• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      低氧和自噬與腫瘤的發(fā)生發(fā)展

      2016-03-10 10:42:12陳冠輝侯勁松
      國際口腔醫(yī)學(xué)雜志 2016年5期
      關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)低氧調(diào)控

      陳冠輝 侯勁松

      中山大學(xué)光華口腔醫(yī)學(xué)院·附屬口腔醫(yī)院口腔頜面外科;廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室 廣州 510055

      低氧和自噬與腫瘤的發(fā)生發(fā)展

      陳冠輝侯勁松

      中山大學(xué)光華口腔醫(yī)學(xué)院·附屬口腔醫(yī)院口腔頜面外科;廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室廣州 510055

      自噬作為真核生物的一種應(yīng)激調(diào)控機(jī)制,既可以促進(jìn)腫瘤的發(fā)生發(fā)展,又可以抑制腫瘤的增殖。在腫瘤局部低氧的微環(huán)境下,低氧誘導(dǎo)因子-1α、哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)轉(zhuǎn)導(dǎo)通路抑制、內(nèi)質(zhì)網(wǎng)應(yīng)激均可促進(jìn)自噬的發(fā)生。在腫瘤快速地發(fā)生發(fā)展過程中,腫瘤的糖代謝功能增強(qiáng)、活性氧族增多、窖蛋白1下調(diào)以及上皮間質(zhì)轉(zhuǎn)化的激活均誘導(dǎo)了自噬的發(fā)生并促進(jìn)腫瘤的局部浸潤、侵襲轉(zhuǎn)移和耐藥,因此,抑制自噬可能為腫瘤治療提供一種新的策略。

      低氧;自噬;腫瘤

      This study was supported by National Natural Science Foundation of Guangdong Province(10151008901000025),Science and Technology Project of Guangdong Province(013B021800059) and Guangzhou Municipal Bureau of Science and Technology Cooperation in Foreign Science and Technology Special Fund(2012J5100008).

      [Abstract]Autophagy is a stress regulatory mechanism that generally exists in eukaryotic cells. This process promotes tumor development and inhibits tumor proliferation. Autophagy is activated by increasing hypoxia inducible factor-1α level,suppressing the mammalian target of the rapamycin signal pathway,and inducing endoplasmic reticulum stress in the tumor hypoxia microenvironment. Autophagy is stimulated through enhancement of glucose metabolism,increase in reactive oxygen species level,downregulation of caveolin 1 expression,and activation of epithelial-mesenchymal transition in tumor during rapid cell proliferation and invasion. Autophagy promotes tumor invasion,metastasis,and drug resistance. Therefore,novel strategies for inhibiting autophagy may serve as promising therapeutic approach for tumor treatment.

      [Key words]hypoxia;autophagy;tumor

      細(xì)胞通過自噬既可以抵御病原體的入侵,又可保護(hù)細(xì)胞免受細(xì)胞內(nèi)毒物的損傷。實(shí)體瘤在增殖過程中往往形成局部低氧的微環(huán)境,本文著重就低氧介導(dǎo)自噬以及自噬在腫瘤發(fā)生發(fā)展中的相關(guān)性研究進(jìn)展作一綜述。

      1 自噬

      自噬是在真核生物細(xì)胞中對(duì)細(xì)胞內(nèi)部受損的細(xì)胞器、錯(cuò)誤折疊的蛋白質(zhì)和侵入的病原體進(jìn)行降解,利用降解產(chǎn)物為細(xì)胞的再生和修復(fù)提供新的原料,實(shí)現(xiàn)細(xì)胞的循環(huán)再利用的一種連續(xù)的生物學(xué)過程。自噬包括一下四個(gè)不同的階段。1)自噬囊泡的形成及延伸:?jiǎn)螌拥募?xì)胞內(nèi)膜包裹損傷的細(xì)胞器和侵入的病原體,形成有核的囊泡結(jié)構(gòu)并逐漸延伸;2)自噬小體的形成:自噬囊泡不斷延伸并融合形成直徑大約為1 μm的雙層細(xì)胞膜結(jié)構(gòu)的自噬小體;3)自噬溶酶體的形成:自噬小體與溶酶體融合,形成自噬溶酶體;4)降解和再利用:被包裹的內(nèi)容物在溶酶體內(nèi)發(fā)生降解,產(chǎn)生能量。自噬可分為巨自噬、微自噬及分子伴侶介導(dǎo)的自噬[1],本文所指的自噬為巨自噬。

      自噬在腫瘤中扮演著雙重角色。Wang等[2]發(fā)現(xiàn),采用3-甲基腺嘌呤(3-methyladenine,3-MA)抑制雷帕霉素(Rapamycin)增強(qiáng)口腔鱗狀細(xì)胞癌細(xì)胞的自噬活性,可調(diào)控細(xì)胞的增殖、遷移和侵襲能力。Weng等[3]還發(fā)現(xiàn)在沉默Beclin-1基因后,自噬標(biāo)志性蛋白磷脂酰乙醇胺-微管相關(guān)蛋白1輕鏈3(microtubule-associated protein 1 light chain 3,LC3)的表達(dá)明顯降低,自噬被抑制,導(dǎo)致口腔舌鱗狀細(xì)胞癌細(xì)胞的增殖、侵襲和轉(zhuǎn)移能力明顯增強(qiáng),促進(jìn)舌鱗狀細(xì)胞癌的進(jìn)展。盡管在多種腫瘤中發(fā)現(xiàn)了Beclin-1基因的缺失或Beclin-1蛋白的表達(dá)下降,但Beclin-1蛋白相關(guān)的抑癌機(jī)制仍不十分清楚。在腫瘤的快速增殖階段,腫瘤局部形成低氧、低血以及酸性的微環(huán)境。自噬可保護(hù)低氧環(huán)境下的腫瘤細(xì)胞不被細(xì)胞毒性T細(xì)胞(cytotoxic T lymphocyte,CTL)殺傷,其機(jī)制是通過P62的降解及信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子(signal transduction and activator of transcription,STAT)3磷酸化而起作用的[4]。

      2 低氧與自噬

      2.1低氧誘導(dǎo)因子-1與自噬

      低氧誘導(dǎo)因子(hypoxia inducible factor,HIF)-1是一種含兩個(gè)亞基的異源二聚體轉(zhuǎn)錄因子,包括HIF-1α和HIF-1β。B細(xì)胞淋巴瘤2/腺病毒E1B 19×103相互結(jié)合蛋白(B cell lymphoma 2/ adenovirus E1B 19×103interacting protein,BNIP)3是受HIF-1直接調(diào)控的細(xì)胞死亡相關(guān)蛋白,為B細(xì)胞淋巴瘤(B cell lymphoma,BCL)2家族中只含BH3結(jié)構(gòu)域亞家族成員。編碼BNIP3靶基因的啟動(dòng)子區(qū)域包括兩個(gè)低氧反應(yīng)元件(hypoxia response element,HRE)位點(diǎn),即HRE1和HRE2。在腫瘤局部低氧環(huán)境下,HIF-1α與HRE2位點(diǎn)結(jié)合,誘導(dǎo)BNIP3蛋白表達(dá),致Beclin-1-BCL2復(fù)合物解離并釋放出Beclin-1因子,通過ClassⅢ/磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase,PI3K)信號(hào)轉(zhuǎn)導(dǎo)通路激活自噬[5];因此,臨床上使用ClassⅢ/ PI3K抑制劑,例如奧特曼寧、3-MA和LY294002均可抑制自噬;而ClassⅠ/PI3K則是自噬的負(fù)性調(diào)節(jié)分子,其磷酸化后結(jié)合蛋白激酶B (protein kinase B,PKB)及其活化分子磷脂酰肌醇依賴性蛋白激酶1,抑制自噬的發(fā)生[6]。Zhang等[7]通過研究發(fā)現(xiàn)在小鼠胚胎成纖維細(xì)胞(mouse embryonic fibroblast,MEF)中,敲除Hif-1α基因可特異性地阻斷Beclin-1的表達(dá),進(jìn)而抑制自噬。

      2.2哺乳動(dòng)物雷帕霉素靶蛋白信號(hào)轉(zhuǎn)導(dǎo)通路與自噬

      雷帕霉素靶蛋白(target of Rapamycin,TOR)是最初發(fā)現(xiàn)于啤酒酵母突變株內(nèi)的一種非常保守的絲氨酸-蘇氨酸激酶(serine-threonine kinase,STK)。在哺乳動(dòng)物中也存在著一種結(jié)構(gòu)和功能高度保守的TOR,被稱為哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)。mTOR是細(xì)胞在適應(yīng)生理?xiàng)l件下和環(huán)境壓力過程中調(diào)控生長(zhǎng)和自噬平衡的關(guān)鍵性組分[8],其調(diào)控主要受STK11-腺苷酸激酶(adenosine monophosphate kinase,AMPK)-mTOR信號(hào)轉(zhuǎn)導(dǎo)通路和PI3K-PKB-mTOR信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)節(jié)。mTOR存在著兩種不同的復(fù)合體,即mTORC1和mTORC2。在低氧條件下,PKB蛋白活性下調(diào),自噬相關(guān)基因(autophagy-related gene,ATG)表達(dá)減弱,mTOR信號(hào)轉(zhuǎn)導(dǎo)通路的信號(hào)轉(zhuǎn)導(dǎo)被抑制,促進(jìn)自噬發(fā)生。

      Degtyarev等[9]通過試驗(yàn)證實(shí),腫瘤抑制基因第10號(hào)染色體缺失的磷酸酶和張力蛋白同源基因(phosphatase and tensin homology deleted on chromosome ten,PTEN)可抑制PKB蛋白的活性,促進(jìn)自噬的發(fā)生。另外在低氧條件下,細(xì)胞內(nèi)往往伴有AMP/腺苷三磷酸(adenosine triphosphate,ATP)的比例上升,從而激活A(yù)MPK,接著AMPK再被STK11[也稱肝激酶B1(liver kinase B1,LKB1)]磷酸化而增強(qiáng)活性,活化的AMPK可以通過磷酸化激活結(jié)節(jié)性硬化癥復(fù)合物(tuberous sclerosis complex,TSC)2,提高TSC1/TSC2復(fù)合物的活性,進(jìn)而負(fù)調(diào)控mTORC1表達(dá),促進(jìn)自噬的發(fā)生[10]。

      2.3內(nèi)質(zhì)網(wǎng)應(yīng)激與自噬

      在低氧條件下,未折疊及錯(cuò)誤折疊的蛋白質(zhì)可引起內(nèi)質(zhì)網(wǎng)應(yīng)激,應(yīng)阻止大量錯(cuò)誤折疊的蛋白質(zhì)激活未折疊蛋白質(zhì)反應(yīng)(unfolded protein response,UPR)。UPR分別受蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase R-like endoplasmic reticulum kinase,PERK)、內(nèi)質(zhì)網(wǎng)核信號(hào)分子1和激活轉(zhuǎn)錄因子(activating transcription factor,ATF)6這三個(gè)內(nèi)質(zhì)網(wǎng)應(yīng)激感受器調(diào)控。Rzymski等[11]發(fā)現(xiàn):錯(cuò)誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)中累積激活PERK,磷酸化真核生物起始因子2α(eukaryotic translation initiation factor 2α,elF2α);在低氧情況下,通過ATF4激活LC3的轉(zhuǎn)錄誘導(dǎo),LC3在自噬體膜中的豐度最高,被公認(rèn)為監(jiān)測(cè)自噬體形成和自噬活性的標(biāo)志物。再有,UPR的激活誘導(dǎo)ULK1(UNC51-like kinase 1)蛋白的表達(dá),ULK1是ULK家族的第一個(gè)成員,是自噬mTOR信號(hào)轉(zhuǎn)導(dǎo)通路下游的第一個(gè)靶蛋白質(zhì)并對(duì)其有負(fù)反饋調(diào)節(jié)的作用,進(jìn)而促進(jìn)自噬的發(fā)生[12]。

      3 自噬促進(jìn)腫瘤的發(fā)生發(fā)展

      3.1腫瘤糖代謝與自噬

      在腫瘤快速的發(fā)生發(fā)展中,因局部的微環(huán)境發(fā)生改變,腫瘤細(xì)胞的能量需求和合成代謝被重新編程,為滿足對(duì)能量代謝的需要,腫瘤細(xì)胞出現(xiàn)了由線粒體氧化磷酸化到對(duì)糖代謝產(chǎn)能依賴增強(qiáng)的現(xiàn)象,即瓦伯格效應(yīng)[13]。大鼠肉瘤病毒(rat sarcoma,Ras)致癌基因是第一種被闡述于自噬促進(jìn)腫瘤細(xì)胞糖酵解的基因,在含有Ras基因的MEF以及人的乳腺癌細(xì)胞中,自噬被抑制后,其糖酵解功能減弱,細(xì)胞增殖緩慢[14]。同時(shí)在低氧的微環(huán)境條件下,HIF-1蛋白介導(dǎo)了溶質(zhì)載體蛋白(solute carrier,SLC)2A1和SLC2A3的表達(dá),最終導(dǎo)致了葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporter,GLUT)表達(dá)上調(diào),促進(jìn)葡萄糖分解,ATP上升,腫瘤細(xì)胞持續(xù)增殖[15]。臨床上使用GLUT抑制劑根皮蛋白可抑制已糖激酶的活性,從而削減腫瘤細(xì)胞糖代謝作用[16];但在低氧環(huán)境下,腫瘤細(xì)胞持續(xù)的糖代謝產(chǎn)生了大量的乳酸終產(chǎn)物,細(xì)胞內(nèi)pH嚴(yán)重下降,此時(shí) HIF-1誘導(dǎo)發(fā)生了單羧酸轉(zhuǎn)運(yùn)蛋白4以及碳酸酐酶9和12的表達(dá),通過調(diào)節(jié)pH,改善腫瘤細(xì)胞局部酸性微環(huán)境,維持腫瘤細(xì)胞的生長(zhǎng)[17]。

      3.2活性氧族與自噬

      活性氧族(reactive oxygen species,ROS)是較常態(tài)氧反應(yīng)性更高的含氧化合物的總稱,產(chǎn)生于機(jī)體的代謝過程中,可以氧化多種細(xì)胞組分,調(diào)節(jié)細(xì)胞的分化、增殖和程序性死亡,但高水平的ROS對(duì)細(xì)胞卻有損傷作用[18]。在低氧環(huán)境下,ROS與UPR的激活有關(guān),通過線粒體電子傳遞鏈將電子從還原型煙酰胺腺嘌呤二核苷酸和黃素腺嘌呤二核苷酸(flavin adenine dinucleotide,F(xiàn)AD)H2傳遞至分子氧,產(chǎn)生高水平的活性氧[19]。癌變細(xì)胞的ROS可以促進(jìn)核DNA的突變和細(xì)胞分裂,使腫瘤細(xì)胞獲得選擇性增生;但是過高的ROS對(duì)腫瘤細(xì)胞有直接的殺死作用。幾乎所有的腫瘤細(xì)胞內(nèi)超氧化物歧化酶(superoxide dismutase,SOD)的活性都明顯低于健康細(xì)胞,而SOD是清除ROS的主要酶,可導(dǎo)致腫瘤細(xì)胞清除ROS的能力低下;而某些抗腫瘤藥,如醌類抗腫瘤藥,可產(chǎn)生多種ROS,從而達(dá)到抑制腫瘤的目的[20]。低氧和ROS都可以介導(dǎo)自噬的發(fā)生。自噬作為在不利腫瘤微環(huán)境下的一種保護(hù)機(jī)制,可通過清除被ROS損傷的細(xì)胞器或蛋白質(zhì),降低ROS的水平,保護(hù)腫瘤細(xì)胞,促進(jìn)腫瘤細(xì)胞增殖[21]。Morimoto等[22]發(fā)現(xiàn),在SOD發(fā)生突變的轉(zhuǎn)基因小鼠體內(nèi),ROS水平明顯增高,mTOR信號(hào)轉(zhuǎn)導(dǎo)受到抑制,介導(dǎo)自噬的發(fā)生,進(jìn)而導(dǎo)致ROS水平下降,避免腫瘤細(xì)胞受損。

      3.3窖蛋白1與自噬

      細(xì)胞膜是細(xì)胞生命活動(dòng)的主要結(jié)構(gòu),胞質(zhì)膜向內(nèi)凹陷呈Ω形的大小為20~100 nm直徑的小窩,被稱微囊。窖蛋白(caveolin,CAV)曾被稱為小窩蛋白,是微囊上的一種特殊的支架蛋白質(zhì),其家族成員包括CAV1~3。其中,CAV1是一種多功能蛋白質(zhì),對(duì)細(xì)胞的轉(zhuǎn)化以及腫瘤的發(fā)生和轉(zhuǎn)移有著重要的作用[23]。CAV1在腫瘤發(fā)生的早期,抑制腫瘤的生長(zhǎng);但在腫瘤生長(zhǎng)的后期階段,卻能促進(jìn)腫瘤的生長(zhǎng)。在癌細(xì)胞與間質(zhì)細(xì)胞共培養(yǎng)系統(tǒng)中,CAV1在低氧下被間質(zhì)細(xì)胞內(nèi)的溶酶體所降解,LC3、ATG16L和BNIP等自噬標(biāo)志物高表達(dá),提示CAV1的下調(diào)可能誘導(dǎo)自噬的發(fā)生[24]。在敲除CAV1基因的HCT116結(jié)直腸癌細(xì)胞中,腫瘤細(xì)胞的糖攝取減少和ATP值下降,刺激AMPK信號(hào)轉(zhuǎn)導(dǎo)通路的信號(hào)轉(zhuǎn)導(dǎo),引發(fā)自噬,促進(jìn)腫瘤細(xì)胞的生存,提示CAV1可以負(fù)調(diào)控自噬[25]。

      胃癌細(xì)胞在低氧環(huán)境下,其HIF-1α表達(dá)上升導(dǎo)致CAV1表達(dá)下調(diào),刺激表皮生長(zhǎng)因子受體活化其下游的STAT3,無翅型小鼠乳房腫瘤病毒整合位點(diǎn)家族(wingless-type mice mammary tumour virus integration site family,WNT)信號(hào)轉(zhuǎn)導(dǎo)通路被激活促進(jìn)自噬的發(fā)生,促進(jìn)腫瘤細(xì)胞的生存和增殖[26]。目前,CAV1負(fù)調(diào)控自噬的具體分子機(jī)制仍不清楚,在肺上皮細(xì)胞中,CAV1激活A(yù)TG12-ATG5復(fù)合物,進(jìn)而抑制自噬的發(fā)生,這就為解釋CAV1如何調(diào)控自噬提供了新的思路[27]。

      3.4上皮間質(zhì)轉(zhuǎn)化與自噬

      上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是指上皮細(xì)胞失去極性,細(xì)胞間黏附物質(zhì)喪失,進(jìn)而獲得間質(zhì)樣細(xì)胞表型的過程,與腫瘤的局部浸潤、侵襲轉(zhuǎn)移和耐藥密切相關(guān)。在低氧的微環(huán)境下,腫瘤生長(zhǎng)因子(tumor growth factor,TGF)β通過STK復(fù)合體磷酸化Smad,并與HIF-1共同作用誘導(dǎo)EMT的發(fā)生,促進(jìn)腫瘤的遷移[28]。

      再有,HIF-1與扭曲(twist)1基因啟動(dòng)子結(jié)合并促進(jìn)其表達(dá),接著與抗程序性細(xì)胞死亡蛋白BCL2形成復(fù)合物一道誘導(dǎo)EMT的發(fā)生[29]。在乳腺癌表達(dá)EMT的標(biāo)志蛋白Snail2中,自噬蛋白ATG5表達(dá),在敲低Beclin-1基因抑制自噬后,具有間質(zhì)樣型的腫瘤細(xì)胞對(duì)CTL敏感性增強(qiáng),這提示著EMT 可能激活自噬機(jī)制使得腫瘤細(xì)胞逃避免疫監(jiān)視[30]。那么,EMT 是如何調(diào)控自噬呢?基因芯片結(jié)果顯示,在EMT標(biāo)志物Snail基因表達(dá)的轉(zhuǎn)錄水平上,大部分自噬相關(guān)基因并未受到調(diào)節(jié),但是Beclin-1(ATG6)表達(dá)在Snail以及Snail-6SA的調(diào)控中明顯上調(diào),激活了自噬的發(fā)生[31];因此,EMT調(diào)控自噬這一新的機(jī)制可以為腫瘤細(xì)胞逃避免疫系統(tǒng)監(jiān)視問題提供新的解決思路。

      4 結(jié)語

      綜上所述,自噬作為真核生物的一種應(yīng)激調(diào)控機(jī)制,既可以促進(jìn)腫瘤的發(fā)展,又可以抑制腫瘤的增殖。在低氧介導(dǎo)下,自噬更多的是以一種保護(hù)性機(jī)制存在。低氧激活了包括HIF-1α在內(nèi)的許多信號(hào)轉(zhuǎn)導(dǎo)通路的信號(hào)轉(zhuǎn)導(dǎo)引起自噬,但腫瘤細(xì)胞是如何感知低氧環(huán)境以及這些信號(hào)通路是如何被激活的,仍不清楚。

      因低氧介導(dǎo)的自噬促進(jìn)了腫瘤細(xì)胞的耐藥性,因此可考慮通過自噬抑制劑抑制自噬,增加腫瘤細(xì)胞對(duì)抗腫瘤藥的敏感性,如氯喹、羥化氯喹已用于臨床試驗(yàn),但目前自噬導(dǎo)致耐藥的直接分子機(jī)制仍不十分清楚[32]。同時(shí),自噬在腫瘤中的作用也受腫瘤分期、組織分型和致瘤基因突變類型等因素的影響。隨著對(duì)自噬機(jī)制的深入研究,期望可以通過調(diào)控細(xì)胞自噬水平,抑制腫瘤細(xì)胞的發(fā)生發(fā)展,為臨床相關(guān)疾病的診斷及治療提供理論依據(jù)。

      [1]Mizushima N,Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell,2011,147(4):728-741.

      [2]Wang Y,Wang C,Tang H,et al. Decrease of autophagy activity promotes malignant progression of tongue squamous cell carcinoma[J]. J Oral Pathol Med,2013,42(7):557-564.

      [3]Weng J,Wang C,Wang Y,et al. Beclin1 inhibits proliferation,migration and invasion in tongue squamous cell carcinoma cell lines[J]. Oral Oncol,2014,50(10):983-990.

      [4]Noman MZ,Janji B,Kaminska B,et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression[J]. Cancer Res,2011,71(18):5976-5986.

      [5]Viry E,Paggetti J,Baginska J,et al. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity[J]. Biochem Pharmacol,2014,92(1):31-42.

      [6]Wu YT,Tan HL,Huang Q,et al. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy[J]. Autophagy,2009,5(6):824-834.

      [7]Zhang H,Bosch-Marce M,Shimoda LA,et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem,2008,283(16):10892-10903.

      [8]Maes H,Rubio N,Garg AD,et al. Autophagy:shaping the tumor microenvironment and therapeutic response[J]. Trends Mol Med,2013,19(7):428-446.

      [9]Degtyarev M,de Maziere A,Orr C,et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents[J]. J Cell Biol,2008 (1):101-116.

      [10]Papandreou I,Lim AL,Laderoute K,et al. Hypoxia signals autophagy in tumor cells via AMPK activity,independent of HIF-1,BNIP3,and BNIP3L[J]. Cell Death Differ,2008,15(10):1572-1581.

      [11]Rzymski T,Milani M,Pike L,et al. Regulation of autophagy by ATF4 in response to severe hypoxia [J]. Oncogene,2010(31):4424-4435.

      [12]Pike LR,Singleton DC,Buffa F,et al. Transcrip-tional up-regulation of ULK1 by ATF4 contributes to cancer cell survival[J]. Biochem J,2013,449(2):389-400.

      [13]Young VJ,Brown JK,Maybin J,et al. Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis[J]. J Clin Endocrinol Metab,2014,99(9):3450-3459.

      [14]Lock R,Roy S,Kenific C M,et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation[J]. Mol Biol Cell,2011(2):165-178.

      [15]Adekola K,Rosen ST,Shanmugam M. Glucose transporters in cancer metabolism[J]. Curr Opin Oncol,2012,24(6):650-654.

      [16]Courtnay R,Ngo DC,Malik N,et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K[J]. Mol Biol Rep,2015,42(4):841-851.

      [17]Brahimi-Horn MC,Bellot G,Pouysségur J. Hypoxia and energetic tumour metabolism[J]. Curr Opin Genet Dev,2011,21(1):67-72.

      [18]Azad MB,Chen Y,Gibson SB. Regulation of autophagy by reactive oxygen species(ros): implications for cancer progression and treatment[J]. Ant Red Signaling,2009(4):777-790.

      [19]Malhotra JD,Miao H,Zhang K,et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion[J]. Proc Natl Acad Sci U S A ,2008,105(47):18525-18530.

      [20]Ma T,Zhu J,Chen X,et al. High glucose induces autophagy in podocytes[J]. Exp Cell Res,2013,319 (6):779-789.

      [21]He C,Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet,2009,43:67-93.

      [22]Morimoto N,Nagai M,Ohta Y,et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene[J]. Brain Res,2007,1167:112-117.

      [23]Routray S. Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview[J]. Tumour Biol,2014,35(10):9487-9495.

      [24]Martinez-Outschoorn UE,Trimmer C,Lin Z,et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia,HIF1 induction and NFκB activation in the tumor stromal microenvironment[J]. Cell Cycle,2010,9(17):3515-3533.

      [25]Ha TK,Her NG,Lee MG,et al. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription[J]. Cancer Res,2012,72(16):4097-4109.

      [26]Kannan A,Krishnan A,Ali M,et al. Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition[J]. Eur J Cancer,2014,50(1):204-215.

      [27]Chen ZH,Cao JF,Zhou JS,et al. Interaction of caveolin-1 with ATG12-ATG5 system suppresses autophagy in lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol,2014,306(11):L1016- L1025.

      [28]Jiang J,Tang YL,Liang XH. EMT: a new vision of hypoxia promoting cancer progression[J]. Cancer Biol Ther,2011,11(8):714-723.

      [29]Sun T,Sun BC,Zhao XL,et al. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and twist1: a study of hepatocellular carcinoma[J]. Hepatology,2011,54(5):1690-1706.

      [30]Akalay I,Janji B,Hasmim M,et al. Epithelial-tomesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cellmediated lysis[J]. Cancer Res,2013,73(8):2418-2427.

      [31]Akalay I,Janji B,Hasmim M,et al. EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction[J]. Autophagy,2013,9(7):1104-1106.

      [32]Carew JS,Kelly KR,Nawrocki ST. Autophagy as a target for cancer therapy: new developments[J]. Cancer Manag Res,2012,4:357-365.

      (本文采編王晴)

      Hypoxia and autophagy and their correlation with tumorigenesis and development

      Chen Guanhui,Hou Jinsong. (Dept. of Oral and Maxillofacial Surgery,Guanghua School of Stomatology,Hospital of Stomatology,Sun Yat-sen University;Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055,China)

      R 739.8

      A

      10.7518/gjkq.2016.05.020

      2015-11-19;[修回日期]2016-03-26

      廣東省自然科學(xué)基金(10151008901000025);廣東省科技計(jì)劃項(xiàng)目(2013B021800059);廣州市科信局對(duì)外科技合作計(jì)劃項(xiàng)目(2012J5100008)

      陳冠輝,碩士,Email:8792645172@qq.com

      侯勁松,主任醫(yī)師,博士,Email:houjsgz@yahoo.com.cn

      猜你喜歡
      信號(hào)轉(zhuǎn)導(dǎo)低氧調(diào)控
      間歇性低氧干預(yù)對(duì)腦缺血大鼠神經(jīng)功能恢復(fù)的影響
      Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
      如何調(diào)控困意
      經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
      中國外匯(2019年15期)2019-10-14 01:00:34
      Wnt/β-catenin信號(hào)通路在低氧促進(jìn)hBMSCs體外增殖中的作用
      順勢(shì)而導(dǎo) 靈活調(diào)控
      SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
      HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
      裸鼴鼠不同組織中低氧相關(guān)基因的表達(dá)
      鈣敏感受體及其與MAPK信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系
      东辽县| 荥经县| 汉川市| 晋州市| 秀山| 象山县| 平潭县| 瓦房店市| 南雄市| 洞口县| 柳林县| 石首市| 广灵县| 峡江县| 青铜峡市| 松江区| 阜南县| 蒙阴县| 湘阴县| 临夏市| 大石桥市| 兖州市| 连州市| 贡嘎县| 阿勒泰市| 黎城县| 永定县| 长治市| 抚州市| 武川县| 江源县| 拜泉县| 安西县| 易门县| 乐山市| 岚皋县| 重庆市| 陆河县| 利津县| 皮山县| 屯留县|