63 μm。平均體積半徑Rv為6.24 μm,平均值為3.60 ± 0.77 μm。云滴有效半徑Re為7.23 μm,平均值為4.38 ± 0.97 μm。云滴譜離散度ε的最大值為0.67,所對(duì)應(yīng)的平均值0.46 ± 0.08。Re/Rv因子β最大值為1.52,平均值為1.22 ± 0.07。
圖1a 給出了云滴譜離散度ε與云滴數(shù)濃度Nc的依賴關(guān)系。在該圖中,云區(qū)域定義為云滴數(shù)濃度大于等于10 cm-3,流體水含量大于等于0.001 g ·m-3。在云滴數(shù)濃度比較低的情況下(50 cm-3),云滴譜離散度有個(gè)較大的變化范圍,在0—0.7變化;而在云滴數(shù)濃度比較高的情況下,云滴譜離散度的變化范圍則小的多,幾乎變成ε=0.3左右的一個(gè)常數(shù)。值得指出的是,該云滴譜離散度的變化規(guī)律與Zhao et al(2006)給出的結(jié)果是完全一致的。從該圖可以看出,云滴譜離散度隨著云滴數(shù)濃度的變化規(guī)律,并不能用簡單的數(shù)學(xué)公式描述。但是當(dāng)定義云區(qū)域的最低流體水含量Lc≥0.01 cm-3時(shí),就會(huì)出現(xiàn)非常有意義的結(jié)果(圖1b)。該圖顯示,云滴譜離散度ε與云滴數(shù)濃度Nc有著明顯的遞減關(guān)系。在云滴數(shù)濃度較低時(shí)(50 cm-3),云滴譜離散度數(shù)值在0.6左右;而當(dāng)云滴數(shù)濃度較高時(shí),云滴離散度在0.3左右。因此,云滴譜離散度可以用ε =0.579-7.42×10-4Nc+4.2×10-7Nc2關(guān)系式進(jìn)行很好的描述。
表1 云微物理特性的統(tǒng)計(jì)表,包括云滴數(shù)濃度Nc,云水含量Qc,平均半徑Rm,平均體積半徑Rv,平均有效半徑Re,以及相對(duì)離散度ε,和Re/Rv比值因子βTab.1 Statistics of the cloud microphysical properties including cloud droplet number concentrationNc, cloud liquid water contentQc, the mean radiusRm, mean volume radiusRv, effective radiusRe, relative dispersionεandRe/Rvprefactorβ
圖1 云滴譜離散度ε與云滴數(shù)濃度Nc的依賴關(guān)系,云區(qū)域定義為Nc≥10 cm-3,以及(a)Qc≥0.001 g · m-3,(b)Qc≥0.01 g · m-3Fig.1 Relationships between cloud droplet relative disperisonεand droplet concentrationNc. The aera of clouds is de fi ned asNc≥10 cm-3, and (a)Qc≥0.001 g · m-3, (b)Qc≥0.01 g · m-3
從圖1a和1b的差別來看,流體水含量在0.001 <Lc< 0.01 cm-3范圍時(shí),主要對(duì)應(yīng)的是云滴數(shù)濃度較少,譜離散度較小的散點(diǎn)。流體水含量很小時(shí),云滴的尺度譜分布可能僅僅依賴于云滴初始的形成性質(zhì),與碰撞增長等其他的微物理過程沒有關(guān)系。因而,此時(shí)對(duì)應(yīng)的云滴譜離散度非常小。該區(qū)域或許對(duì)應(yīng)于云的邊緣區(qū)域,對(duì)于云整體的輻射特性以及降水過程的影響是非常微小的。因此,可以認(rèn)為圖1b更能描述該次降水層狀云的云滴譜離散度的變化規(guī)律。
從上述分析結(jié)果來看,用云滴數(shù)濃度進(jìn)行參數(shù)化云滴譜離散度是合理的。研究結(jié)果顯示,這次延安地區(qū)降水層狀云的云滴譜離散度隨著云滴數(shù)濃度增加存在明顯的遞減趨勢(shì)。該結(jié)果與 Ma et al(2010)的變化規(guī)律是一樣的;而與Martin et al(1994)和Liu and Daum(2002)的變化規(guī)律是截然相反的(可以從文獻(xiàn)Xie et al(2013)中看到不同的云滴數(shù)濃度與離散度的關(guān)系式)。
2.1 基于不同云滴尺度譜函數(shù)的云滴有效半徑的理論參數(shù)化
云滴有效半徑通??梢员欢x為下述的解析表達(dá)式:
其中:ρw是流體水密度,Lc和Nc分別表示云水含量(g · m-3)及云滴數(shù)濃度(cm-3)。其中β就是Re/Rv比值因子,定義為方程(10)的表達(dá)式。β值通常被簡單地認(rèn)為是常數(shù)(Martin et al,1994;Deng et al,2009;Nair et al,2012),用來描述云滴的有效半徑。另外,可以通過假定云滴尺度譜分布,解析得到β的函數(shù)(例如,Lognormal分布函數(shù),Gamma分布函數(shù)和Weibull分布函數(shù))。下文回顧基于不同的解析尺度譜分布函數(shù)給出的Re/Rv比值因子β的表達(dá)式 (Liu et al,2002),并進(jìn)一步與觀測(cè)得到的β進(jìn)行對(duì)比。
云滴尺度譜分布可以被描述為Lognormal分布函數(shù):
其中:r表示云滴的半徑;σ為譜型的寬度,直接與相對(duì)離散度有關(guān);Nc為單位體積的總云滴數(shù)濃度;rg是平均半徑。云滴譜的相對(duì)離散度ε可以表達(dá)為σ的函數(shù):
基于Lognormal分布函數(shù)(11),根據(jù)方程(10)β的定義,可以得到:
另外,云滴尺度譜分布也可以用Gamma分布函數(shù)來描述,該分布函數(shù)的具體表達(dá)式如下:
其中:參數(shù)μ是譜型相關(guān)的參數(shù),直接與云滴譜相對(duì)離散度有關(guān)。云滴譜的相對(duì)離散度ε是μ的函數(shù),表達(dá)式如下:
基于Gamma分布函數(shù)(14),根據(jù)方程(10)β的定義,同樣也可以得到該分布函數(shù)相應(yīng)的β:
同樣也有很多觀測(cè)研究表明,Weibull分布函數(shù)也可來用來描述云滴尺度譜分布:
其中:參數(shù)q是譜型參數(shù),與相對(duì)離散度直接相關(guān)。云滴譜的相對(duì)離散度ε可以描述為q的函數(shù):
基于Weibull分布函數(shù)(17),根據(jù)方程(10)β的定義,可以得到該分布函數(shù)相應(yīng)的β的表達(dá)式,具體如下:
圖2給出了不同的云滴尺度譜分布函數(shù)得到β的表達(dá)式(13)、(15)和(19),以及與該次飛機(jī)觀測(cè)結(jié)果的對(duì)比。該圖顯示,3種不同的云滴尺度譜分布函數(shù)得到的β都能較好地反映觀測(cè)結(jié)果,都具有較大的R2值。從R2值的大小比較來看,Lognormal分布函數(shù)給出了最大的R2值,達(dá)到0.81。次之是 Gamma分布函數(shù),R2值為0.70,最小的R2值是Weibull分布函數(shù)給出的,為0.62。
圖2 基于觀測(cè)結(jié)果,以及基于不同云滴尺度譜分布函數(shù)(Lognormal分布函數(shù), Gamma分布函數(shù)以及Weibull分布函數(shù))得到Re/Rv比值因子β與相對(duì)離散度ε的關(guān)系Fig.2 Relationships betweenRe/Rvprefactorβand relative dispersion derivedεfrom observations, and different cloud droplet size distributions (Lognormal function,Gamma function and Weibull function)
2.2 云滴有效半徑的理論參數(shù)化與觀測(cè)結(jié)果對(duì)比
在上個(gè)小節(jié)中,基于不同云滴尺度譜分布函數(shù),解析得到了Re/Rv比值因子β;并進(jìn)一步與觀測(cè)得到結(jié)果進(jìn)行對(duì)比,顯示了這3種云滴尺度譜分布函數(shù)都可以較好地描述該參數(shù)β。在本小節(jié)中,利用解析得到的β表達(dá)式描述的云滴有效半徑Re(Re=βRv),與觀測(cè)取得的云滴有效半徑進(jìn)行對(duì)比,來確定云滴有效半徑的理論參數(shù)化是否能很好地描述云滴有效半徑。
圖3給出了基于不同的云滴尺度譜分布函數(shù)以及β= 1.22,理論給出的云滴有效半徑參數(shù)化與觀測(cè)結(jié)果的對(duì)比。該圖顯示,4種不同的理論參數(shù)化方案(其中包括β為常數(shù))基本上都可以反映觀測(cè)到的云滴有效半徑。雖然β為常數(shù)的參數(shù)化方案(圖3d)也可以描述觀測(cè)到的結(jié)果,但是該方案給出的云滴有效半徑與觀測(cè)結(jié)果之間的相對(duì)誤差較大(相應(yīng)值達(dá)到6%)。相較于β為常數(shù)的參數(shù)化方案,另外3種不同的云滴尺度譜分布函數(shù)給出參數(shù)化方案則更為準(zhǔn)確地描述了觀測(cè)到的云滴有效半徑。對(duì)于Lognormal分布函數(shù),Gamma分布函數(shù)以及Weibull分布函數(shù),得到的云滴有效半徑與觀測(cè)結(jié)果之間的相對(duì)誤差分別為1%,3%,和3%。
因此,相對(duì)于β為常數(shù)的參數(shù)化方案,這3種云滴尺度譜分布函數(shù)(Lognormal分布函數(shù),Gamma分布函數(shù)以及Weibull分布函數(shù))給出的參數(shù)化方案可以更好地描述云滴的有效半徑。值得指出的是,其中Lognormal分布函數(shù)的參數(shù)化方案給出的云滴有效半徑與觀測(cè)結(jié)果之間的相對(duì)誤差最小。因此,Lognormal分布函數(shù)給出的參數(shù)化方案能夠更好地描述云滴有效半徑。
圖3 基于不同云滴尺度譜分布(Lognormal分布函數(shù),Gamma分布函數(shù),Weibull分布函數(shù),以及β=1.22)得到云滴有效半徑與觀測(cè)結(jié)果的對(duì)比其中RD為與觀測(cè)結(jié)果對(duì)比的相對(duì)誤差(,ai是觀測(cè)值,bi是參數(shù)化計(jì)算值,N是總的數(shù)據(jù)個(gè)數(shù))Fig.3 Comparison of parameterization of effective radius derived from different cloud droplet size distributions (Lognormal function, Gamma function and Weibull function) with observations RD is the relative differences compared to observations ((,aiis the observed value,biis value derived from parameterization, andNis the total number.)
本文針對(duì)延安地區(qū)(位于中國西北地區(qū))一次降水層狀云的飛機(jī)觀測(cè)資料得到的云滴尺度譜分布進(jìn)行分析。首先得到該次過程中的云微物理特性的統(tǒng)計(jì)值(最大值,平均值,中值及標(biāo)準(zhǔn)偏差),其中包括云微物理量云滴數(shù)濃度(Nc),云水含量(Qc),云滴的半徑(Rm),體積半徑(Rv),以及有效半徑(Re),云滴譜離散度(ε)以及Re/Rv因子β;并指出云滴譜相對(duì)離散度ε與云滴數(shù)濃度Nc有著很好的遞減關(guān)系式,所對(duì)應(yīng)的關(guān)系式可以表述為ε =0.579 - 7.42×10-4Nc+4.2×10-7Nc2。進(jìn)一步發(fā)現(xiàn)云滴尺度譜的Lognormal分布函數(shù),Gamma分布函數(shù)以及Weibull分布函數(shù)所描述的云滴有效半徑與觀測(cè)結(jié)果較為一致。而其中Lognormal分布函數(shù)的參數(shù)化方案給出的云滴有效半徑與觀測(cè)結(jié)果之間的相對(duì)誤差最小,顯示其能夠更好地描述云滴有效半徑。該結(jié)果將會(huì)加強(qiáng)對(duì)于氣溶膠在中國西北地區(qū)間接輻射強(qiáng)迫的認(rèn)識(shí)。
值得指出的是,本文的參數(shù)化結(jié)果都是基于延安地區(qū)的一次降水層狀云的飛機(jī)觀測(cè)結(jié)果。但云過程是非常復(fù)雜的過程,與氣溶膠物理化學(xué)特性以及大氣環(huán)境(包括大氣濕度,穩(wěn)定度)等有著密切的關(guān)系(Liu and Daum,2002;Liu et al,2002;解小寧等,2015),下一步需要更多時(shí)次及不同云類型等的飛機(jī)觀測(cè)資料,來研究云微物理特性以及云滴有效半徑的參數(shù)化。
王揚(yáng)鋒, 雷恒池, 樊 鵬, 等. 2007. 一次延安層狀云微物理結(jié)構(gòu)特征及降水機(jī)制研究 [J].高原氣象, 26(2): 388 – 395. [Wang Y F, Lei H C, Fan P, et al. 2007. Analyses on microphysical characteristic and precipitation mechanism on stratiform cloud in Yan’an [J].Plateau Meteorology, 26(2): 388 – 395.]
解小寧, 劉曉東, 王昭生. 2015. 云滴譜離散度對(duì)氣溶膠間接效應(yīng)影響的研究進(jìn)展 [J].地球環(huán)境學(xué)報(bào), 6(2): 127 – 134. [Xie X N, Liu X D, Wang Z S. 2015. Review of influence of cloud droplet spectral dispersion on aerosol indirect effects [J].Journal of Earth Environment, 6(2): 127 – 134.]
Deng Z, Zhao C, Zhang Q, et al. 2009. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area [J].Atmospheric Research, 93: 888 – 896.
Gultepe I, Isaac G, Leaitch W, et al. 1996. Parameterizations of marine stratus microphysics based on in situ observations: implications for GCMS [J].Journal of Climate, 9: 345 – 357.
Liu Y, Daum P H, Chai S K, et al. 2002. Cloud parameterizations, cloud physics, and their connections: An overview [M]//Pandalai S G. Recent Research Developments in Geophysics. Trivandrum: Research Signpost Publisher, 119 – 142.
Liu Y, Daum P H. 2000. Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius [J].Geophysical Research Letters, 27: 1903 – 1906.
Liu Y, Daum P H. 2002. Indirect warming effect from dispersion forcing [J].Nature, 419: 580 – 581.
Ma J, Chen Y, Wang W, et al. 2010. Strong air pollution causes widespread haze-clouds over China [J].Journal of Geophysical Research, 115, D18204, doi: 10.1029/2009JD013065.
Martin, G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets inwarmstratocumulus clouds [J].Atmospheric Research, 51: 1823 – 1842.
Nair S, Sanjay J, Pandithurai G, et al. 2012. On the parameterization of cloud droplet effective radius using CAIPEEX aircraft observations for warm clouds in India [J].Atmospheric Research, 108 : 104 – 114.
Slingo A. 1990. Sensitivity of the earth’s radiation budget to changes in low clouds [J].Nature, 343: 493 – 51.
Xie X N, Liu X D, Peng Y, et al. 2013. Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion [J].Tellus B, 65, 19054, doi: 10.3402/tellusb. v65i0.19054.
Xie X N, Liu X D. 2013. Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect [J].Advances in Atmospheric Sciences, 30(5): 1313 – 1319.
Zhao C, Tie X, Brasseur G, et al. 2006. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing [J].Geophysical Research Letters, 33, L16809, doi: 10.1029/2006GL026653.
Cloud microphysical properties and parameterization of cloud droplet effective radius from aircraft measurements: aircraft observational results from a stratiform precipitation cloud
XIE Xiaoning1, WANG Zhaosheng1, WANG Hongli2, YUE Zhiguo3
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. Shaanxi Radio & TV University, Xi’an 710119, China; 3. Weather Modi fi cation Of fi ce of Shaanxi Province, Xi’an 710015, China)
Background, aim, and scopeCloud is one of the most important components of the Earthatmosphere system, which covers approximately half of our planet surface and affect its radiative energy balance, as well as the global and regional spatial-temporal distribution of surface precipitation. The treatment of radiative properties of clouds is very important in numerical models that can simulate the expected climate change produced by increasing concentrations of anthropogenic greenhouse gases and aerosols. The radiative properties of clouds (including optical thickness, the single scattering albedo, and the asymmetry factor) are mainly dependent on the cloud droplet effective radius, which is defined as the ratio of the third to secondmoment of the cloud droplet size distribution. Hence, the parameterization of cloud droplet effective radius in the various climate and weather models is fundamental to understanding the radiative effects of clouds, and its accurate paremeterization is also especially of importance to evaluate the aerosol indirect effect and can reduce the uncertity of the aerosol indirect effect.Materials and methodsHere, we use an observed data about the cloud droplet size distribution, which is derived from aircraft measurements for a stratiform cloud in Yan’an area in September 17, 2003 (Northwest China). This cloud dropet data can dispaly the cloud microphysical properties including the droplet number concentration, the cloud water content, the cloud droplet radius, volume radius, effective radius, the cloud droplet relative dispersion, and the prefactor about the ratio of the effective radius and the volume radius. Additionally, using the analytical methods based on the de fi nation of effective radius, we can analytically derive the theoretical parameterization of the cloud droplet effective radius interms of three size distribution funcions described as the Lognormal, the Gamma, and the Weibull expressions, which are usually employed in the numerical models based on the various scales.Results(1) We summarize the Maximum, Mean, Median, and STDEV (Standard Deviation) values about the cloud microphysical properties including the cloud droplet number concentration (Nc), the cloud water content (Qc), the cloud droplet radius (Rm), the volume radius (Rv), the effective radius (Re), the cloud droplet relative dispersion (ε), and theRe/Rvprefactorβfor this stratiform cloud in Yan’an area (Northwest China). (2) Based on the observed data about the cloud droplet number concentrationNcand the cloud droplet relative dispersionε, we can derive aε—Ncnegative relationship asε= 0.579 - 7.42×10-4Nc+ 4.2×10-7Nc2, which represents the cloud droplet relative dispersion decreases with the increase in cloud droplet number concentration. Thisε—Ncrelationship can be directly coupled to the numerical models to evaluated the cloud dropet dispersion effect. (3) We fi nd that theoretical parameterization of the cloud droplet effective radius based on the Lognormal, the Gamma, and the Weibull expressions all fi t better with the observed results, where the parameterization of the Lognormal expression is best for this stratiform cloud in Yan’an area.DiscussionIt is worthy noting that all the observed results is derived from only one case interms of the stratiform cloud in Yan’an area. However, as we know, the macrophysical and microphysical cloud processes are very complex, which is closely related to atmospheric environment (including atmospheric humidity and stability), as well as the aerosol physical and chemical properties. Additionally, various types of clouds have different environment factors, they also have change the cloud droplet effective radius. Hence, we need much more data derived from aircraft measurements including different cloud types, different atmospheric environment, and different aerosol backgrouds to study the paremeterization of the cloud droplet effective radius.ConclusionsCompared with these aircraft measurements of cloud droplet size distributions, it is found that the parameterization of the cloud droplet effective radius based on Lognormal, Gamma, and Weibull expressions all fi t better with the observed results from aircraft measurements, and the parameterization based on Lognormal expression is best for this stratiform cloud in Yan’an area.Recomendations and perspectivesWe recommend that Lognormal expression is the best parameterization of the cloud droplet effective radius for this stratiform cloud in Yan’an area. These results could shed light on understanding the aerosol indirect radiative forcing in Northwest China. Additionally, theε—Ncrelationship has been presented based on this case, which can be coupled to the model to evaluate the cloud droplet dispersion effect.
cloud droplet size distribution; spectral dispersion; cloud droplet effective radius
XIE Xiaoning, E-mail: xnxie@ieecas.cn
10.7515/JEE201601002
2015-11-24;錄用日期:2016-01-31
Received Date:2015-11-24;Accepted Date:2016-01-31
國家自然科學(xué)基金項(xiàng)目(41105071);中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA05110101);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2011CB403406)
Foundation Item:National Natural Science Foundation of China (41105071); Strategic Priority Research Program of Chinese Academy of Sciences (XDA05110101); National Basic Research and Development Program of China (2011CB403406)
解小寧,E-mail: xnxie@ieecas.cn