• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      連接蛋白43調(diào)控成骨細(xì)胞分子機(jī)制

      2016-03-12 12:55:44劉剛薄占東
      國際骨科學(xué)雜志 2016年1期
      關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)骨細(xì)胞成骨細(xì)胞

      劉剛 薄占東

      530000 南寧,  廣西醫(yī)科大學(xué)第一附屬醫(yī)院骨關(guān)節(jié)外科

      ?

      連接蛋白43調(diào)控成骨細(xì)胞分子機(jī)制

      劉剛薄占東

      530000南寧,廣西醫(yī)科大學(xué)第一附屬醫(yī)院骨關(guān)節(jié)外科

      摘要連接蛋白43(CX43)是骨細(xì)胞中表達(dá)最多的縫隙連接蛋白,由CX43構(gòu)成的縫隙連接或半通道在骨細(xì)胞間通訊中發(fā)揮至關(guān)重要的作用。大量研究表明,CX43可影響骨細(xì)胞、成骨細(xì)胞的功能,最終影響骨骼的發(fā)育和塑形。然而,關(guān)于CX43調(diào)控骨的分子機(jī)制研究較少。該文就CX43調(diào)控成骨細(xì)胞分子機(jī)制作一綜述。

      關(guān)鍵詞連接蛋白43;骨細(xì)胞;成骨細(xì)胞;信號(hào)轉(zhuǎn)導(dǎo)

      骨骼的正常發(fā)育和維持依賴于骨原細(xì)胞、成骨細(xì)胞、骨細(xì)胞和破骨細(xì)胞間的緊密協(xié)同作用。在構(gòu)建和維持骨骼系統(tǒng)時(shí),為了實(shí)現(xiàn)骨骼系統(tǒng)結(jié)構(gòu)的完整性、機(jī)械能力和骨內(nèi)礦物質(zhì)平衡,4種細(xì)胞間的通訊不可或缺。研究發(fā)現(xiàn),成骨細(xì)胞、破骨細(xì)胞和骨細(xì)胞之間存在一種直接信號(hào)通道,即縫隙連接??p隙連接是一種跨膜通道,由細(xì)胞膜中連接蛋白單體排列成的六聚體(半通道)與相鄰細(xì)胞膜中的相似六聚體配對(duì)而成,進(jìn)而在兩細(xì)胞間形成親水性通道,相鄰細(xì)胞間的離子、小分子代謝物和第二信使等物質(zhì)可經(jīng)其進(jìn)行自由擴(kuò)散,從而實(shí)現(xiàn)相鄰細(xì)胞間的信號(hào)轉(zhuǎn)導(dǎo)[1]。Jordan等[2]研究發(fā)現(xiàn),連接蛋白43(CX43)主要在細(xì)胞核周圍表達(dá),在成骨細(xì)胞和骨細(xì)胞的非交界質(zhì)膜處也有表達(dá),這種亞細(xì)胞定位提示骨中的CX43可能不僅作為縫隙連接通道起作用。Gonzalez-Nieto等[3]研究證實(shí),在細(xì)胞液與胞外環(huán)境間的物質(zhì)交換過程中,縫隙連接還可作為半通道起作用。近期研究[4]發(fā)現(xiàn),CX43蛋白C末端可與蛋白激酶結(jié)合,主動(dòng)參與信號(hào)轉(zhuǎn)導(dǎo)過程而發(fā)揮作用。

      1CX43與骨骼疾病

      研究[5]表明,人類GJA1基因突變可導(dǎo)致眼齒指發(fā)育不良(ODDD,一種以管狀長骨增寬、顱面骨畸形及中節(jié)指骨發(fā)育不良或并指為特征的骨骼疾病)。研究[6-7]證實(shí),在小鼠ODDD模型中GJA1基因突變可引起骨骼幾何結(jié)構(gòu)、骨微結(jié)構(gòu)改變和骨量缺失。全部或部分敲除小鼠成骨細(xì)胞系GJA1基因后,小鼠表現(xiàn)出骨細(xì)胞分化延遲、骨質(zhì)疏松及與ODDD患者相同的骨骼結(jié)構(gòu)(如長骨周長增大伴骨髓腔擴(kuò)大和皮質(zhì)骨變薄)[8],這種骨髓腔擴(kuò)大和皮質(zhì)變薄的表現(xiàn)與老齡及骨病患者骨表型極為相似[9]。此外,GJA1基因突變還可引起與ODDD骨表型不同的顱骨干骺端發(fā)育不良[10]。

      2CX43與成骨細(xì)胞分化及骨形成

      CX43可通過調(diào)控成骨細(xì)胞分化、骨細(xì)胞活動(dòng)來調(diào)節(jié)骨形成和重塑,也可調(diào)控某些因子如核因子-κ B受體活化因子配體(RANKL)、骨保護(hù)素(OPG)的表達(dá)來調(diào)節(jié)骨重吸收。Lecanda等[11]建立CX43缺陷小鼠模型發(fā)現(xiàn),模型組中軸骨和四肢骨骨化明顯延遲,顱面骨畸形,從這些小鼠長骨和顱骨分離出的成骨細(xì)胞某些成骨基因表達(dá)減少,骨化延遲。此外,由CX43缺陷小鼠分離的成骨細(xì)胞或過表達(dá)CX45的成骨細(xì)胞系中,成骨標(biāo)志性物質(zhì)(如骨鈣素、Ⅰ型膠原α1、骨橋蛋白和Runx1)減少[12-13]。Loiselle等[14]建立小鼠CX43缺陷伴有股骨骨折模型,發(fā)現(xiàn)CX43可促進(jìn)骨折愈合。

      CX43調(diào)控骨細(xì)胞功能和骨質(zhì)量的機(jī)制非常復(fù)雜,在不同條件下會(huì)產(chǎn)生不同的作用。CX43不僅可以傳導(dǎo)骨合成代謝信號(hào),還可傳導(dǎo)骨分解代謝信號(hào),這取決于年齡、負(fù)荷狀態(tài),甚至其位置(骨膜或骨內(nèi)膜表面)[15]。CX43缺陷會(huì)降低力學(xué)負(fù)荷刺激引起的合成代謝效應(yīng),還會(huì)鈍化去負(fù)荷甚至高齡引起的骨丟失[16-17]。 在CX43 fl/fl、Dermol-Cre小鼠軟骨母細(xì)胞中,缺乏CX43可致使全身骨骼骨礦物質(zhì)密度降低和皮質(zhì)骨變薄[9];早期成骨細(xì)胞CX43缺陷只表現(xiàn)出骨體積、骨量和骨細(xì)胞數(shù)目輕微減少[12]。去除成熟骨細(xì)胞和成骨細(xì)胞中的CX43所導(dǎo)致的骨礦物質(zhì)密度變化幾乎不能用雙能X線骨密度測(cè)定法區(qū)別,而利用顯微CT僅檢測(cè)到股骨皮質(zhì)密度輕度降低[18-19]。

      3骨組織中CX43信號(hào)轉(zhuǎn)導(dǎo)分子機(jī)制

      包埋于骨基質(zhì)中的骨細(xì)胞、成骨細(xì)胞和破骨細(xì)胞經(jīng)CX43縫隙連接通道來協(xié)調(diào)相互間的功能,使骨骼對(duì)刺激產(chǎn)生精確的成骨和破骨反應(yīng)[20]。目前關(guān)于CX43調(diào)節(jié)成骨細(xì)胞分化的具體分子機(jī)制尚未明確。Niger等[21-22]研究證實(shí),有絲分裂原激活蛋白激酶(MAPK)/細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)及蛋白激酶C(PKC)信號(hào)轉(zhuǎn)導(dǎo)通路位于CX43下游,CX43高表達(dá)可激活MAPK/ERK及PKC,從而促進(jìn)成骨細(xì)胞分化相關(guān)基因的轉(zhuǎn)錄;反之,則抑制MAPK/ERK及PKC信號(hào)轉(zhuǎn)導(dǎo)通路,成骨相關(guān)基因轉(zhuǎn)錄減少。也有研究[23]認(rèn)為,CX43信號(hào)轉(zhuǎn)導(dǎo)與Wnt經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路相關(guān),其可促進(jìn)β-連環(huán)蛋白(β-catenin)累積、激活成骨分化和增加骨礦化。Wnt經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路的激活又可促進(jìn)CX43表達(dá)[24]。

      3.1CX43與骨合成代謝信號(hào)轉(zhuǎn)導(dǎo)通路

      CX43調(diào)控成骨細(xì)胞分化和基因表達(dá)與轉(zhuǎn)錄因子Runx2和Osterix(Sp7)有關(guān),而這兩個(gè)轉(zhuǎn)錄因子是骨形成的主要調(diào)控因子。在MC3T3-E1成骨細(xì)胞中,CX43過表達(dá)可增強(qiáng)Runx2報(bào)告基因的轉(zhuǎn)錄活性;相反,利用siRNA干擾CX43表達(dá),Runx2依賴性轉(zhuǎn)錄則受到抑制[25]。CX43主要通過調(diào)節(jié)其下游PKC家族δ亞型(PKCδ)和ERK來調(diào)節(jié)Runx2的轉(zhuǎn)錄活性,在PKCδ轉(zhuǎn)移至細(xì)胞核內(nèi)之前,其與CX43的C末端結(jié)合,調(diào)節(jié)Runx2的轉(zhuǎn)錄[26-27]。當(dāng)用藥物抑制細(xì)胞間縫隙連接通訊或低密度培養(yǎng)細(xì)胞時(shí),CX43對(duì)Runx2的作用減弱甚至消失;高密度培養(yǎng)時(shí)CX43才對(duì)Runx2發(fā)揮作用[22]。因此,在這一調(diào)節(jié)過程中,CX43是作為經(jīng)典縫隙連接通道而非其他功能如半通道發(fā)揮作用的。此外,成骨細(xì)胞中的Sp7也是CX43下游信號(hào)轉(zhuǎn)導(dǎo)通路的靶蛋白。在cKOTW2小鼠模型中,3月齡小鼠股骨中的Sp7 mRNA較對(duì)照組降低40%[9]。這一現(xiàn)象是繼發(fā)于Runx2轉(zhuǎn)錄活性降低還是CX43直接調(diào)節(jié)Sp7所致,至今仍不明了。

      GJA1基因功能獲得性突變或功能缺失性突變可影響斑馬魚鰭片的長短,分別引起長鰭和短鰭表型[28-29]。進(jìn)一步研究表明,CX43可調(diào)節(jié)影響鰭片生長的關(guān)鍵分泌因子腦信號(hào)蛋白3d(Sema 3d)的表達(dá),Sema 3d再經(jīng)叢蛋白A3(Plexin A3)和神經(jīng)纖毛蛋白-2a(NRP-2a)轉(zhuǎn)導(dǎo)信號(hào),依次調(diào)控關(guān)節(jié)形成和骨細(xì)胞增殖,最終影響鰭長和骨形態(tài)發(fā)生[30]。這表明在鰭片生長過程中,Sema 3d是CX43下游的關(guān)鍵靶蛋白。

      3.2CX43調(diào)控骨細(xì)胞凋亡和存活

      在多種骨代謝性疾病中,骨細(xì)胞凋亡增多[31]。骨細(xì)胞凋亡增多可損害骨細(xì)胞對(duì)力學(xué)刺激的反應(yīng)和細(xì)胞間信號(hào)轉(zhuǎn)導(dǎo)功能,導(dǎo)致骨吸收增加和骨質(zhì)量降低[32],以及破骨細(xì)胞形成增多,進(jìn)而引起皮質(zhì)骨重吸收增多。

      在cKOhOC老鼠模型中,應(yīng)用原位末端標(biāo)記法檢測(cè)股骨干皮質(zhì)骨中骨細(xì)胞的凋亡情況,結(jié)果顯示模型組凋亡骨細(xì)胞陽性率是對(duì)照組的2倍,空骨陷窩數(shù)是對(duì)照組的6倍[8]。應(yīng)用shRNA敲除MLOY4骨細(xì)胞樣細(xì)胞的GJA1基因后,細(xì)胞生存能力降低,同時(shí)破骨細(xì)胞分化因子如RANKL增多,OPG表達(dá)下降[8,33],破骨細(xì)胞形成增多。

      研究[19,33]表明,甲狀旁腺激素(PTH)和雙膦酸鹽化合物發(fā)揮抗凋亡作用時(shí)都需要CX43的參與;CX43的C末端可與β-抑制蛋白結(jié)合,有效地將β-抑制蛋白與甲狀旁腺激素受體(PTHR)1隔開,使得PTHR1可以持續(xù)發(fā)揮作用,同時(shí)細(xì)胞內(nèi)環(huán)磷酸腺苷(cAMP)積累,從而增強(qiáng)骨細(xì)胞存活能力。雙膦酸鹽化合物是骨重吸收的強(qiáng)烈抑制劑,其主要藥理作用是抑制破骨細(xì)胞的功能和存活[34]。研究發(fā)現(xiàn),雙膦酸鹽化合物可與細(xì)胞表面的磷酸酶結(jié)合[35-36],磷酸酶再作用于CX43,引起CX43半通道開放,接觸激活Src/ERK信號(hào)級(jí)聯(lián),抑制促凋亡蛋白Bad,激活CAAT/增強(qiáng)子結(jié)合蛋白β(C/EBPβ)的抗凋亡作用,從而抑制細(xì)胞凋亡,促進(jìn)成骨細(xì)胞和骨細(xì)胞存活[19,37]。

      3.3CX43與機(jī)械力傳導(dǎo)

      機(jī)械應(yīng)力是調(diào)節(jié)骨合成和分解代謝的重要因素。利用剪切力刺激體外活骨可產(chǎn)生 CX43依賴性鈣波[38-39],提示在骨細(xì)胞通過縫隙連接傳導(dǎo)機(jī)械力信號(hào)時(shí),鈣離子或鈣信號(hào)效應(yīng)器(如三磷酸肌醇)可能作為第二信使發(fā)揮作用。在MLO-Y4骨樣細(xì)胞中,流體剪切應(yīng)力可使α5β1-整合素磷酸化、構(gòu)象改變,然后與CX43的C末端物理性接觸,使CX43半通道開放,前列腺素E2(PGE2)由半通道釋放,PGE2信號(hào)通過其同源的EP2/4受體引起磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)通路活化和cAMP累積[40],促進(jìn)骨細(xì)胞存活。而cAMP/PKA和PI3K/AKT通路都匯聚至β-catenin[41],從而活化Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路,促進(jìn)β-catenin累積,激活成骨分化,增加骨的礦化。

      綜上所述,CX43在調(diào)節(jié)骨細(xì)胞功能、信號(hào)轉(zhuǎn)導(dǎo)、基因表達(dá)、骨細(xì)胞存活和凋亡以及機(jī)械傳導(dǎo)方面均發(fā)揮著至關(guān)重要的作用。CX43不僅可作為縫隙連接蛋白發(fā)揮作用(CX43高表達(dá),可激活MAPK/ERK及PKCδ,促進(jìn)成骨細(xì)胞分化相關(guān)基因如Runx2、Sp7的轉(zhuǎn)錄),還可作為半通道發(fā)揮作用(CX43半通道與其他蛋白如磷酸酶、整合素等相互作用,使其開放,釋放PGE2,從而活化Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路,促進(jìn)β-catenin的累積,激活成骨分化,增加骨的礦化)。相反,CX43的低表達(dá)可使成骨細(xì)胞分化延遲,進(jìn)而影響骨骼發(fā)育與塑性,最終導(dǎo)致骨骼畸形。然而,CX43發(fā)揮功能的途徑多而復(fù)雜,目前有關(guān)CX43調(diào)節(jié)成骨細(xì)胞分化的具體分子機(jī)制尚不十分清楚,通過CX43傳遞信息的第二信使與細(xì)胞功能之間的相互關(guān)系也需進(jìn)一步明確。明確CX43調(diào)節(jié)骨內(nèi)穩(wěn)態(tài)及對(duì)機(jī)械刺激、激素信號(hào)反應(yīng)的具體分子機(jī)制,可為某些骨骼疾病提供新的分子標(biāo)志物,為其治療提供新靶點(diǎn)。

      參考文獻(xiàn)

      [1]Stains JP, Watkins MP, Grimston SK, et al. Molecular mechanisms of osteoblast/osteocyte regulation by connexin43[J]. Calcif Tissue Int, 2014, 94(1):55-67.

      [2]Jordan K, Solan JL, Dominguez M, et al. Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells[J]. Mol Biol Cell, 1999, 10(6):2033-2050.

      [3]Gonzalez-Nieto D, Li L, Kohler A, et al. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors[J]. Blood, 2012, 119(22):5144-5154.

      [4]Herve JC, Derangeon M, Sarrouilhe D, et al. Gap junctional channels are parts of multiprotein complexes[J]. Biochim Biophys Acta, 2012, 1818(8):1844-1865.

      [5]Paznekas WA, Boyadjiev SA, Shapiro RE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia[J]. Am J Hum Genet, 2003, 72(2):408-418.

      [6]Dobrowolski R, Sasse P, Schrickel JW, et al. The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans[J]. Hum Mol Genet, 2008, 17(4):539-554.

      [7]Flenniken AM, Osborne LR, Anderson N, et al. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia[J]. Development, 2005, 132(19):4375-4386.

      [8]Bivi N, Condon KW, Allen MR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation[J]. J Bone Miner Res, 2012, 27(2):374-389.

      [9]Watkins M, Grimston SK, Norris JY, et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling[J]. Mol Biol Cell, 2011, 22(8):1240-1251.

      [10]Hu Y, Chen IP, de Almeida S, et al. A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia[J]. PLoS One, 2013, 8(8):e73576.

      [11]Lecanda F, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction[J]. J Cell Biol, 2000, 151(4):931-944.

      [12]Chung DJ, Castro CH, Watkins M, et al. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43[J]. J Cell Sci, 2006, 119(Pt 20):4187-4198.

      [13]Lecanda F, Towler DA, Ziambaras K, et al. Gap junctional communication modulates gene expression in osteoblastic cells[J]. Mol Biol Cell, 1998, 9(8):2249-2258.

      [14]Loiselle AE, Paul EM, Lewis GS, et al. Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing[J]. J Orthop Res, 2013, 31(1):147-154.

      [15]Grimston SK, Watkins MP, Stains JP, et al. Connexin43 modulates post-natal cortical bone modeling and mechano-responsiveness[J]. Bonekey Rep, 2013, 2:446.

      [16]Lloyd SA, Loiselle AE, Zhang Y, et al. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling[J]. Bone, 2013, 57(1):76-83.

      [17]Lloyd SA, Lewis GS, Zhang Y, et al. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading[J]. J Bone Miner Res, 2012, 27(11):2359-2372.

      [18]Zhang Y, Paul EM, Sathyendra V, et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone[J]. PLoS One, 2011, 6(8):e23516.

      [19]Plotkin LI, Lezcano V, Thostenson J, et al. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo[J]. J Bone Miner Res, 2008, 23(11):1712-1721.

      [20]鄭創(chuàng)義. 縫隙連接蛋白43在骨骼發(fā)育和塑形中的作用[J]. 國際骨科學(xué)雜志, 2009, 30(2):134-136.

      [21]Niger C, Luciotti MA, Buo AM, et al. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cdelta cascade[J]. J Bone Miner Res, 2013, 28(6):1468-1477.

      [22]Niger C, Buo AM, Hebert C, et al. ERK acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts[J]. Am J Physiol Cell Physiol, 2012, 302(7):C1035-C1044.

      [23]Bivi N, Pacheco-Costa R, Brun LR, et al. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice[J]. J Orthop Res, 2013, 31(7):1075-1081.

      [24]Mureli S, Gans CP, Bare DJ, et al. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling[J]. Am J Physiol Heart Circ Physiol, 2013, 304(4):H600-H609.

      [25]Lima F, Niger C, Hebert C, et al. Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-Delta/Runx2-dependent mechanism[J]. Mol Biol Cell, 2009, 20(11):2697-2708.

      [26]Hebert C, Stains JP. An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells[J]. J Cell Biochem, 2013, 114(11):2542-2550.

      [27]Niger C, Hebert C, Stains JP. Interaction of connexin43 and protein kinase C-delta during FGF2 signaling[J]. BMC Biochem, 2010, 11:14.

      [28]Sims K Jr, Eble DM, Iovine MK. Connexin43 regulates joint location in zebrafish fins[J]. Dev Biol, 2009, 327(2):410-418.

      [29]Hoptak-Solga AD, Nielsen S, Jain I, et al. Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration[J]. Dev Biol, 2008, 317(2):541-548.

      [30]Ton QV, Kathryn-Iovine M. Semaphorin3d mediates Cx43-dependent phenotypes during fin regeneration[J]. Dev Biol, 2012, 366(2):195-203.

      [31]Schaffler MB, Kennedy OD. Osteocyte signaling in bone[J]. Curr Osteoporos Rep, 2012, 10(2):118-125.

      [32]Jahani M, Genever PG, Patton RJ, et al. The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: a computer simulation[J]. J Biomech, 2012, 45(16):2876-2883.

      [33]Bivi N, Lezcano V, Romanello M, et al. Connexin43 interacts with betaarrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone[J]. J Cell Biochem, 2011, 112(10):2920-2930.

      [34]Rogers MJ, Crockett JC, Coxon FP, et al. Biochemical and molecular mechanisms of action of bisphosphonates[J]. Bone, 2011, 49(1):34-41.

      [35]Lezcano V, Bellido T, Plotkin LI, et al. Role of connexin 43 in the mechanism of action of alendronate: dissociation of anti-apoptotic and proliferative signaling pathways[J]. Arch Biochem Biophys, 2012, 518(2):95-102.

      [36]Morelli S, Bilbao PS, Katz S, et al. Protein phosphatases: possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation[J]. Arch Biochem Biophys, 2011, 507(2):248-253.

      [37]Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation[J]. J Biol Chem, 2005, 280(8):7317-7325.

      [38]Ishihara Y, Sugawara Y, Kamioka H, et al. Ex vivo real-time observation of Ca(2+) signaling in living bone in response to shear stress applied on the bone surface[J]. Bone, 2013, 53(1):204-215.

      [39]Ishihara Y, Sugawara Y, Kamioka H, et al. In situ imaging of the autonomous intracellular Ca(2+) oscillations of osteoblasts and osteocytes in bone[J]. Bone, 2012, 50(4):842-852.

      [40]Batra N, Burra S, Siller-Jackson AJ, et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels[J]. Proc Natl Acad Sci USA, 2012, 109(9):3359-3364.

      [41]Tu XL, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading[J]. Bone, 2012, 50(1):209-217.

      (收稿:2015-06-03; 修回:2015-10-28)

      (本文編輯:盧千語)

      DOI:10.3969/j.issn.1673-7083.2016.01.010

      通信作者:薄占東E-mail: zdb71718@163.com

      基金項(xiàng)目:國家自然科學(xué)基金(81460348)、廣西教育廳一般項(xiàng)目(2013YB314)

      猜你喜歡
      信號(hào)轉(zhuǎn)導(dǎo)骨細(xì)胞成骨細(xì)胞
      機(jī)械應(yīng)力下骨細(xì)胞行為變化的研究進(jìn)展
      調(diào)節(jié)破骨細(xì)胞功能的相關(guān)信號(hào)分子的研究進(jìn)展
      Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
      骨細(xì)胞在正畸牙移動(dòng)骨重塑中作用的研究進(jìn)展
      淫羊藿次苷Ⅱ通過p38MAPK調(diào)控成骨細(xì)胞護(hù)骨素表達(dá)的體外研究
      土家傳統(tǒng)藥刺老苞總皂苷對(duì)2O2誘導(dǎo)的MC3T3-E1成骨細(xì)胞損傷改善
      Bim在激素誘導(dǎo)成骨細(xì)胞凋亡中的表達(dá)及意義
      HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
      鈣敏感受體及其與MAPK信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系
      機(jī)械力對(duì)骨細(xì)胞誘導(dǎo)破骨細(xì)胞分化作用的影響
      灵璧县| 峡江县| 西丰县| 遂平县| 鞍山市| 嘉鱼县| 敦煌市| 岳西县| 米易县| 伽师县| 东乡族自治县| 尚志市| 和田县| 富民县| 宽城| 邵武市| 自治县| 镇远县| 年辖:市辖区| 乐清市| 邛崃市| 新源县| 池州市| 湛江市| 东丽区| 上蔡县| 沧州市| 镇安县| 潼南县| 沅江市| 西峡县| 庆云县| 郯城县| 印江| 星座| 阳山县| 政和县| 紫云| 读书| 伊春市| 扶绥县|