• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      祁連山中段白堊紀(jì)以來(lái)階段性構(gòu)造抬升過(guò)程的磷灰石裂變徑跡證據(jù)

      2016-03-17 05:35:04戚幫申胡道功楊肖肖張耀玲譚成軒豐成君
      地球?qū)W報(bào) 2016年1期
      關(guān)鍵詞:白堊紀(jì)磷灰石祁連山

      戚幫申, 胡道功, 楊肖肖, 張耀玲, 譚成軒, 張 鵬, 豐成君

      1)中國(guó)地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所, 北京 100081; 2)國(guó)土資源部新構(gòu)造與地質(zhì)災(zāi)害重點(diǎn)實(shí)驗(yàn)室, 北京 100081; 3)中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 北京 100029

      ?

      祁連山中段白堊紀(jì)以來(lái)階段性構(gòu)造抬升過(guò)程的磷灰石裂變徑跡證據(jù)

      戚幫申1, 2), 胡道功1)*, 楊肖肖3), 張耀玲1), 譚成軒1, 2), 張鵬1, 2), 豐成君1, 2)

      1)中國(guó)地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所, 北京 100081;2)國(guó)土資源部新構(gòu)造與地質(zhì)災(zāi)害重點(diǎn)實(shí)驗(yàn)室, 北京 100081; 3)中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 北京 100029

      摘要:祁連山作為青藏高原的東北邊界, 是研究青藏高原隆升和擴(kuò)展的重要區(qū)域, 利用磷灰石裂變徑跡分析反映的祁連山地區(qū)白堊紀(jì)以來(lái)階段性隆升和擴(kuò)展新認(rèn)識(shí)對(duì)理解青藏高原的隆升過(guò)程有重要的意義。分別采自南祁連陸塊、疏勒南山—拉脊山縫合帶、中祁連陸塊和北祁連縫合帶22個(gè)樣品的磷灰石裂變徑跡年齡介于(124±11) Ma與(13±2) Ma之間, 平均徑跡長(zhǎng)度介于(13.6±2.3) μm和(10.3±1.8) μm之間。時(shí)間-溫度反演模擬結(jié)果表明祁連山地區(qū)至少經(jīng)歷了3個(gè)重要構(gòu)造活動(dòng)階段: 1)白堊紀(jì)早期(>(129±14)~(115±17) Ma)祁連山隆升, 南祁連陸塊和疏勒南山—拉脊山縫合帶的冷卻速率及剝蝕速率均較大, 并且祁連山南部可能率先抬升而初步構(gòu)成高原的東北邊界; 2)白堊紀(jì)中晚期—中新世((115±17)~(25±7) Ma)祁連山構(gòu)造平靜, 南祁連陸塊和疏勒南山—拉脊山縫合帶冷卻速率及剝蝕速率均較低; 3)中新世以來(lái)祁連山由南向北逐漸擴(kuò)展, 構(gòu)造活動(dòng)強(qiáng)烈而最終形成盆-山構(gòu)造地貌格局。祁連山白堊紀(jì)早期的快速冷卻過(guò)程可能是受拉薩地塊和羌塘地塊碰撞的影響; 中新世以來(lái)向北擴(kuò)展則主要是受印度—?dú)W亞板塊碰撞的影響。

      關(guān)鍵詞:裂變徑跡分析; 磷灰石; 白堊紀(jì); 新生代; 祁連山

      本文由中國(guó)地質(zhì)調(diào)查局天然氣水合物資源勘查與試采工程國(guó)家專項(xiàng)“祁連山凍土區(qū)天然氣水合物資源勘查(力學(xué)所)”(編號(hào): GZHL20120301)資助。

      青藏高原的隆升不僅改變了亞洲大陸的構(gòu)造地貌格局, 并對(duì)南亞乃至全球氣候產(chǎn)生了重大影響(England and Houseman, 1988; Prell and Kutzbach, 1992; Raymo and Ruddiman, 1992)。因此, 青藏高原隆升的時(shí)間和幅度一直是地學(xué)界研究的焦點(diǎn)之一,有些學(xué)者認(rèn)為由于中特提斯洋沿班公—怒江縫合帶閉合和拉薩地塊與羌塘地塊的碰撞影響, 青藏高原可能于印度—?dú)W亞板塊碰撞之前便已隆升(Murphy et al., 1997; Schneider et al., 2003; Kapp et al., 2005; Guynn et al., 2006; Otofuji et al., 2007; Volkmer et al., 2007; Li et al., 2013a); 有些學(xué)者認(rèn)為青藏高原開(kāi)始隆升于印度板塊沿雅魯藏布江縫合帶與歐亞板塊碰撞時(shí), 主要的隆升時(shí)代為古新世—始新世(Yin et al., 2002; Spicer et et al., 2003; Wang et al., 2008); 還有很多學(xué)者認(rèn)為青藏高原的東部和北部直至中新世晚期才快速隆起(Turner et al., 1993; An et al., 1999;萬(wàn)景林等, 2001; 王瑜等, 2002; Zheng et al., 2006;張培震等, 2006), 另有認(rèn)為直到~4 Ma以來(lái)青藏高原才開(kāi)始整體快速隆起(Li and Fang, 1999)。除了青藏高原隆升時(shí)間上的爭(zhēng)議, 其隆升空間分布上也存在很多不同的觀點(diǎn), 如由南向北逐步隆升(Meyer et al., 1998; Tapponnier et al., 2001)、青藏高原中部先隆起后向南北兩側(cè)擴(kuò)展(Wang et al., 2008)以及高原南部與北部整體隆升(Yin and Harrison, 2000; Yin et al., 2002)。祁連山處于阿拉善和柴達(dá)木地塊之間,構(gòu)成青藏高原的東北緣(圖1A, B), 研究其構(gòu)造地貌演化特征對(duì)認(rèn)識(shí)青藏高原隆升和擴(kuò)展的過(guò)程有著重要意義。

      祁連山構(gòu)造帶寬約500 km, 整體走向NW—SE,共分為南祁連陸塊、蔬勒南山—拉脊山縫合帶、中祁連陸塊和北祁連縫合帶四個(gè)構(gòu)造單元(張雪亭等, 2007)。北祁連縫合帶(北祁連新元古代—早古生代縫合帶)主體位于托來(lái)山南緣并呈北西向分布于中祁連陸塊和阿拉善陸塊間, 南部大致以中祁連北緣斷裂為主斷裂構(gòu)成中祁連陸塊與北祁連縫合帶的分界線, 北部以祁連山北緣斷裂與河西走廊分離(Liu and Gao, 1998; Pan et al., 2013)。中祁連陸塊是一個(gè)陸塊與巖漿弧疊置的構(gòu)造單位, 夾持于北祁連縫合帶與蔬勒南山—拉脊山縫合帶之間, 呈北西西向分布于托勒南山—大通山一帶。南祁連陸塊呈北西西向介于中祁連南緣斷裂(疏勒南山—拉脊山縫合帶主斷裂)與宗務(wù)隆—青海南山斷裂之間, 沿居洪圖—陽(yáng)康—化隆一帶分布(張雪亭等, 2007)。

      三疊紀(jì)以來(lái), 幾個(gè)陸塊已經(jīng)拼合到歐亞板塊的南緣, 印支期中祁連和南祁連地塊的整體抬升, 導(dǎo)致南祁連和中祁連盆地由海相沉積轉(zhuǎn)變?yōu)殛懴喑练e,中三疊世海相地層與晚三疊世阿塔寺組陸相沉積建造多表現(xiàn)為平行不整合接觸; 侏羅紀(jì)煤系地層與晚三疊世尕勒得寺組陸相地層同樣表現(xiàn)為平行不整合接觸(張雪亭等, 2007), 表明上侏羅統(tǒng)享堂組沉積之后的燕山運(yùn)動(dòng)奠定了祁連山中生代的構(gòu)造格局, 強(qiáng)烈的構(gòu)造活動(dòng)形成中祁連以及南祁連廣泛分布的寬緩褶皺和斷裂構(gòu)造; 新生代以來(lái)受印度—?dú)W亞板塊碰撞的影響, 并在阿爾金走滑斷裂和昆侖走滑斷裂的控制下, 形成大范圍的殼內(nèi)滑脫構(gòu)造, 從而導(dǎo)致青藏高原北部的強(qiáng)烈地殼增厚和構(gòu)造隆升(Meyer et al., 1998; Tapponnier et al., 2001), 祁連山地區(qū)受一系列NNW和NWW向的逆沖斷裂影響而隆起, 并形成盆-山相間的構(gòu)造地貌格局。

      圖1 研究區(qū)位置及地質(zhì)構(gòu)造簡(jiǎn)圖Fig. 1 Location and simplified geological map of the study areaA-祁連山構(gòu)造綱要簡(jiǎn)圖(據(jù)Vincent and Allen, 1999; Gehrels, 2003; Yue et al., 2005; Bovet et al., 2009; 張雪亭等, 2007修改); B-青藏高原北部構(gòu)造綱要圖及磷灰石裂變徑跡研究點(diǎn)分布及結(jié)果(斷裂分布據(jù)Jolivet et al., 2001; Gaudemer et al., 1995; Meyer et al., 1996, 1998; Lasserre et al., 1999); C-研究區(qū)地質(zhì)圖(據(jù)張雪亭等, 2007修改)及磷灰石采樣地點(diǎn)和結(jié)果

      磷灰石裂變徑跡的年齡和徑跡長(zhǎng)度分布特征為巖石溫度冷卻貫穿部分退火帶(PAZ)提供量化信息, 記錄了巖石從溫度~110℃到60℃(Gallagher et al., 1998)的熱史情況, 而這一過(guò)程一般被認(rèn)為是受地區(qū)的隆升或剝蝕的結(jié)果, 因此磷灰石裂變徑跡分析可以有效地約束地區(qū)剝蝕或隆升的熱演化歷史(Green, 1988; Johnson, 1997; Ventura et al., 2001)。目前, 低溫年代學(xué)研究對(duì)祁連山隆升歷史的認(rèn)識(shí)還存在較大爭(zhēng)議, 主要的隆升時(shí)代可包括: 晚白堊紀(jì)(Jolivet et al., 2001; Pan et al., 2013; Li et al., 2013b)、始新世晚期—漸新世(Yin et al., 2002)和中新世(Jolivet et al., 2001; 萬(wàn)景林等, 2001; 王瑜等, 2002;陳正樂(lè)等, 2002; Zheng et al., 2006)。以往的青藏高原北部低溫年代學(xué)研究集中于主要斷裂的周圍(George et al., 2001; 萬(wàn)景林等, 2001, 2010; Jolivet et al., 2001; 王瑜等, 2002; 陳正樂(lè)等, 2002; Wang et al., 2006; 拜永山等, 2008; Zheng et al., 2010; Li et al., 2013b; Pan et al., 2013; 孫岳等, 2014), 特別是針對(duì)祁連山地區(qū)的研究集中于該地區(qū)的東緣、北緣、西緣(圖1B), 而祁連山構(gòu)造帶內(nèi)部的研究較為匱乏。因此, 本文通過(guò)對(duì)祁連山中段取樣進(jìn)行磷灰石裂變徑跡分析, 恢復(fù)祁連山地區(qū)白堊紀(jì)—新生代的熱史,為研究祁連山地區(qū)構(gòu)造活動(dòng)提供科學(xué)依據(jù)。

      1 樣品采集和方法

      22個(gè)裂變徑跡樣品分布貫穿南祁連陸塊、中祁連陸塊、疏勒南山—拉脊山縫合帶和北祁連縫合帶,樣品巖性有砂巖、凝灰?guī)r、流紋巖、花崗巖、閃長(zhǎng)巖、英安巖等。樣品首先經(jīng)過(guò)粉碎、分選和自然晾干, 經(jīng)傳統(tǒng)方法粗選, 再利用電磁選、重液選、介電選等手段, 對(duì)礦物顆粒進(jìn)行單礦物提純, 分離出磷灰石單礦物顆粒。分別用環(huán)氧基樹(shù)脂和聚四氟乙丙烯透明塑料片將磷灰石固定, 制作成光薄片, 并研磨拋光揭示礦物顆粒內(nèi)表面。磷灰石樣片在恒溫25℃的7%的HNO3溶液中蝕刻30 s以揭示自發(fā)徑跡(Yuan et al., 2003)。將低鈾白云母片(<4×10-9)作為外探測(cè)器蓋在光薄片上, 緊密接觸礦粒內(nèi)表面, 與CN5(磷灰石)標(biāo)準(zhǔn)鈾玻璃(Bellemants et al., 1995)一并接受熱中子輻照(Yuan et al., 2006)。然后在25℃條件下的40%HF中蝕刻白云母外探測(cè)器20 min揭示誘發(fā)徑跡。最后需要在高精度光學(xué)顯微鏡100倍干物鏡下觀測(cè)統(tǒng)計(jì)裂變徑跡。應(yīng)用IUGS推薦的Zeta常數(shù)標(biāo)定法計(jì)算出裂變徑跡中心年齡。實(shí)驗(yàn)中根據(jù)標(biāo)準(zhǔn)磷灰石礦物的測(cè)定, 加權(quán)平均得出Zeta常數(shù)值(Hurford and Green, 1983; Hurford, 1990)。由于磷灰石中裂變徑跡退火存在各向異性(Green et al., 1986),因此選擇平行c軸的柱面來(lái)測(cè)定水平封閉徑跡長(zhǎng)度、自發(fā)徑跡密度和誘發(fā)徑跡密度。

      表1 祁連山磷灰石裂變徑跡年齡Table 1 Apatite fission-track data from the Qilian Mountain

      2 結(jié)果

      22個(gè)樣品的磷灰石裂變徑跡年齡介于(124± 11) Ma到(13±2) Ma之間, 平均徑跡長(zhǎng)度介于(10.3±1.8) μm到(13.6±2.3) μm之間(表1)。僅樣品B325-3和B412-1測(cè)試的磷灰石顆粒數(shù)目小于20,其余樣品均超過(guò)20粒, 并且大多數(shù)樣品的圍限徑跡測(cè)試條數(shù)超過(guò)50條, 數(shù)據(jù)質(zhì)量較好。

      χ2統(tǒng)計(jì)法可判斷樣品中各單顆粒年齡在多大程度上可作為具有單一平均年齡來(lái)看待(Galbraith and Laslett, 1993)。從單顆粒的自發(fā)和誘發(fā)裂變徑跡數(shù)可計(jì)算出P(χ2), 是單顆粒年齡與所有顆粒的平均年齡符合的幾率量度。P(χ2)>5%表示各單顆粒年齡的差別屬于統(tǒng)計(jì)誤差范圍, 應(yīng)作為具有單一平均值看待, FT年齡采用池年齡(Pooled Age); P(χ2)<5%表示各單顆粒年齡確有分散, FT年齡采用中心年齡(Central Age)(Sobel et al., 2006a, b)。統(tǒng)計(jì)結(jié)果表明共有18個(gè)樣品通過(guò)了χ2檢驗(yàn)(圖2), 4個(gè)樣品單顆粒年齡分散程度高于一般范圍, 雷達(dá)輻射圖顯示這4個(gè)樣品的變化范圍為±140 ~ ±25 Ma, 和所有通過(guò)χ2檢驗(yàn)的樣品的年齡變化范圍相近。裂變徑跡年齡分布基本不受巖性的控制, 例如侏羅紀(jì)的砂巖和奧陶紀(jì)的花崗巖具有相似的裂變徑跡年齡, 所有的樣品均小于其形成年齡。并且平均徑跡長(zhǎng)度為(13.6± 2.3) μm 和 (10.3±1.8) μm之間, 指示這些樣品均經(jīng)歷形成之后的溫度貫穿PAZ的過(guò)程(Gleadow et al., 1986; Yuan et al., 2006; Yuan et al., 2007)。

      3 磷灰石裂變徑跡年齡的意義

      總的來(lái)看, 裂變徑跡年齡和海拔相關(guān)關(guān)系以及徑跡的平均長(zhǎng)度與裂變徑跡年齡相關(guān)關(guān)系不強(qiáng)(圖3A, B), 但按照SW—NE向從采樣所屬不同的構(gòu)造單元位置來(lái)看, 可以發(fā)現(xiàn)中祁連陸塊、疏勒南山—拉脊山縫合帶和南祁連陸塊的海拔-年齡呈正相關(guān),相關(guān)關(guān)系較好(圖3C)。中祁連陸塊裂變徑跡年齡為(96±9) Ma和(13±2) Ma之間, 南北差異較大, 南部的裂變徑跡年齡明顯老于北部地區(qū), 裂變徑跡年齡較小((60±5)~(13±2) Ma)的樣品主要在中祁連北緣斷裂附近(圖3C), 這主要是受新生代以來(lái)中祁連北緣斷裂構(gòu)造活動(dòng)的影響。因此, 祁連山地區(qū)同一個(gè)構(gòu)造單元具有相似的剝蝕速率, 不受差異熱狀態(tài)的干擾, 樣品裂變徑跡年齡受樣品相對(duì)于主要斷裂的位置影響(Yuan et al., 2006)。

      圖2 祁連山磷灰石裂變徑跡輻射圖Fig. 2 Radial plots of single grain ages for the 22 samples from the Qilian Mountain

      雖然磷灰石裂變徑跡的退火特征受化學(xué)組成(Barbarand et al., 2003)和礦物特征的影響(Carlson et al., 1999)。但這方面的影響相對(duì)較弱(Pan et al., 2013), 地殼剝蝕和區(qū)域性的構(gòu)造活動(dòng)均可能造成年齡-海拔之間的相關(guān)性不強(qiáng)(Green et al., 1986)。因此, 不能簡(jiǎn)單地將平均裂變徑跡年齡等同于重要的構(gòu)造事件, 需要結(jié)合熱史模擬分析來(lái)進(jìn)一步探討裂變徑跡年齡所代表的巖石熱演化過(guò)程。

      利用AFTSolve軟件及Ketcham等(1999)模型進(jìn)行熱史模擬(Ketcham et al., 2003), 模擬次數(shù)為10000次, 模擬的評(píng)價(jià)標(biāo)準(zhǔn)包括K-S檢測(cè)和GOF檢測(cè), 當(dāng)GOF≥0.05, 模擬的曲線被認(rèn)為是可以接受的, 當(dāng)GOF≥0.5, 模擬的曲線被認(rèn)為是好的模擬曲線(Ketcham, 2005)。每次模擬, 都假設(shè)樣品實(shí)測(cè)裂變徑跡年齡的1.5倍時(shí)地溫達(dá)200~160℃以致樣品完全退火, 在實(shí)測(cè)裂變徑跡年齡的時(shí)間樣品處于PAZ(110~60℃), 而現(xiàn)今處于地表的~20~0℃地溫為另一個(gè)限制條件(Pan et al., 2013)。模擬結(jié)果見(jiàn)圖4,由于北祁連縫合帶內(nèi)僅有樣品B054-1, 而單個(gè)樣品不足以代表區(qū)域的熱史, 因此本文不對(duì)其模擬。

      模擬結(jié)果顯示, 所有樣品的K-S檢測(cè)和GOF檢

      圖3 祁連山磷灰石裂變徑跡年齡、平均徑跡長(zhǎng)度和海拔的關(guān)系Fig. 3 Relationship between AFT age, mean track length and elevation

      A-裂變徑跡年齡和海拔的關(guān)系; B-裂變徑跡年齡和平均徑跡長(zhǎng)度的關(guān)系; C-樣品分布位置、裂變徑跡年齡和海拔的關(guān)系

      A-relationship between AFT age and elevation; B-relationship between AFT age and mean track length; C-plot showing relationship between elevation, main faults, AFT ages and samples’ location, from the South Qilian fold belt to North Qilian suture zone in SW-NE direction測(cè)均大于0.5, 模擬質(zhì)量較高且較為可信。根據(jù)所有樣品的時(shí)間-溫度(t-T)最佳的模擬曲線(圖4), 每條最佳模擬曲線可以分離出3個(gè)限制點(diǎn), 第一個(gè)限制點(diǎn)為巖石降溫至~110℃的年齡, 第二個(gè)限制點(diǎn)為巖石冷卻速率由快轉(zhuǎn)慢, 第三個(gè)限制點(diǎn)為巖石降溫速率由慢轉(zhuǎn)快。采自不同地點(diǎn)樣品的最佳模擬曲線限制點(diǎn)可以構(gòu)成出3組(圖5), 第一組是溫度降溫至~110℃的時(shí)候, 南祁連陸塊為(124±7) Ma, 疏勒南山—拉脊山縫合帶為(129±14) Ma。第二組限制點(diǎn)為當(dāng)巖體冷卻速度從快轉(zhuǎn)慢的時(shí)候, 南祁連陸塊為(117±8) Ma, 古地溫達(dá)(79±15)℃ ; 疏勒南山—拉脊山縫合帶內(nèi)的樣品為(115±17) Ma, 古地溫為(74±9)℃。第三組限制點(diǎn)為巖體冷卻速率從慢再一次轉(zhuǎn)快的時(shí)候, 南祁連陸塊為(25±7) Ma, 古地溫達(dá)(54±9)℃ ; 疏勒南山—拉脊山縫合帶為(17±9) Ma,古地溫為(56±11)℃。中祁連陸塊于中新世晚期((10±7) Ma)所有樣品可見(jiàn)快速冷卻, 中新世之前的t-T模擬曲線比較分散, 可能中祁連地塊在中新世之前存在更為復(fù)雜的熱史, 直到中新世晚期((10±7) Ma)中祁連地塊整體出現(xiàn)快速冷卻剝蝕。模擬結(jié)果中小的冷卻事件被忽略(Pan et al., 2013), 因?yàn)檫@些事件可能受退火模型不穩(wěn)定的影響(Ketcham et al., 2009)。

      祁連山的平均地溫梯度大致為25℃/km(Hu et al., 2000), 結(jié)合時(shí)間-溫度(t-T)最佳的模擬曲線結(jié)果,可估算出每個(gè)樣品的冷卻速率(△溫度/△時(shí)間)和侵蝕速率(冷卻速率/地溫梯度)。結(jié)果表明, 南祁連陸塊白堊紀(jì)早期((124±7) Ma至(117±8) Ma), 冷卻速率為~3.4℃/Ma, 剝蝕速率達(dá)~0.13 mm/a; 白堊紀(jì)早期—中新世早期((117±8) Ma至(25±7) Ma), 冷卻速率為~0.2℃/Ma, 剝蝕速率為~0.01 mm/a; 中新世以來(lái)((25±7) Ma至現(xiàn)今), 冷卻速率為~2.0℃/Ma, 剝蝕速率為~0.08 mm/a(圖5A)。疏勒南山—拉脊山縫合帶白堊紀(jì)早期((129±14) Ma至(115±17) Ma), 冷卻速率為~2.7℃/Ma, 剝蝕速率達(dá)~0.11 mm/a; 白堊紀(jì)早期—中新世((115±17) Ma至(17±9) Ma), 冷卻速率為~0.1℃/Ma, 剝蝕速率為~0.01 mm/a; 中新世以來(lái)((17±7) Ma至現(xiàn)今), 冷卻速率為~4.6℃/Ma,剝蝕速率為~0.18 mm/a(圖5B)。中祁連陸塊中新世晚期以來(lái)((10±7) Ma至現(xiàn)今)存在快速冷卻剝蝕作用, 冷卻速率為~11.9℃/Ma, 剝蝕速率為~0.47 mm/a(圖5C)。

      4 討論

      磷灰石裂變徑跡記錄了祁連山的熱史情況, 為分析該地區(qū)冷卻剝蝕歷史提供定量信息。結(jié)果表明,祁連山白堊紀(jì)以來(lái)至少經(jīng)歷了3個(gè)重要的構(gòu)造活動(dòng)階段: ①白堊紀(jì)早期隆升; ②白堊紀(jì)中晚期—中新世早期構(gòu)造平靜; ③中新世以來(lái)向北逐漸擴(kuò)展。

      圖4 祁連山中段熱模擬結(jié)果(時(shí)間-溫度模擬曲線和徑跡分布)Fig. 4 Modeled inverse t–T paths and length distribution for samples from the middle segment of the Qilian Mountain

      圖5 祁連山熱模擬最佳時(shí)間-溫度曲線Fig. 5 The best-fit line of the time-temperature modeling for samples from the Qilian MountainA-南祁連陸塊熱模擬最佳時(shí)間-溫度曲線; B-疏勒南山—拉脊山縫合帶熱模擬最佳時(shí)間-溫度曲線; C-中祁連陸塊熱模擬最佳時(shí)間-溫度曲線

      4.1祁連山白堊紀(jì)早期隆升

      裂變徑跡結(jié)果顯示, 祁連山在白堊紀(jì)早期((129±14)~(115±17) Ma)南祁連和疏勒南山—拉脊山縫合帶均存在快速冷卻的過(guò)程(圖5), 并且大柴旦逆沖斷裂帶兩側(cè)剝蝕速率亦存在明顯差異(Jolivet et al., 2001), 低溫年代學(xué)數(shù)據(jù)指示祁連山在白堊紀(jì)早期很可能已經(jīng)隆起, 初步構(gòu)成青藏高原的東北邊界。同時(shí), 南祁連陸塊的磷灰石裂變徑跡年齡明顯老于中祁連陸塊以及北祁連縫合帶(Pan et al., 2013; Li et al., 2013b), 表明祁連山南部可能率先隆起, 從而導(dǎo)致南祁連侏羅系與白堊系僅出露零星露頭, 與白堊系主要分布在祁連山北部和東部的特征相一致(張雪亭等, 2007)。

      阿爾金斷裂東段地區(qū)的火山巖主要分布在阿爾金斷裂與祁連山西端交匯的山前盆地(酒西盆地)與山間盆地(昌馬盆地)中, 均為一套偏堿性基性火山巖, 其Ar-Ar測(cè)年結(jié)果顯示本區(qū)巖漿活動(dòng)分為100~120 Ma和~82 Ma兩期巖漿活動(dòng)(李海兵等, 2004)和阿爾金斷裂白堊紀(jì)再次強(qiáng)烈走滑活動(dòng)相一致(金山口北坡糜棱巖化的加里東花崗巖白云母形成時(shí)代為89.2 Ma和斷層附近侏羅系兩個(gè)韌性變形樣品中云母形成時(shí)代91.7 Ma和97.7 Ma; Liu et al., 2001), 并且在祁連山北部山前早白堊地層中出現(xiàn)軟沉積變形, 古斜坡指向也反映祁連山的抬升(李海兵等, 2004)。河西走廊地區(qū)在白堊紀(jì)早期出現(xiàn)類似磨拉石的粗碎屑沉積(Vincent and Allen, 1999)印證了本次構(gòu)造活動(dòng)。祁連山白堊紀(jì)早期的隆升主要受拉薩地塊和歐亞板塊碰撞的影響(Vincent and Allen, 1999; Jolivet et al., 2001; 李海兵等, 2004),祁連山很可能已經(jīng)初步隆起, 構(gòu)成青藏高原東北邊界雛形。

      4.2祁連山白堊紀(jì)中晚期—中新世早期構(gòu)造平靜

      白堊紀(jì)中晚期—中新世南祁連陸塊和疏勒南山—拉脊山縫合帶的冷卻速率(~0.2℃/Ma; ~0.1℃/Ma)及剝蝕速率(~0.01 mm/a; ~0.006 mm/a)均比較低, 徑跡長(zhǎng)度較短以及呈寬緩不對(duì)稱正態(tài)分布的特征均指示該地區(qū)長(zhǎng)時(shí)間處于PAZ(圖5)。AFT熱年代學(xué)證據(jù)表明祁連山的東緣于±83 ~ ±24 Ma期間的冷卻速率及剝蝕速率(~0.6℃/Ma; ~0.017 mm/a)亦較低(Pan et al., 2013), 本時(shí)期祁連山南北兩側(cè)的大柴旦地區(qū)和河西走廊盆地構(gòu)造活動(dòng)由擠壓轉(zhuǎn)變?yōu)樯煺? 沉積速率較低(Vincent and Allen, 1999)。因此,白堊紀(jì)中晚期—中新世祁連山地區(qū)普遍構(gòu)造活動(dòng)較弱。雖然晚始新世—漸新世(距今約35.3~32.6 Ma)河西走廊盆地和中祁連木里盆地內(nèi)白楊河組(E3b)和火燒溝組(E2-3h)均呈輕微角度不整合接觸(戴霜等, 2005; 戚幫申等, 2013), 阿爾金北緣山脈和黨河南山在~40 Ma出現(xiàn)快速冷卻剝蝕(Jolivet et al., 2001; 孫岳等, 2014)均顯示青藏高原北部在始新世晚期—漸新世早期存在構(gòu)造變形與隆升, 但祁連山構(gòu)造帶內(nèi)部的磷灰石裂變徑跡數(shù)據(jù)沒(méi)有顯示本次隆升過(guò)程, 結(jié)合碳氧同位素估算的古近紀(jì)的古海拔較低以及火燒溝組和白楊河組均為河湖相的沉積特征(戴霜等, 2005; 戚幫申等, 2013; 戚幫申等, 2015),可以得出祁連山本次隆升的幅度不大??傮w上祁連山地區(qū)白堊紀(jì)晚期—中新世早期構(gòu)造平靜。

      4.3祁連山中新世以來(lái)向北逐漸擴(kuò)展

      印度板塊與歐亞板塊碰撞的時(shí)間目前還存在很大的爭(zhēng)議(Beck et al., 1995; Lee and Lawver., 1995; Patzelt et al., 1996; Searle et al., 1997; Rowley, 1998; Zhang and Scharer, 1999), 首次影響到高原北部導(dǎo)致地殼縮短與增厚的時(shí)間也是爭(zhēng)論的焦點(diǎn)之一, 如~40 Ma(Jolivet et al., 2001)、~30 Ma(Mock et al., 1999)、25~20 Ma(Sobel and Dumitru, 1997)以及~4 Ma(Li and Fang, 1999; 李吉均等, 2001)。始新世—漸新世高原北部普遍存在構(gòu)造活動(dòng), 但河西走廊盆地和中祁連木里盆地內(nèi)白楊河組(E3b)和火燒溝組(E2-3h)均呈輕微角度不整合接觸(戴霜等, 2005;戚幫申等, 2013), 構(gòu)造活動(dòng)的強(qiáng)度可能不大。上新世—第四紀(jì)(~3.6 Ma)的隆升證據(jù)主要是依靠沉積相變化得出, 然而這也可能是受氣候變化因素的影響(Zhang et al., 2001), 缺乏更多構(gòu)造變形證據(jù)的支持(張培震等, 2006)。前人的研究發(fā)現(xiàn)祁連山及鄰區(qū)于中新世中晚期存在“準(zhǔn)同期”(~8 Ma)的強(qiáng)烈構(gòu)造變形, 并通過(guò)逆沖斷裂和褶皺變形等方式, 使山脈隆升與沉積盆地消亡(Turner et al., 1993; 張培震等, 2006), 同時(shí)期紅黏土在六盤山地區(qū)沉積, 這主要受高原腹地海拔達(dá)到一定臨界值的影響, 引起高原東北部的氣候和環(huán)境方面的變化(An et al., 1999; 宋友桂等, 2001), 受此影響祁連山地區(qū)新生代河湖相沉積的碳氧同位素(δ13C和δ18O)于中新世中期亦出現(xiàn)明顯的變化(Dettman et al., 2003; 戚幫申等, 2015)。自上新世早期以來(lái), 位于祁連山南北兩側(cè)的柴達(dá)木盆地和河西走廊沉積速率明顯加快(Metivier et al., 1998), 由于柴達(dá)木盆地和河西走廊地區(qū)與其附近的盆地?zé)o物質(zhì)交換, 沉積速率加快指示構(gòu)造活動(dòng)加強(qiáng)(Jolivet et al., 2001)。因此, 中新世以來(lái)為祁連山地區(qū)主要隆升階段, 并且斷裂活動(dòng)的時(shí)間以及區(qū)域冷卻歷史顯示中新世以來(lái)祁連山具有向北擴(kuò)展的規(guī)律。

      祁連山構(gòu)造帶內(nèi)有若干條北西—北西西向的逆沖斷裂帶, 自南向北包括柴北緣逆沖斷裂帶、南山逆沖斷裂帶、中祁連南緣逆沖斷裂帶、拉脊山逆沖斷裂、中祁連北緣逆沖斷裂帶和祁連山北緣逆沖斷裂帶等(Yin et al., 2002; Li et al., 2015)。生物地層學(xué)、沉積學(xué)以及熱年代學(xué)研究表明柴達(dá)木北緣斷裂在~40 Ma之前就已經(jīng)開(kāi)始活動(dòng)(Jolivet et al., 2001; Yin et al., 2002), 南山逆沖斷裂帶自漸新世(~33 Ma)便已經(jīng)存在(Wang, 1997; Rumelhat, 1998; Yin et al., 2002), 拉脊山逆沖斷裂帶卻從~22 Ma開(kāi)始活動(dòng)(Lease et al., 2011), 北祁連逆沖斷裂帶則直至8.3~ 0 Ma開(kāi)始活動(dòng)(Tapponnier et al., 1990; Yang et al., 2007), 故祁連山構(gòu)造帶內(nèi)的逆沖斷裂活動(dòng)時(shí)間表現(xiàn)由南向北擴(kuò)展的規(guī)律。

      區(qū)域性冷卻歷史同樣顯示祁連山地區(qū)中新世以來(lái)具有向北擴(kuò)展的規(guī)律。南祁連陸塊于(25±7) Ma冷卻速率明顯加快(圖5A), 表明祁連山的南部地區(qū)在始新世晚期—漸新世早期存在構(gòu)造變形與隆升。疏勒南山—拉脊山縫合帶于(17±9) Ma開(kāi)始快速冷卻剝蝕(圖5B), 而中祁連陸塊直至(10±7) Ma冷卻速率和剝蝕速率才明顯加快, 北祁連亦于±20~ 10 Ma以來(lái)轉(zhuǎn)入快速冷卻(George et al., 2001; Pan et al., 2013), 而高原北緣直到9~7 Ma發(fā)生快速蝕頂過(guò)程(George et al., 2001; 萬(wàn)景林等, 2001; 王瑜等, 2002; 陳正樂(lè)等, 2002; Zheng et al., 2006, 2010)。由此可見(jiàn), 中新世以來(lái)祁連山的構(gòu)造變形具有向北逐漸擴(kuò)展的規(guī)律, 這主要受印度—?dú)W亞板塊碰撞的影響, 通過(guò)一系列的逆沖斷裂和下地殼廣泛的滑脫作用向北擴(kuò)展(Bovet et al., 2009)。

      5 結(jié)論

      祁連山構(gòu)造帶內(nèi)部不同地點(diǎn)的磷灰石裂變徑跡分析結(jié)果表明, 祁連山白堊紀(jì)以來(lái)至少經(jīng)歷三個(gè)重要的構(gòu)造活動(dòng)階段: 1)白堊紀(jì)早期(>(129±14) ~(115±17) Ma)隆升, 祁連山地區(qū)受拉薩地塊和羌塘地塊的碰撞影響而出現(xiàn)隆升剝蝕, 南北磷灰石裂變徑跡年齡的差異顯示祁連山南部較北部率先隆起,導(dǎo)致祁連山南部出現(xiàn)白堊系沉積間斷, 此時(shí)的祁連山可能已經(jīng)構(gòu)成青藏高原的東北邊界; 2)白堊紀(jì)中晚期—中新世早期((115±17)~(25±7) Ma)祁連山處于構(gòu)造平靜期, 此時(shí)不論是南祁連陸塊還是疏勒南山—拉脊山縫合帶的樣品冷卻速率和剝蝕速率都很低; 3)中新世以來(lái)(<(25±7) Ma—今)祁連山由南向北逐漸擴(kuò)展, 祁連山強(qiáng)烈隆起并導(dǎo)致柴達(dá)木盆地和河西走廊地區(qū)沉積速率加快以及祁連山地區(qū)新生代湖相沉積的碳氧同位素變化, 并形成和現(xiàn)代地貌相近的盆-山構(gòu)造地貌格局。

      致謝: 中國(guó)地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所吳中海研究員及各位評(píng)審專家給予本文的建設(shè)性意見(jiàn)和重要指導(dǎo), 以及中國(guó)地質(zhì)科學(xué)院趙珍博士, 中國(guó)地質(zhì)大學(xué)(北京)李波碩士、趙釗碩士、高雪咪碩士、于航碩士、田珺碩士, 長(zhǎng)江大學(xué)徐久晟碩士和李丹江碩士等參與野外取樣工作, 磷灰石裂變徑跡測(cè)試由中國(guó)地質(zhì)大學(xué)(北京)袁萬(wàn)明教授協(xié)助完成, 謹(jǐn)表謝意。

      Acknowledgements:

      This study was supported by China Geological Survey (No. GZHL20120301).

      參考文獻(xiàn):

      拜永山, 任二峰, 范桂蘭, 許長(zhǎng)青. 2008. 青藏高原西北緣祁漫塔格山中新世快速抬升的磷灰石裂變徑跡證據(jù)[J]. 地質(zhì)通報(bào), 27(7): 1044-1048.

      陳正樂(lè), 萬(wàn)景林, 王小鳳, 陳宣華, 潘錦華. 2002. 阿爾金斷裂帶8 Ma左右的快速走滑及其地質(zhì)意義[J]. 地球?qū)W報(bào), 23(4): 295-300.

      戴霜, 方小敏, 宋春暉, 高軍平, 高東林, 李吉均. 2005. 青藏高原北部的早期隆升[J]. 科學(xué)通報(bào), 50(7): 673-683.

      李海兵, 楊經(jīng)綏. 2004. 青藏高原北部白堊紀(jì)隆升的證據(jù)[J]. 地學(xué)前緣, 11(4): 345-359.

      李吉均, 方小敏, 潘保田, 趙志君, 宋友桂. 2001. 新生代晚期青藏高原強(qiáng)烈隆起及其對(duì)周邊環(huán)境的影響[J]. 第四紀(jì)研究, 21(5): 381-391.

      戚幫申, 胡道功, 王進(jìn)壽, 趙希濤, 張緒教, 張耀玲, 楊肖肖,高雪咪. 2013. 中祁連木里盆地古近系ESR年齡及地質(zhì)意義[J]. 地質(zhì)力學(xué)學(xué)報(bào), 19(4): 392-402.

      戚幫申, 胡道功, 楊肖肖, 張緒教, 趙希濤. 2015. 祁連山新生代古海拔變化的碳氧同位素記錄[J]. 地球?qū)W報(bào), 36(3): 323-332.

      宋友桂, 李吉均, 方小敏. 2001. 黃土高原最老紅黏土的發(fā)現(xiàn)及其地質(zhì)意義[J]. 山地學(xué)報(bào), 19(2): 104-108.

      孫岳, 陳正樂(lè), 陳柏林, 韓鳳彬, 周永貴, 郝瑞祥, 李松彬. 2014.阿爾金北緣EW向山脈新生代隆升剝露的裂變徑跡證據(jù)[J].地球?qū)W報(bào), 35(1): 67-75.

      萬(wàn)景林, 王瑜, 李齊, 王非, 王二七. 2001. 阿爾金山北段新生代山體抬升的裂變徑跡證據(jù)[J]. 礦物巖石地球化學(xué)通報(bào), 20(4): 222-224.

      萬(wàn)景林, 鄭文俊, 鄭德文, 王偉濤, 王志才. 2010. 祁連山北緣晚新生代構(gòu)造活動(dòng)的地溫?zé)崮甏鷮W(xué)證據(jù)[J]. 地球化學(xué), 39(5): 439-446.

      王瑜, 萬(wàn)景林, 李齊, 王非, 王二七. 2002. 阿爾金山北段阿克塞-黨金山口一帶新生代山體抬升和剝蝕的裂變徑跡證據(jù)[J]. 地質(zhì)學(xué)報(bào), 76(2): 191-198.

      張培震, 鄭德文, 尹功明, 袁道陽(yáng), 張廣良, 李傳友, 王志才. 2006. 有關(guān)青藏高原東北緣晚新生代擴(kuò)展與隆升的討論[J].第四紀(jì)研究, 26(1): 5-13.

      張雪亭, 楊生德, 楊站君. 2007. 青海省區(qū)域地質(zhì)概論[M]. 北京:地質(zhì)出版社: 1-99.

      References:

      AN Zhi-sheng, WANG Su-min, WU Xi-hao, CHEN Ming-yang, SUN Dong-huai, LIU Xiu-ming, WANG Fu-bao, LI Li, SUN You-bin, ZHOU Wei-jian, LIU Xiao-dong, LU Hua-yu, ZHANG Yun-xiang, DONG Guang-rong, QIANG Xiao-ke. 1999. Eolian evidence from Chinese Loess Plateau: the onset of late Cenozoic great glaciation in northern hemisphere and Qinghai-Xizang Plateau uplift forcing[J]. Science in China (Series D), 42(3): 258-271.

      BAI Yong-shan, REN Er-feng, FAN Gui-lan, XU Chang-qing. 2008. Apatite fission track evidence for the Miocene rapid uplift of the Qimantag Mountains on the northwestern margin of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 27(7): 1044-1048(in Chinese with English abstract).

      BARBARAND J, CARTER A, WOOD I, HURFORD T. 2003. Compositional and structural control of fission-track annealing in apatite[J]. Chemical Geology, 198: 107-137.

      BECK R A, BURBANK D W, SERCOMBE W J, RILEY G W, BARNDT J K, AFZAL J, KHAN A M, JURGEN H, METJE J, CHEEMA A, SHAFIQUE N A, LAWRENCE R D, KHAN M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature, 373: 55-58.

      BELLEMANTS F, DECORTE F, DENHAUTE P. 1995. Composition of SRM and CN U-doped glasses: significance for their use as thermal neutron fluence monitors in fission track dating[J]. Radiation measurements, 24(2): 153-160.

      BOVET P M, RITTS B D, GEHRELS G, ABBINK A O, DARBY B, HOURIGAN J. 2009. Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China[J]. American Journal of Science, 30: 290-329.

      CARLSON W D, DONELICK R A, KETCHAM R A. 1999. Variability of apatite fission-track annealing kinetics: I, experimental results[J]. American Mineralogist, 84: 1213-1223.

      CHEN Zheng-yue, WAN Jing-lin, WANG Xiao-feng, CHEN Xuan-hua. 2002. Rapid strike-slip of Altyn Tagh Fault at 8 Ma and its geogical implications[J]. Acta Geoscientica Sinica, 23(4): 295-300(in Chinese with English abstract).

      DAI Shuang, FANG Xiao-min, SONG Chun-hui, GAO Jun-ping, GAO Dong-lin, LI Ji-jun. 2005. Early uplift of Northern Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 50(7): 673-683(in Chinese).

      DETTMAN D L, FANG Xiao-min, GARZIONE C N, LI Ji-jun. 2003. Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau[J]. Earth and Planetary Science Letters, 214: 267-277.

      ENGLAND P G, HOUSEMAN G A. 1988. The mechanics of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London (Series A) Mathematical and Physical Sciences), 326: 301-320.

      GALBRAITH R F, LASLETT G M. 1993. Statistical models for mixed fission track ages[J]. Nuclear Tracks and Radiation Measurements, 21(4): 459-470.

      GALLAGHER K, BROWN R, JOHSON C. 1998. Fission track analysis and its applications to geological problems[J]. Annual Review of Earth and Planetary Sciences, 26: 519-572.

      GAUDEMER Y, TAPPONNOER P, MEYER B, PELTZER G, SHUNMIN G, CHEN Zhi-tai, DAI Hua-gung, CIFUENTES I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu Gap’, on the western Haiyuan fault, Gansu (China)[J]. Geophysical Journal International, 120(3): 599-645.

      GEHRELS G E, YIN A, WANG X F. 2003. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 108(B9): 2423.

      GEORGE A D, MARSHALLSEA S J, WYRWOLL K H, CHEN Jie, LU Yan-chou. 2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geology, 29: 939-942.

      GLEADOW A J W, DUDDY I R, GREEN P F, LOVERING J F. 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Contrib Mineral Petrol, 94: 405-415.

      GREEN P F, DUDDY I R, GLEADOW A J W, TINGATE P R, LASLETT G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description[J]. Chemical Geology: Isotope Geoscience Section, 59: 237-253.

      GREEN P F. 1988. The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration[J]. Earth and Planetary Science Letters, 89: 335-352.

      GUYNN J H, KAPP P, PULLEN A, HEIZLER M, GEHRELS G, DING L. 2006. Tibetan basementrocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6): 505-508.

      HU Sheng-biao, HE Li-juan, WANG Ji-yang. 2000. Heat flow in the continental area of China: a new data set[J]. Earth and Planetary Science Letters, 179: 407-419.

      HURFORD A J, GREEN P F. 1983. The zeta age calibration of fission-track dating[J]. Chemical Geology, 41: 285-317.

      HURFORD A J. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Workig Group of the IUGS Subcommission on Geochronology[J]. Chemical Geology: Isotope Geoscience Section, 80(2): 171-178.

      JOHNSON C. 1997. Resolving denudational histories in orogenic belts with apatite fission-track thermochronology and structural data: An example from southern Spain[J]. Geology, 25(7): 623-626.

      JOLIVET M, BRUNEL M, SEWARD D, XU Z, YANG J, ROGER F, TAPPONNIER P, MALAVIEILLE J, AMAUD N, WU C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints[J]. Tectonophysics, 343: 111-134.

      KAPP P, YIN A, HARRISON T M, DING L. 2005. Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 117(7-8): 865-878.

      KETCHAM R A, DONELICK R A, BALESTRIERI M L, ZATTIN M. 2009. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 284: 504-515.

      KETCHAM R A, DONELICK R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kineticsⅢ: extrapolation to geological time scales[J]. American Mineralogist, 84: 1235-1255.

      KETCHAM R A, DONELICK R A, DONELICK M B. 2003. AFTSolve: a program for multi-kinetic modeling of apatite fission-track data[J]. Geological Materials Research, 88(5-6): 929.

      KETCHAM R A. 2005. Forward and inverse modeling of low-temperature thermochronometry data[J]. Review in Mineralogy and Geochemistry, 58: 275-314.

      LASSERRE C, MOREL P H, GAUDEMER Y, TAPPONNIER P, RYERSON F J, KING G C P, METIVIER F, KASSER M, KASHGARIAN M, BAICHI L, TAIYA L, YUAN Dao-yang. 1999. Postglacial left slip rate and past occurence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China[J]. Journal of Geophysical Research, 104(B8): 17633-17651.

      LEASE R O, BURBANK D W, CLARK M K, FARLEY K A, ZHENG De-wen, ZHANG Hui-ping. 2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 39(4): 359-362.

      LEE T Y, LAWVER L A. 1995. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 251: 85-138.

      LI Hai-bing, YANG Jing-sui. 2004. Evidence for Cretacecene uplift of the northern Qihai-Tibetan plateau[J]. Earth Science Frontiers, 11(4): 345-359(in Chinese with English abstract).

      LI Ji-jun, FANG Xiao-min, PAN Bao-tian, ZHAO Zhi-jun, SONG You-gui. 2001. Late Cenozoic intensive up lift of Qinghai2Xizang Plateau and its impacts on environments in surroundi[J]. Quaternary Sciences, 21(5): 381-391(in Chinese with English abstract).

      LI Ji-jun, FANG Xiao-min. 1999. The uplift of Tibetan Plateau and environment changes[J]. Chinese Science Bulletin, 44(23): 2117-2124.

      LI Ya-lin, WANG Cheng-shan, DAI Jin-gen, XU Gan-qing, HOU Yun-ling, LI Xiao-han. 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogeny: A review[J]. Earth-Science Review, 143: 36-61.

      LI Ya-lin, HE Juan, WANG Chen-shan, SANTOTH M, DAI Jin-gen, ZHANG Yu-xiu, WEI Yu-shui, WANG Jian-qiang. 2013a. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?[J]. Lithos, 160-161: 1-13.

      LI Qing-yang, PAN Bao-tian, HU Xiao-fei, HU Zhen-bo, LI Fu-qiang. 2013b. Apatite fission track constraints on the pattern of faulting in the North Qilian Mountain[J]. Journal of Earth Science, 24(4): 569-578.

      LIU Xun, GAO Rui. 1998. The crustal structure and assembly of terranes in the Qaidam– Qilian– Beishan area, Western China[J]. Acta Geological Sinica, 72(3): 243-255.

      LIU Yong-jiang, YE Hui-wen, GE Xiao-hong, CHEN Wen, LIU Jun-lai, REN Shou-mai, PAN Hong-xun. 2001. Laser probe40Ar/39Ar dating of mica on the deformed rocks from Altyn Fault and its tectonic implications[J]. Chinese Science Bulletin, 46(4): 322-325.

      METIVIER F, GAUDEMER Y, TAPPONNIER P, MEYER B. 1998. Northeastward growth of the Tibet plateau deduced from bal-anced reconstruction of two depositional areas: the Qaidam and Hexi corridor basins, China[J]. Tectonics, 17(6): 823-842.

      MEYER B, TAPPONNIER P, BOURJOT L, METIVIER F, GAUDEMER Y, PELTZER G, GUO Shun-min, CHEN Zhi-tai. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 135(1): 1-47.

      MEYER B, TAPPONNIER P, GAUDEMER Y, PELTZER G, GUO S, CHEN Zhi-tai. 1996. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh Fault, east of 96°E (China)[J]. Geophysical Journal International, 124: 29-44.

      MOCK C, ARNAUD N O, CANTAGREL J M. 1999. An early unroofing in northeastern Tibet? Constraints from40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China)[J]. Earth and Planetary Science Letters, 171: 107-122.

      MURPHY M A, YIN A, HARRISON T M, DURR S B, CHEN Z, RYERSON F J, KIDD W S F, WANG X, ZHOU X. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau?[J]. Geology, 25: 719-722.

      OTOFUJI Y, MU Chuan-long, TANAKA K, MIURA D, INOKUCHI H, KAMEI R, TAMAI M, TAKEMOTO K, ZAMAN H, YOKOYAMA M. 2007. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data[J]. Earth and Planetary Science Letters, 262: 581-593.

      PAN Bao-tian, LI Qing-yang, HU Xiao-fei, GENG Hao-peng, LIU Zi-bian, JIANG Shao-fei, YUAN Wan-ming. 2013. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, north-eastern margin of the Tibetan Plateau: evidence from apatite fission-track analysis[J]. Terra Nova, 25: 431-438.

      PATZELT A, LI Hua-mei, WANG Jun-da, APPEL E. 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia[J]. Tectonophysics, 259: 259-284.

      PRELL W L, KUTZBACH J E. 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 360: 647-652.

      QI Bang-shen, HU Dao-gong, WANG Jin-shou, ZHAO Xi-tao, ZHANG Xu-jiao, ZHANG Yao-ling, YANG Xiao-xiao, GAO Xue-mi. 2013. ESR Dating of the Paleogene within Muli Basin of the Middle of Qilian Mountains[J]. Journal of Geomechanics, 19(4): 392-402(in Chinese with English abstract).

      QI Bang-shen, HU Dao-gong, YANG Xiao-xiao, ZHANG Xu-jiao, ZHAO Xi-tao. 2015. Paleoelevation of the Qilian Mountain Inferred from Carbon and Oxygen Isotopes of Cenozoic Strata[J]. Acta Geoscientica Sinica, 36(3): 323-332(in Chinese with English abstract).

      RAYMO M. E, RUDDIMAN W F. 1992. Tectonic forcing of late Cenozoic climate[J]. Nature, 359: 117-122.

      ROWLEY D B. 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section[J]. The Journal of Geology, 106(2): 229-235.

      RUDDIMAN W. 1998. Early uplift in Tibet?[J]. Nature, 394(6695): 723-725.

      SCHNEIDER W, MATTERN F, WANG Pu-jun, LI Cai. 2003. Tectonic and sedimentary basin evolution of the eastern Bangong–Nujiang zone (Tibet): a reading cycle[J]. International Journal of Earth Sciences, 92(2): 228-254.

      SEARLE M, CORFIELD R I, STEPHENSON B, MCCARRON J. 1997. Structure of the North Indian continental margin in the Ladakh–Zanskar Himalayas: implications for the timing of obduction of the Spontang ophiolite, India –Asia collision and deformation events in the Himalaya[J]. Geological Magazine, 134(3): 297-316.

      SOBEL E R, DUMITRU T A. 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India– Asia collision[J]. Journal of Geophysical Research, 102(B3): 5043-5063.

      SOBEL E R, CHEN J, HEERMANCE R V. 2006a. Late Oligocene Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 247: 70-81.

      SOBEL E R, OSKIN M, BURBANK D, MISKOLAICHUK A. 2006b. Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology[J]. Tectonics, 25: TC2008.

      SONG You-gui, LI Ji-jun, FANG Xiao-min. 2001. The oldest red clay in the Chinese Loess Plateau and its geological significance[J]. Journal of Mountain Science, 19(2): 104-108(in Chinese with English abstract).

      SPICER R A, HARRIS N B W, WIDDOWSON M, HERMAN A B, GUO S X, VALDES P J, WOLFE J A, KELLEY S P. 2003. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 42: 622-624.

      SUN Yue, CHEN Zheng-le, CHEN Bai-lin, HAN Feng-bin, ZHOU Yong-gui, HAO Rui-xiang, LI Song-bin. 2014. Cenozoic uplift and denudation of the EW-trending range of northern Altun Mountains: evidence from apatite fission track data[J]. Acta Geoscientica Scinica, 35(1): 67-75(in Chinese with English abstract).

      TAPPONNIER P, MEYER B, AVOUAC J P, PELTZER G, GAUDEMER Y, GUO S M, XIANG H F, YIN K L, CHEN Z T, CAI S H, DAI H G. 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3-4): 382-403.

      TAPPONNIER P, XU Zhi-qin, ROGER F, MEYER B, ARNAUD N, WITTLINGER G, YANG Jing-sui. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(23): 1671-1677.

      TURNER S, HAWKESWORTH C, LIU Jia-qi, ROGERS N, KELLEY S, CALSTEREN P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364: 50-54.

      VENTURA B, PINI G A, ZUFFA G G. 2001. Thermal history andexhumation of the Northern Apennines (Italy): evidence from combined apatite fissiontrack and vitrinite reflectance data from foreland basin sediments[J]. Basin Research, 13: 435-448.

      VINCENT S J, ALLEN M B. 1999. Evolution of the Minle and Chaoshui Basins, China: implications for Mesozoic strike-slip basin formation in Central Asia[J]. Geological Society of America Bulletin, 111(5): 725-742.

      VOLKMER J E, KAPP P, GUYNN J H, LAI Qing-zhou. 2007. Cretaceous–Tertiary structural evolution of the north central Lhasa Terrane, Tibet[J]. Tectonics, 26: TC6007.

      WAN Jing-lin, WANG Yu, LI Qi, WANG Fei, WANG Er-qi. 2001. FT evidence of northern Altyn uplift in Late-Cenozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 222-224(in Chinese with English abstract).

      WAN Jing-lin, ZHENG Wen-jun, ZHENG De-wen, WANG Wei-tao, WANG Zhi-cai. 2010. Low closure temperature thermochronometry study on the Late Cenozoic tectonic active of northern Qilianshan and its implication for dynamics of Tibetan Plateau growth[J]. Geochimica, 39(5): 439-446(in Chinese with English abstract).

      WANG Cheng-shan, ZHAO Xi-xi, LIU Zhi-fei, LIPPERT P C, GRAHAM S A, COE R S, YI Hai-sheng, ZHU Li-dong, LIU Shun, LI Ya-lin. 2008. Constrains on the early uplift history of the Tibetan Plateau[J]. PNAS, 105(13): 4987-4992.

      WANG Er-chie, XU Feng-yin, ZHOU Jian-xuan, WAN Jing-lin, BURCHFIEL B C. 2006. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. Geological Society America Bulletin, 118(3/4): 349-365.

      WANG Yu, WAN Jing-lin, LI Qi, WANG Fei, WANG Er-qi. 2002. Fission-track evidence for the Cenozoic uplift and erosion of the northern segment of the Altyn Tagh fault zone at the Aksay-Dangjin pass[J]. Acta Geologica Sinica, 76(2): 191-198(in Chinese with English abstract).

      WANG E. 1997. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet[J]. Earth and Planetary Science Letters, 150(1-2): 55-64.

      YANG S F, CHEN H L, CHENG X G, XIAO A C, HE G G, CHEN J J, TIAN D W. 2007. Deformation characteristics and rules of spatial change for the northern Qilianshan thrust belt[J]. Earth Science Frontiers, 14(5): 211-221.

      YIN A, HARRISON T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280.

      YIN A, RUMELHRT P E, BULTER R, COWGILL E, HARRISON T M, FOSTER D A, INGERSOLL R V. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society America Bulletin, 114(10): 1257-1295.

      YUAN W M, ZHANG X T, DONG J, TANG Y H, YU F S, WANG S C. 2003. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet plateau, China[J]. Radiation Measurements, 36: 357-362.

      YUAN W M., DONG J Q, CARTER A, BAO Z K, AN Y C. 2006. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: constraints from apatite fission track data[J]. Tectonophysics, 412: 183-193.

      YUAN Wan-ming, BAO Zeng-kuan, DONG Jin-quan, GUO Zhao-jie, DENG Jun. 2007. Zircon and apatite fission track analyses on mineralization ages and tectonic activities of Tuwu-Yandong porphyry copper deposit in northern Xinjiang, China[J]. Science in China(Series D: Earth Sciences), 20(12): 1787-1795.

      YUE Y J, GRAHAM S A, RITTS B D, WOODEN J L. 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh Fault[J]. Tectonophysics, 406(3-4): 165-178.

      ZHANG Lian-sheng, SCHARER U. 1999. Age and origin of magmatism along the Cenozoic Red River shear belt, China[J]. Contributions to Mineralogy Petrology, 134(1): 67-85.

      ZHANG Pei-zhen, ZHENG De-wen, YIN Gong-ming, YUAN Dao-yang, ZHANG Guang-liang, LI Chuan-you, WANG Zhi-cai. 2006. Discussion on late Cenozoic growth and rise of mortheast margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13(in Chinese with English abstract).

      ZHANG Pei-zhen, MOLNAR P, DOWNS W R. 2001. Increased sedimentation rates and grain sizes 2-4 Myr due to the influence of climate change on erosion rates[J]. Nature, 410: 891-897.

      ZHANG Xue-ting, YANG Sheng-de, YANG Zhan-jun. 2007. The regional geology of Qinghai Province[M]. Beijing: Geological Publishing House: 1-99(in Chinese).

      ZHENG De-wen, CLARK M K, ZHANG Pei-zhen, ZHENG Wen-jun, FARLEY K. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 6(6): 937-941.

      ZHENG De-wen, ZHANG Pei-zhen, WAN Jing-lin, YUAN Dao-yang, LI Chuan-you, YIN Gong-ming, ZHANG Guang-liang, WANG Zhi-cai, MIN Wei, CHEN Jie. 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248: 198-208.

      Apatite Fission Track Study of the Cretaceous–Cenozoic Stepwise Uplift of the Middle Segment of the Qilian Mountain

      QI Bang-shen1, 2), HU Dao-gong1)*, YANG Xiao-xiao3), ZHANG Yao-ling1), TAN Cheng-xuan1, 2), ZHANG Peng1, 2), FENG Cheng-jun1, 2)
      1) Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081; 2) Key Laboratory of Neotectonic Movement & Geohazard, Ministry of Land and Resources, Beijing 100081; 3) Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029

      Abstract:The Qilian Mountain constitutes the northeastern margin of the Tibetan Plateau, and hence

      characteristics of its tectonic activity recorded by apatite fission track (AFT) analysis play an important role in understanding the uplift and growth of the Tibetan Plateau. 22 samples collected for AFT analysis from the Qilian Mountain belt were located along NS-trending transect across southern Qilian fold belt, Shule Nanshan-Laji Shan suture zone, Central Qilian massif and North Qilian suture zone. AFT ages range from (13±2) Ma to (124±11) Ma, and mean track lengths range from (10.3±1.8) μm to (13.6±2.3) μm. Samples from the same tectonic unit have positive correlation between AFT ages and elevations, whereas samples with younger ages ((60±5) Ma to (13±2) Ma) are clustered around North Central Qilian fault. On the basis of the measured apatite fission track age data, the inversion simulation was used to analyze the thermal history of the Qilian Mountain. The best-fit line ofthe time-temperature modeling results suggest that at least three cooling periods have occurred since early Cretaceous: 1) Rapid cooling in the Qilian Mountain during early Cretaceous (>(129±14) Ma to (115±17) Ma). The cooling rates and exhumation rates of South Qilian fold belt and Shule Nanshan -Laji Shan suture zone were great, suggesting that the Qilian Mountain formed the northeastern margin of the Tibetan Plateau during early Cretaceous; 2) From middle Cretaceous to Miocene ((115±17) Ma to (25±7) Ma), the cooling rates and exhumation rates of South Qilian fold belt and Shule Nanshan-Laji Shan suture zone were quite low, implying that the tectonic activity of the Qilian Mountain was weak during middle Cretaceous to Miocene; 3) Since Miocene time, timing of both thrust activities and regional rapid cooling event shows that the Qilian Mountain experienced north-eastward rise and growth, which is in line with the hypothesis that the Qilian Mountain was formed by thrusting within the Qaidam crust along a large decollement in the lower crust that progressively propagated north-eastward, the Qilian Mountain was uplifted considerably since Miocene, forming basins-mountains tectonic landforms. Early Cretaceous rapid cooling event in the Qilian Mountain probably resulted from the docking of the Lhasa block to the south, and the rapid cooling since Miocene may be the result of the docking of the India-Asia collision, representing the main uplift of the Qilian Mountain.

      Key words:fission-track analysis; apatite; Qilian Mountain; Cretaceous; Cenozoic

      *通訊作者:胡道功, 男, 1963年生。研究員。主要從事新構(gòu)造與活動(dòng)構(gòu)造研究。E-mail: hudg@263.net。

      作者簡(jiǎn)介:第一 戚幫申, 男, 1988年生。博士研究生。主要從事區(qū)域地殼穩(wěn)定性評(píng)價(jià)、工程地質(zhì)和地質(zhì)災(zāi)害研究。

      通訊地址:100081, 北京市海淀區(qū)民族大學(xué)南路11號(hào)。E-mail: qibangshen@126.com。

      收稿日期:2015-05-24; 改回日期: 2015-09-30。責(zé)任編輯: 魏樂(lè)軍。

      中圖分類號(hào):P597.3; P542.1

      文獻(xiàn)標(biāo)志碼:A

      doi:10.3975/cagsb.2016.01.05

      猜你喜歡
      白堊紀(jì)磷灰石祁連山
      白堊紀(jì)運(yùn)動(dòng)會(huì)
      勇闖白堊紀(jì)
      圖志
      發(fā)展(2024年1期)2024-04-25 03:45:30
      白堊紀(jì)大逃殺
      祁連山下
      羥基磷灰石在鈾富集成礦中的作用
      濕法冶金(2019年5期)2019-10-18 09:00:00
      祁連山草原:如夢(mèng)如幻近高天
      白堊紀(jì)歷險(xiǎn)記
      祁連山
      黃河之聲(2016年20期)2016-02-21 11:55:33
      PHBV膜與珊瑚羥基磷灰石聯(lián)合修復(fù)頜骨缺損的研究
      松江区| 舟山市| 吕梁市| 芒康县| 昭觉县| 内丘县| 镇平县| 长汀县| 洪湖市| 大荔县| 桦甸市| 万宁市| 威信县| 陈巴尔虎旗| 治县。| 永州市| 霞浦县| 牙克石市| 荔波县| 吴旗县| 灌阳县| 苗栗县| 兴海县| 巧家县| 赤城县| 淳化县| 东明县| 嘉兴市| 锡林郭勒盟| 大悟县| 吉安市| 察哈| 会宁县| 陆川县| 黎城县| 鄯善县| 南澳县| 合水县| 分宜县| 武安市| 石阡县|