冷書生, 袁家天, 范 俊, 張 鑫, 李 俊
(成都大學 附屬醫(yī)院, 四川 成都 610081)
?
腫瘤相關巨噬細胞在腫瘤中的研究進展
冷書生, 袁家天, 范俊, 張鑫, 李俊
(成都大學 附屬醫(yī)院, 四川 成都610081)
摘要:腫瘤的發(fā)生與發(fā)展是一個多因素、多步驟的復雜過程.腫瘤的侵襲轉移與其所處的腫瘤微環(huán)境密切相關,腫瘤微環(huán)境由腫瘤細胞本身及其周圍的基質細胞、組織液、細胞因子等共同組成,其中基質細胞包括成纖維細胞、各種免疫細胞、內皮細胞、周細胞、血小板、巨噬細胞等.在所有腫瘤炎性細胞中,巨噬細胞約占50%,這些細胞被稱為腫瘤相關巨噬細胞,其具有促進腫瘤生長、血管生成、侵襲轉移和免疫逃逸等功能,在調節(jié)腫瘤進展的各個關鍵步驟中發(fā)揮了重要的作用.本研究就腫瘤相關巨噬細胞的產生、分布及其在腫瘤中的作用進行了綜述.
關鍵詞:腫瘤;TAMs;腫瘤微環(huán)境
1TAMs的產生與分布
骨髓中多能干細胞發(fā)育為淋巴樣干細胞和骨髓樣干細胞,骨髓樣干細胞可進一步發(fā)育為單核細胞,然后釋放入外周血,單核細胞穿過血管內皮,進入不同組織中分化為特定的巨噬細胞[1].研究發(fā)現(xiàn),在腫瘤微環(huán)境中的各種信號的作用下,單核細胞被募集進入腫瘤組織,進而分化為腫瘤相關巨噬細胞(tumor-associated macrophages,TAMs)[2-3].
1.1單核細胞的募集
外周血中的單核細胞,在腫瘤細胞和基質細胞所分泌的多種誘導因子的作用下,被募集進入腫瘤組織[4].在這一過程中,單核細胞大部分被趨化因子CCL2所募集,而CCL2主要由腫瘤細胞所分泌.除此之外,腫瘤中的內皮細胞、成纖維母細胞和巨噬細胞也能產生CCL2[5].其他腫瘤衍生信號,如巨噬細胞刺激因子M-CSF、巨噬細胞炎癥蛋白1α(MIP-1a)、血管內皮生長因子(VEGF)、趨化因子CCL3、CCL4、CC5、CCL8也對單核細胞的募集起到一定的作用[6-8].另外,腫瘤細胞周圍的基質蛋白,被巨噬細胞或者腫瘤細胞水解為纖維結合蛋白、纖維蛋白原后,對單核細胞的募集也具有重要的作用[4,9].
1.2TAMs的分布
研究發(fā)現(xiàn),TAMs的分布主要取決于腫瘤微環(huán)境[10].腫瘤在缺氧的環(huán)境下,將誘導缺氧誘生因子HIF-1的表達,從而使HIF-1成為依賴型分子,例如,VEGF,CXCL12及其相應受體CXCR4等的表達[11-12].另外,IL-10在腫瘤微環(huán)境中呈梯度分布,而這些細胞因子決定了單核細胞分化的方向和分布.因此,TAMs往往多分布于腫瘤組織缺氧、壞死及少血管的部位[13-15].
2TAMs的分化
血液循環(huán)中的單核細胞被募集進入不同的微環(huán)境中,其形態(tài)和功能將發(fā)生很大的變化,并最終分化成具有不同功能的巨噬細胞[14-15].最近的免疫學研究已經確定,活化的巨噬細胞主要分為M1和M2型2大類.M1型巨噬細胞,又稱經典活化途徑的巨噬細胞.細菌以及代謝產物(如脂多糖LPS)和Th1分泌的細胞因子IFN-γ促進單核細胞向M1型分化,它的表型特征為IL-12high、IL-23high、IL-10low,這類細胞抗原提呈能力強,能夠激活Th1免疫反應,對微生物和腫瘤細胞具有殺傷作用[16-17].M2型巨噬細胞,又稱替代活化途徑的巨噬細胞.當單核細胞暴露在IL-4、IL-13、免疫復合物/TLR配體、糖皮質激素下將向M2型分化,它的特征表型為IL-10high、IL-12low、IL-1rahigh、IL-1decoyRhigh,可分泌細胞因子,如TGF-β、CCL17、CCL22、CCL24等,并高表達甘露糖受體MRC1、清道夫受體MRS1[7,18-20].這類細胞抗原提呈能力差,能激活Th2免疫反應,促進血管生成,組織重塑,修復損傷等[21].
研究證實,單核細胞向M2型的分化涉及到抑制其轉化信號通路的失活和促進其轉化信號通路的增強.最新研究發(fā)現(xiàn),NF-κB[22]、Notch等[23]可抑制M2轉化信號通路,但TGF-β[24-26]、STAT-3[27]、c-MYC[28]、HIF-1[11]等可促進M2轉化信號通路.
目前,科研人員普遍認為TAMs就是M2型[23].在腫瘤微環(huán)境中缺乏IFN-γ及細菌分解產物,但具有使單核細胞分化為M2型巨噬細胞所需的腫瘤微環(huán)境,即由腫瘤細胞本身、基質細胞、細胞因子,如TGF-β、IL-10、IL-4、IL-13等組成的內環(huán)境,并且這些細胞因子將使TGF-β、STAT-3、HIF-1等信號通路激活[24,27,29],單核細胞將向M2/TAMs分化.此外,研究還發(fā)現(xiàn),抑制NF-κB、Notch等信號激活[22-23]以及抑制SIRP-α[28]在巨噬細胞中的表達,將有利于單核細胞向TAMs/M2型轉化.
3TAMs在腫瘤中的作用
3.1促進腫瘤生長
大量的研究表明,TAMs在腫瘤的發(fā)生發(fā)展中發(fā)揮著重要作用,TAMs能夠分泌多種細胞因子,促進腫瘤的生長,侵襲轉移,血管生成和免疫逃避等[30].已知TAMs可分泌EGF、EFGR、PDGF、TGF-β1、bFGF等[3],這些細胞因子能夠促進腫瘤細胞生長.M1型巨噬細胞可通過NO合酶(NOS)和L-精氨酸(L-Arg)為底物合成NO,進而發(fā)揮細胞毒作用[31].但對于TAMs而言,這一通路被阻斷,取而代之的是以L-Arg為底物合成鳥氨酸(Orn)和多肽類物質,這些物質具有促進腫瘤生長的作用[32].另外,通過氯磷酸鹽脂質體耗竭小鼠體內巨噬細胞,也證實巨噬細胞對腫瘤的生長是必需的[33].而TAMs所分泌的細胞因子,如IL-1,TNF,還可以激活NF-κB信號通路[21],從而促進腫瘤的增殖.
3.2血管生成作用
腫瘤的血管生成是一個極其復雜的過程,其中涉及腫瘤細胞與基質細胞相互作用以及腫瘤細胞和基質細胞自分泌、旁分泌因子的作用[7,34].在腫瘤微環(huán)境中,TAMs浸潤的數(shù)量與腫瘤微血管密度(MVD)、VEGF的表達呈正相關,并在多種腫瘤中,如肝癌,胰腺癌,食道癌,乳腺癌,肺癌,前列腺癌等得到了證實[5,16,35-36].研究表明,TAMs分泌多種細胞因子,包括堿性成纖維生長因子(bFGF)、PDGF、TGF-β、血管生成素(ANG1/2)、IL-1、IL-8、腫瘤壞死因子(TNF)-α、脫氧胸腺嘧啶苷磷酸化酶(TP)、MMP-2/9以及NO等[37],它們在內皮細胞的增殖和遷移、基質重新編輯、血管的成熟等過程中發(fā)揮著重要的作用.此外,被腫瘤馴化了的TAMs常常分布在腫瘤的缺氧部位或者是無血管處,然后通過自分泌和旁分泌因子來發(fā)揮其促進腫瘤血管生成的作用.
3.3免疫抑制作用
研究表明,TAMs抗原提呈能力較弱,對免疫反應有抑制作用,包括TAMs通過分泌高水平的IL-10、TGF-β、前列腺素抑制T細胞的激活和增殖,同時降低NK細胞和淋巴因子激活的免疫細胞的殺傷活性[38].通過分泌趨化因子,如CCL2、CCL17等,優(yōu)先募集如調節(jié)性T細胞(Treg)、輔助性T2細胞(Th2)等缺乏細胞毒性的T細胞亞群,進而抑制免疫作用[39].同時,Treg、Th2等T細胞亞群可分泌IL-4、IL-10及IL-13,起到再次促進趨化因子分泌的作用[40].該過程形成一個封閉的循環(huán),將不斷放大由TAMs所介導的免疫抑制作用.另外,TAMs分泌趨化因子CCL18募集幼稚T細胞,這些T細胞在腫瘤微環(huán)境中最終將不具備正常的細胞免疫作用[41-42].
3.4促進腫瘤浸襲與轉移
研究表明,TAMs可以促進腫瘤的遠處轉移.在腫瘤微環(huán)境中,TAMs通過分泌蛋白酶,如絲氨酸蛋白酶、MMPs、組織蛋白酶等,作用于細胞之間的連接,破壞基底膜,從而促進腫瘤的侵襲和轉移.例如,乳腺癌細胞促進TAMs分泌基質金屬蛋白酶(MMP)[43],在肺癌中,VEGFR-1促使TAMs對MMP-9的分泌[44],胰腺癌細胞分泌腫瘤壞死因子(TNF)刺激巨噬細胞分泌MMP,最終使惡性腫瘤細胞的侵襲力得到提高[45].此外,腫瘤細胞促進巨噬細胞分泌IL-1、EGF等細胞因子對促進腫瘤的侵襲和轉移也具有重要的作用[46].
參考文獻:
[1]Auffray C,Sieweke M H,Geissmann F.Bloodmonocytes:development,heterogeneity,andrelationshipwithdendriticcells[J].Annu Rev Immunol,2009,27(1):669-692.
[2]Lawrence T,Natoli G.Transcriptionalregulationofmacrophagepolarization:enablingdiversitywithidentity[J].Nat Rev Immunol,2011,11(11):750-761.
[3]Ruffell B,Affara N I,Coussens L M.Differentialmacrophageprogramminginthetumormicroenvironment[J].Trends Immunol,2012,33(3):119-126.
[4]Hanahan D,Coussens L M.Accessoriestothecrime:functionsofcellsrecruitedtothetumormicroenvironment[J].Cancer Cell,2012,21(3):309-322.
[5]Qian B Z,Li J,Zhang H,et al.CCL2recruitsinflammatorymonocytestofacilitatebreast-tumourmetastasis[J].Nature,2011,475(7355):222-225.
[6]Murdoch C,Giannoudis A,Lewis C E.Mechanismsregulatingtherecruitmentofmacrophagesintohypoxicareasoftumorsandotherischemictissues[J].Blood,2004,104(8):2224-2234.
[7]Riabov V,Gudima A,Wang N,et al.Roleoftumorassociatedmacrophagesintumorangiogenesisandlymphangiogenesis[J].Front Physiol,2014,5:75.
[8]Lin E Y,Nguyen A V,Russell R G,et al.Colony-stimulatingfactor1promotesprogressionofmammarytumorstomalignancy[J].J Exp Med,2001,193(6):727-740.
[9]Pamela F P,Wang Q A,Ingrid Nemstedt A,et al.TargeteddeletionofadipocytesbyapoptosisleadstoadiposetissuerecruitmentofalternativelyactivatedM2macrophages[J].Endocrinology,2011,152(8):3074-3081.
[10]Anderson A R,Weaver A M,Cummings P T,et al.Tumormorphologyandphenotypicevolutiondrivenbyselectivepressurefromthemicroenvironment[J].Cell,2006,127(5):905-915.
[11]Werno C,Menrad H,Weigert A,et al.KnockoutofHIF-1alphaintumor-associatedmacrophagesenhancesM2polarizationandattenuatestheirpro-angiogenicresponses[J].Carcinogenesis,2010,31(10):1863-1872.
[12]Zhou J,Dehne N,Brune B.NitricoxidecausesmacrophagemigrationviatheHIF-1-stimulatedsmallGTPasesCdc42andRac1[J].Free Radic Biol Med,2009,47(6):741-749.
[13]Sica A,Saccani A,Bottazzi B,et al.AutocrineproductionofIL-10mediatesdefectiveIL-12productionandNF-kappaBactivationintumor-associatedmacrophages[J].J Immunol,2000,164(2):762-767.
[14]Gordon S,Martinez F O.Alternativeactivationofmacrophages:mechanismandfunctions[J].Immunity,2010,32(5):593-604.
[15]Schmid M C,Varner J A.Myeloidcellsinthetumormicroenvironment:modulationoftumorangiogenesisandtumorinflammation[J].J Oncol,2010,2010:201026.
[16]Cruz-Leal Y,Osugui L,Lucatelli L M,et al.LiposomesofphosphatidylcholineandcholesterolinduceanM2-likemacrophagephenotypereprogrammabletoM1patternwiththeinvolvementofB-1cells[J].Immunobiology,2014,219(6):403-415.
[17]Liu C Y,Xu J Y,Shi X Y,et al.M2-polarizedtumor-associatedmacrophagespromotedepithelial-mesenchymaltransitioninpancreaticcancercells,partiallythroughTLR4/IL-10signalingpathway[J].Lab Invest,2013,93(7):844-854.
[18]Yaddanapudi K,Putty K,Rendon B E,et al.Controloftumor-associatedmacrophagealternativeactivationbymacrophagemigrationinhibitoryfactor[J].J Immunol,2013,190(6):2984-2993.
[19]Martinez F O,Gordon S,Locati M,et al.Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization:new molecules and patterns of gene expression[J].J Immunol,2006,177(10):7303-7311.
[20]Schmid M C,Varner J A.Myeloidcellsintumorinflammation[J].Vasc Cell,2012,4(1):1-7.
[21]Mantovani A,Sica A,Sozzani S,et al.Thechemokinesystemindiverseformsofmacrophageactivationandpolarization[J].Trends Immunol,2004,25(12):677-686.
[22]Pikarsky E,Porat R M,Stein I,et al.NF-kappaBfunctionsasatumourpromoterininflammation-associatedcancer[J].Nature,2004,431(7007):461-466.
[23]Wang Y C,He F,Feng F,et al.NotchsignalingdeterminestheM1versusM2polarizationofmacrophagesinantitumorimmuneresponses[J].Cancer Res,2010,70(12):4840-4849.
[24]Maeda H,Kuwahara H,Ichimura Y,et al.TGF-betaenhancesmacrophageabilitytoproduceIL-10innormalandtumor-bearingmice[J].J Immunol,1995,155(10):4926-4932.
[25]Yang P,Li Q J,Feng Y,et al.TGF-beta-miR-34a-CCL22signaling-inducedTregcellrecruitmentpromotesvenousmetastasesofHBV-positivehepatocellularcarcinoma[J].Cancer Cell,2012,22(3):291-303.
[26]Gong D,Shi W,Yi S J,et al.TGFbetasignalingplaysacriticalroleinpromotingalternativemacrophageactivation[J].Bmc Immunol,2012,13(1):1-10.
[27]Goswami K K,Barik S,Sarkar M,et al.TargetingSTAT3phosphorylationbyneemleafglycoproteinpreventsimmuneevasionexertedbysupraglotticlaryngealtumorinducedM2macrophages[J].Mol Immunol,2014,59(2):119-127.
[28]Pello O M,De Pizzol M,Mirolo M,et al.Roleofc-MYCinalternativeactivationofhumanmacrophagesandtumor-associatedmacrophagebiology[J].Blood,2012,119(2):411-421.
[29]Zhou J,Ding T,Pan W,et al.IncreasedintratumoralregulatoryTcellsarerelatedtointratumoralmacrophagesandpoorprognosisinhepatocellularcarcinomapatients[J].Int J Cancer,2009,125(7):1640-1648.
[30]Gordon S,Taylor P R.Monocyteandmacrophageheterogeneity[J].Nat Rev Immunol.2005,5(12):953-964.
[31]Rauh M J,Sly L M,Kalesnikoff J,et al.TheroleofSHIP1inmacrophageprogrammingandactivation[J].Biochem Soc Trans,2004,32(Pt 5):785-788.
[32]Dijols S,Boucher J L,Lepoivre M,et al.Firstnon-alpha-aminoacidguanidinesactingasefficientNOprecursorsuponoxidationbyNO-synthaseIIoractivatedmousemacrophages[J].Biochemistry,2002,41(30):9286-9292.
[33]Zeisberger S M,Odermatt B,Marty C,et al.Clodronate-liposome-mediateddepletionoftumour-associatedmacrophages:anewandhighlyeffectiveantiangiogenictherapyapproach[J].Br J Cancer,2006,95(3):272-281.
[34]Rolny C,Mazzone M,Tugues S,et al.HRGinhibitstumorgrowthandmetastasisbyinducingmacrophagepolarizationandvesselnormalizationthroughdownregulationofPlGF[J].Cancer Cell,2011,19(1):31-44.
[35]Ding T,Xu J,Wang F,et al.Hightumor-infiltratingmacrophagedensitypredictspoorprognosisinpatientswithprimaryhepatocellularcarcinomaafterresection[J].Hum Pathol,2009,40(3):381-389.
[36]Capece D,Fischietti M,Verzella D,et al.Theinflammatorymicroenvironmentinhepatocellularcarcinoma:apivotalrolefortumor-associatedmacrophages[J].Biomed Res Int,2013,2013(1):187204-187204.
[37]Pollard J W.Tumour-educatedmacrophagespromotetumourprogressionandmetastasis[J].Nat Rev Cancer,2004,4(1):71-78.
[38]Fidler I J,Schroit A J.Recognitionanddestructionofneoplasticcellsbyactivatedmacrophages:discriminationofalteredself[J].Biochim Biophys Acta,1988,948(2):151-173.
[39]Swann J B,Vesely M D,Silva A,et al.Demonstrationofinflammation-inducedcancerandcancerimmunoeditingduringprimarytumorigenesis[J].Proc Natl Acad Sci USA,2008,105(2):652-656.
[40]Curiel T J,Coukos G,Zou L,et al.SpecificrecruitmentofregulatoryTcellsinovariancarcinomafostersimmuneprivilegeandpredictsreducedsurvival[J].Nat Med,2004,10(9):942-949.
[41]Chen J,Yao Y,Gong C,et al.CCL18fromtumor-associatedmacrophagespromotesbreastcancermetastasisviaPITPNM3[J].Cancer Cell,2011,19(4):541-555.
[42]Schutyser E,Struyf S,Proost P,et al.IdentificationofbiologicallyactivechemokineisoformsfromasciticfluidandelevatedlevelsofCCL18/pulmonaryandactivation-regulatedchemokineinovariancarcinoma[J].J Biol Chem,2002,277(27):24584-24593.
[43]Leifler K S,Svensson S,Abrahamsson A,et al.InflammationinducedbyMMP-9enhancestumorregressionofexperimentalbreastcancer[J].J Immunol,2013,190(8):4420-4430.
[44]Hiratsuka S,Nakamura K,Iwai S,et al.MMP9inductionbyvascularendothelialgrowthfactorreceptor-1isinvolvedinlung-specificmetastasis[J].Cancer Cell,2002,2(4):289-300.
[45]Liou G Y,Doppler H,Necela B,et al.Macrophage-secretedcytokinesdrivepancreaticacinar-to-ductalmetaplasiathroughNF-kappaBandMMPs[J].J Cell Biol,2013,202(3):563-577.
[46]Triozzi P L,Aldrich W.Effectsofinterleukin-1receptorantagonistandchemotherapyonhost-tumorinteractionsinestablishedmelanoma[J].Anticancer Res,2010,30(2):345-354.
Research Progress of Tumor-associated Macrophages in Tumor
LENGShusheng,YUANJiatian,FANJun,ZHANGXin,LIJun
(General Surgery Department, Affiliated Hospital of Chengdu University, Chengdu 610081, China)
Abstract:Tumor genesis and development is a complex multifactorial,multi-step process.Invasion and metastasis of the tumor is closely related to tumor microenvironment which consists of tumor cells and the surrounding stromal cells,tissue fluid,cytokine,etc.,wherein the stromal cells include fibroblasts,various immune cells,endothelial cells,pericytes,platelets,macrophages,etc.In all tumor inflammatory cells, macrophages accounting for about 50%,are called tumor-associated macrophages(TAMs).They can promote tumor growth,angiogenesis,invasion and metastasis,and immune escape etc.Therefore,they play important roles in each of the key steps of tumor progression.This article reviews the production,distribution and function of TAMs in tumor.
Key words:tumor;TAMs;tumor microenvironment
中圖分類號:R730.2
文獻標志碼:A
作者簡介:冷書生(1985 — ), 男, 碩士, 醫(yī)師, 從事肝癌侵襲轉移的分子機制研究.
基金項目:成都大學校青年基金(2015XJZ33)資助項目.
收稿日期:2015-11-24.
文章編號:1004-5422(2016)01-0030-04