• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      家蠶miRNA及其在抗病毒機(jī)制中的作用

      2016-03-25 09:47:33王雅婷蔣彩英
      蠶桑通報(bào) 2016年2期
      關(guān)鍵詞:家蠶抗病毒昆蟲(chóng)

      王雅婷,蔣彩英

      (浙江理工大學(xué)生命科學(xué)學(xué)院,浙江 杭州 310018)

      家蠶miRNA及其在抗病毒機(jī)制中的作用

      王雅婷,蔣彩英*

      (浙江理工大學(xué)生命科學(xué)學(xué)院,浙江 杭州 310018)

      miRNA廣泛存在于真核生物中,并在多種生理過(guò)程中發(fā)揮著重要的作用。本文簡(jiǎn)要介紹了家蠶miRNA及其在抗病毒機(jī)制中功能作用的研究進(jìn)展。開(kāi)展家蠶miRNA在家蠶抗病毒作用機(jī)制的研究,不僅有助于全面了解家蠶miRNA的功能及其調(diào)控機(jī)制,而且對(duì)于促進(jìn)家蠶病毒病的早期診斷、防治和抗病育種具有重要意義。

      家蠶;miRNA;抗病毒機(jī)制

      1 引言

      miRNA(microRNA、微RNA)是一類(lèi)長(zhǎng)約19~24個(gè)核苷酸(nucleotide,nt)的內(nèi)源性非編碼小分子單鏈RNA。在進(jìn)化過(guò)程中,miRNA高度保守,并能通過(guò)與靶基因mRNA特異性的堿基互補(bǔ)配對(duì),引起靶基因mRNA降解或者抑制其翻譯,廣泛地負(fù)調(diào)控靶基因的表達(dá)[1]。據(jù)估計(jì),生物體內(nèi)miRNA數(shù)量約占其相應(yīng)物種全部基因數(shù)的1%[2]。生物信息學(xué)數(shù)據(jù)顯示,每個(gè)miRNA可以調(diào)節(jié)數(shù)百個(gè)靶基因,因此miRNA能調(diào)節(jié)多種生物學(xué)信號(hào)通路,進(jìn)而調(diào)控多種重要生命活動(dòng),如生長(zhǎng)與發(fā)育、細(xì)胞分化與凋亡、腫瘤發(fā)生以及對(duì)異源物(xenobiotics)的毒理學(xué)反應(yīng)等[3,4]。越來(lái)越多研究發(fā)現(xiàn),miRNA在免疫細(xì)胞的分化發(fā)育、免疫應(yīng)答的調(diào)控以及免疫系統(tǒng)疾病的發(fā)生發(fā)展等過(guò)程中都發(fā)揮重要的作用[5,6]。miRNA因其在細(xì)胞基因表達(dá)調(diào)控網(wǎng)絡(luò)系統(tǒng)中的重要作用,已成為當(dāng)前生命科學(xué)研究的熱點(diǎn)。

      就昆蟲(chóng)而言,現(xiàn)已在miRBase數(shù)據(jù)庫(kù)(Release 21:2014年6月)[7]中登錄了26種昆蟲(chóng)3,824條成熟miRNA序列,其中以家蠶Bombyx mori(563條)、黑腹果蠅Drosophila melanogaster(466條)和赤擬谷盜Tribolium castaneum(430條)等的數(shù)量相對(duì)較多。至今,有關(guān)昆蟲(chóng)miRNA的研究主要以黑腹果蠅為主,包括miRNA鑒定、結(jié)構(gòu)特征分析、生物合成途徑和作用機(jī)制等研究[8,9]。近年來(lái),有關(guān)家蠶miRNA研究發(fā)展十分迅速,新的miRNA不斷被發(fā)現(xiàn),揭示出不同miRNA在各種生物學(xué)功能方面起著非常重要的調(diào)控作用。

      2 家蠶miRNA研究概況

      目前,有關(guān)家蠶miRNA的研究主要集中在miRNA鑒定與表達(dá)、靶基因預(yù)測(cè)與驗(yàn)證、生長(zhǎng)發(fā)育與絲蛋白合成等功能相關(guān)的研究[10]。

      2.1家蠶miRNA鑒定與表達(dá)

      miRNA鑒定主要通過(guò)生物信息學(xué)預(yù)測(cè)、miRNA芯片檢測(cè)和文庫(kù)構(gòu)建及轉(zhuǎn)錄組測(cè)序等,再利用Northern雜交和RT-PCR等分子生物學(xué)技術(shù)進(jìn)行驗(yàn)證。隨著家蠶基因組測(cè)序的完成以及高通量測(cè)序技術(shù)的發(fā)展,越來(lái)越多的家蠶新miRNA被發(fā)現(xiàn)和鑒定。Tong等[11]率先通過(guò)生物信息學(xué)方法在家蠶基因組中鑒定出24個(gè)保守的miRNA。He等[12]利用芯片和Northern雜交技術(shù)鑒定了46個(gè)miRNAs、21個(gè)可能的miRNA和一個(gè)家蠶特有的miRNA,并預(yù)測(cè)了547個(gè)潛在的靶基因。Yu等[13,14]建立了家蠶不同發(fā)育時(shí)期的小RNA文庫(kù),采用計(jì)算機(jī)預(yù)測(cè)和分子克隆的方法,從中鑒定出了118個(gè)保守的miRNA和151個(gè)可能的家蠶特有的miRNA,并發(fā)現(xiàn)家蠶蛻皮期miRNA不但在種類(lèi)上,而且在表達(dá)量上都有明顯增加。根據(jù)miRNA序列的保守性,Huang等[15]通過(guò)同源性分析鑒定獲得16個(gè)家蠶新miRNA,預(yù)測(cè)的21個(gè)潛在靶基因多是編碼轉(zhuǎn)錄因子。通過(guò)芯片技術(shù)并結(jié)合Northern雜交,Liu等[16,17]研究了100個(gè)家蠶miRNA的時(shí)空表達(dá)情況。Zhang等[18]、Cai等[19]、Jagadeeswaran等[20]和Liu等[21]則分別利用SBS、Solexa和SOLiD等測(cè)序技術(shù)鑒定出新的miRNA,并根據(jù)其表達(dá)特征,推測(cè)有可能與家蠶的胚胎形成、變態(tài)發(fā)育和絲腺功能有關(guān)。

      2.2家蠶miRNA功能研究

      研究表明,家蠶miRNA在變態(tài)發(fā)育、神經(jīng)發(fā)育、免疫反應(yīng)和絲蛋白合成等多種生物學(xué)過(guò)程中均有重要作用。盡管通過(guò)miRNA芯片檢測(cè)和轉(zhuǎn)錄組測(cè)序等技術(shù)發(fā)現(xiàn)了一大批在家蠶不同發(fā)育時(shí)期、不同組織器官以及病原物感染后差異表達(dá)的miRNA,但其中僅少數(shù)miRNA的功能得到了確證。家蠶miRNA功能及其調(diào)控機(jī)制的研究主要通過(guò)人為過(guò)表達(dá)或抑制表達(dá)目的miRNA后,檢測(cè)其靶基因的表達(dá)水平以及家蠶生物學(xué)、生理生化和分子生物學(xué)等特征指標(biāo)的變化,進(jìn)而推測(cè)目的miRNA的功能。其中,采用雙熒光素酶活性試驗(yàn)鑒定并驗(yàn)證家蠶miRNA與其靶基因的直接作用是當(dāng)前研究miRNA功能的常用方法。

      在家蠶中,Liu等[22]報(bào)道了bmo-let-7在不同發(fā)育時(shí)期和組織以及卵巢細(xì)胞中的表達(dá)情況,發(fā)現(xiàn)其表達(dá)模式與體內(nèi)蛻皮激素的滴度之間存在一定的相關(guān)性。采用轉(zhuǎn)基因方法降低家蠶體內(nèi)bmo-let-7的表達(dá)水平后,發(fā)現(xiàn)轉(zhuǎn)基因家蠶在蛻皮過(guò)程中出現(xiàn)發(fā)育停滯,且期間2個(gè)與蛻皮激素途徑調(diào)控相關(guān)的bmo-let-7潛在靶基因FTZ-F1和Eip74EF(E74)的表達(dá)水平均有增高,因此推測(cè)bmo-let-7能調(diào)控家蠶的蛻皮過(guò)程[23]。類(lèi)似地,bmo-miR-281可通過(guò)抑制其靶基因——蛻皮激素受體(ecdysone receptor,EcR)BmEcR-B基因的表達(dá)而參與馬氏管的發(fā)育調(diào)控[24]。Chen等[25]報(bào)道bmo-miR-1a-3p能與Bm-VMP23基因的3’端非翻譯區(qū)(3’UTR)特異性結(jié)合而導(dǎo)致BmVMP23基因下調(diào),進(jìn)而影響蠶卵致死性狀。此外,Bmo-miR-9a可通過(guò)下調(diào)靶基因Bmase表達(dá)水平進(jìn)而調(diào)控家蠶神經(jīng)發(fā)育進(jìn)程[26];Bmo-miR-2作用靶基因awd和fng基因而影響蠶蛾翅形態(tài)[27];bmomiR-7作用靶基因Bmyan而調(diào)控家蠶光感受器分化和復(fù)眼發(fā)育[28]。

      家蠶miRNA在高齡幼蟲(chóng)后部絲腺中高水平表達(dá),表明miRNA在絲蛋白合成中具有重要的調(diào)控作用[29,30]。Cao等[31]通過(guò)異源報(bào)告基因系統(tǒng)證實(shí)了絲素輕鏈基因(fibroin-L)至少被4個(gè)miRNA(miR-33、miR-190、miR-276和miR-7)所抑制;而Chen等[32]采用雙熒光素酶活性試驗(yàn)證實(shí)fibroin-L基因亦能被在5齡幼蟲(chóng)后部絲腺高水平表達(dá)的bmo-miR-0001和bmo-miR-0015所顯著下調(diào)。miRNA-2b能與家蠶絲素基因P25的3'UTR互補(bǔ)配對(duì),且兩者在5齡幼蟲(chóng)后部絲腺中的表達(dá)模式表明miRNA-2b可能是P25基因轉(zhuǎn)錄后水平的微調(diào)因子[33]。Wu等[34]預(yù)測(cè)發(fā)現(xiàn)絲素蛋白調(diào)節(jié)結(jié)合蛋白FMBP-1基因3’UTR中存在bmo-miR-2b*、bmo-miR-305和bmo-miR-2758的互補(bǔ)配對(duì)位點(diǎn),經(jīng)驗(yàn)證表明在后部絲腺中高水平表達(dá)的bmo-miR-2758能顯著抑制FMBP-1基因的表達(dá)。

      3 家蠶抗病毒研究

      眾所周知,家蠶是支撐全球蠶桑絲綢產(chǎn)業(yè)的生物學(xué)基礎(chǔ)[35]。我國(guó)是世界上最大的蠶繭、蠶絲生產(chǎn)國(guó)和繭絲綢出口國(guó)[36]。蠶桑業(yè)在我國(guó)農(nóng)業(yè)經(jīng)濟(jì)中占有重要地位,是農(nóng)民收入的重要來(lái)源。然而,我國(guó)每年卻因蠶病如病毒病、細(xì)菌病、真菌病和微粒子病等流行而造成的損失約占蠶業(yè)總收入的20%,由核型多角體病(Nuclear polyhedrosis)、質(zhì)型多角體?。–ytoplasmic polyhedrosis)和濃核?。―ensonuclopsis)等病毒病引發(fā)的損失約占蠶病總損失的80%,已嚴(yán)重影響到蠶桑產(chǎn)業(yè)的可持續(xù)發(fā)展。其中,家蠶核型多角體病毒(Bombyx mori nuclear polyhedrosis virus,BmNPV,一種昆蟲(chóng)桿狀病毒)所引起的蠶膿病是養(yǎng)蠶業(yè)三大病毒病中危害最為嚴(yán)重的一種,在世界養(yǎng)蠶業(yè)國(guó)家常有暴發(fā),并造成巨大的經(jīng)濟(jì)損失。長(zhǎng)期以來(lái),盡管在尋找抗病基因、闡明抗性機(jī)理培育抗性品種等方面研究己有一定的進(jìn)展,但仍有較多問(wèn)題尚未能解決[37,38]。

      有關(guān)昆蟲(chóng)抗病毒機(jī)制的研究主要集中在RNA干擾和細(xì)胞凋亡等方面。研究發(fā)現(xiàn),RNA沉默是昆蟲(chóng)用來(lái)抵御病毒入侵的一種普遍而又進(jìn)化保守的防御機(jī)制[39~41]。由小干擾RNA(small interfering RNAs,siRNA)介導(dǎo)的RNA干擾在黑腹果蠅抗病毒防御機(jī)制中發(fā)揮重要作用。細(xì)胞凋亡(apoptosis)作為昆蟲(chóng)防衛(wèi)病毒侵染的另一種重要機(jī)制,是通過(guò)細(xì)胞自殺性凋亡限制病毒感染與復(fù)制[42,43]。有關(guān)昆蟲(chóng)細(xì)胞凋亡調(diào)節(jié)分子與調(diào)節(jié)機(jī)制研究多限于果蠅、家蠶、草地貪夜蛾Spodoptera frugiperda和桿狀病毒等[37]。雖然人們對(duì)昆蟲(chóng)細(xì)胞凋亡的分子機(jī)制已有大致了解,但與哺乳動(dòng)物相比,許多細(xì)節(jié)更待繼續(xù)闡明。

      在家蠶中,從消化液內(nèi)分離克隆獲得了多個(gè)抗病毒蛋白,其中以中腸特異性表達(dá)的家蠶脂酶1(Bmlipase-1)[44]、絲氨酸蛋白酶2(BmSP-2)[45]和還原型輔酶Ⅱ氧化還原酶(BmNOX)[46]等對(duì)BmNPV具有較強(qiáng)抗性。Jiang等[47]采用轉(zhuǎn)基因技術(shù)將Bmlipase-1基因轉(zhuǎn)入家蠶敏感品系體內(nèi),獲得的轉(zhuǎn)基因家蠶對(duì)病毒感染后的存活率提高了33%。這在進(jìn)一步確證Bmlipase-1抗病毒活性的同時(shí),揭示了家蠶轉(zhuǎn)基因抗病育種的應(yīng)用前景。此外,采用熒光差異展示PCR技術(shù)(FDD-PCR)、芯片技術(shù)、酵母雙雜、轉(zhuǎn)錄組與蛋白組測(cè)序等技術(shù)比較分析家蠶對(duì)病毒抗性和敏感品系、以及在病毒感染過(guò)程中差異表達(dá)的基因和蛋白,進(jìn)而篩選家蠶抗病毒相關(guān)基因及其相關(guān)的信號(hào)轉(zhuǎn)導(dǎo)途徑[48~54]。其中,細(xì)胞凋亡可能也是家蠶對(duì)抗病毒感染的重要機(jī)制。家蠶核糖體S3A基因Bms3a在抗性品系感染病毒后高水平表達(dá),推測(cè)該基因可能促進(jìn)被病毒感染的家蠶細(xì)胞凋亡,進(jìn)而抑制病毒在蠶體內(nèi)的復(fù)制[48]。Qin等[55]采用遺傳雜交和蛋白組測(cè)序技術(shù)鑒定發(fā)現(xiàn)細(xì)胞凋亡相關(guān)的半胱天冬酶caspase-1在家蠶抗BmNPV感染中具有重要作用。

      4 miRNA在家蠶抗病毒機(jī)制中的作用

      越來(lái)越多的研究表明,miRNA參與對(duì)病毒侵染免疫反應(yīng)的調(diào)控過(guò)程[56~62]。由miRNA進(jìn)行的轉(zhuǎn)錄后調(diào)控比轉(zhuǎn)錄調(diào)控和翻譯后調(diào)控具有更好的精準(zhǔn)性(robust)和更快的反應(yīng)速度,因此在進(jìn)化上更具優(yōu)越性[63]。而且,每個(gè)miRNA分子通??梢哉{(diào)控?cái)?shù)個(gè)目標(biāo)基因,因此不同類(lèi)型的調(diào)控通常交織在一個(gè)調(diào)控網(wǎng)絡(luò)中。此外,病毒自身編碼的miRNA對(duì)昆蟲(chóng)細(xì)胞基因表達(dá)的調(diào)控作用[64],可能與昆蟲(chóng)miRNA的調(diào)控網(wǎng)絡(luò)產(chǎn)生反饋互作,形成更為錯(cuò)綜復(fù)雜的調(diào)控網(wǎng)絡(luò)。

      不同昆蟲(chóng)及細(xì)胞感染不同病毒后,其miRNA表達(dá)譜多會(huì)發(fā)生顯著變化,如棉鈴蟲(chóng)Helicoverpa armigera幼蟲(chóng)[65]和草地貪夜蛾Sf9細(xì)胞[66]感染桿狀病毒、谷實(shí)夜蛾H.zea脂肪體細(xì)胞HzFB感染煙芽夜蛾囊泡病毒(Heliothis virescens ascovirus,HvAV3e)[58]、致倦庫(kù)蚊Culex quinquefasciatus雌成蟲(chóng)感染西尼羅病毒(WNV)[61]和埃及伊蚊Aedes aegypti雌成蟲(chóng)感染登革病毒(DENV)[67]等。miRNA表達(dá)譜的變化可能來(lái)自寄主本身的抗病毒反應(yīng),亦可能受病毒基因的調(diào)控而產(chǎn)生。

      家蠶幼蟲(chóng)感染質(zhì)型多角體病毒(BmCPV)后,在鑒定獲得的316條已知miRNA和90條新miRNA中,有58條miRNA的表達(dá)量發(fā)生了顯著變化,且這些差異表達(dá)miRNA的靶基因多涉及昆蟲(chóng)對(duì)病毒的免疫與應(yīng)激反應(yīng)[68]。其中,bmo-miR-278-3p在感染Bm-CPV后表達(dá)量顯著下調(diào),而在家蠶幼蟲(chóng)體內(nèi)過(guò)表達(dá)bmo-miR-278-3p可顯著抑制其靶基因——胰島素相關(guān)肽結(jié)合蛋白(IBP2)基因表達(dá),并促進(jìn)BmCPV的復(fù)制[69]。這表明bmo-miR-278-3p可能參與家蠶對(duì)病毒的抗性。目前,家蠶miRNA抗病毒相關(guān)的研究盡管仍較為缺乏,但隨著miRNA研究的不斷深入,家蠶miRNA在抗病毒機(jī)制中作用會(huì)更為明確,并將用于家蠶病毒病的防治。Zhang等[70]利用miRNA的調(diào)控機(jī)理,構(gòu)建了以BmNPV基因lef-1為靶基因的人工miRNA(amiRNA)表達(dá)系統(tǒng),轉(zhuǎn)染昆蟲(chóng)細(xì)胞后能產(chǎn)生具有抑制病毒復(fù)制并降低病毒感染的成熟amiR2764和amiR279。

      5 展望

      miRNA因其在細(xì)胞基因表達(dá)調(diào)控網(wǎng)絡(luò)系統(tǒng)中的重要作用,現(xiàn)已成為生命科學(xué)研究的熱點(diǎn)。但是,絕大多數(shù)miRNA的調(diào)控機(jī)制及其生物學(xué)功能至今尚未明了。有關(guān)miRNA免疫調(diào)控人類(lèi)重大疾病如癌癥、糖尿病和心血管疾病以及病毒傳染病等方面的研究雖已有較多積累,但miRNA的功能機(jī)制及其調(diào)控網(wǎng)絡(luò)仍在發(fā)掘當(dāng)中。昆蟲(chóng)特別是家蠶的miRNA功能研究則相對(duì)滯后,有關(guān)miRNA抗病毒調(diào)控機(jī)制的研究尚待加強(qiáng)。

      隨著miRNA及其控調(diào)網(wǎng)絡(luò)在家蠶抗病毒作用機(jī)制的闡明,不僅有助于全面了解家蠶miRNA的功能及其調(diào)控機(jī)制,而且對(duì)于促進(jìn)家蠶病毒病的早期診斷、防治新途徑和抗病育種具有重要意義。

      [1] Ambros V,Lee RC.Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning[J].Methods Mol Biol,2004,265:131~158.

      [2] Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116:281~297.

      [3] Kato M,Slack FJ.microRNAs:small molecules with big roles-C.elegans to human cancer[J].Biol Cell,2008,100(2):71~81.

      [4] Taylor EL,Gant TW.Emerging fundamental roles for non-coding RNA species in toxicology[J].Toxicology,2008,246(1):34~39.

      [5] Lu LF,Liston A.MicroRNA in the immune system,microRNA as an immune system.Immunology[J],2009,127(3):291~298.

      [6] Gracias DT,Katsikis PD.MicroRNAs:key components of immune regulation.Adv Exp Med Biol[J],2011,780:15~26.

      [7] KozomaraA,Griffiths-JonesS.miRBase:annotating high confidence microRNAsusing deep sequencing data[J]. Nucleic Acids Res,2014,42(Database issue):D68~73.

      [8] Thompson BJ.Developmental control of cell growth and division in Drosophila[J].Curr Opin Cell Biol,2010,22(6):788~794

      [9] Chawla G,Sokol NS.MicroRNAs in Drosophila development[J].Int Rev Cell Mol Biol,2011,286:1~65.

      [10]Wang X,Tang SM,Shen XJ.Overview of research on Bombyx mori microRNA[J].J Insect Sci,2014,14:133.

      [11]Tong CZ,Jin YF,Zhang YZ.Computational prediction of microRNA genes in silkworm genome[J].J Zhejiang Univ Sci B,2006,7(10):806~816.

      [12]He PA,Nie ZM,Chen JQ,Chen J,Lv ZB,Sheng Q,Zhou S,Gao X,Kong L,Wu XP,Jin Y,Zhang YZ.Identification and characteristics of microRNAs from Bombyx mori[J].BMC Genomics,2008,9:248.

      [13]Yu X,Zhou Q,Li SC,Luo Q,Cai Y,Lin WC,Chen H,Yang Y,Hu S,Yu J.2008.The silkworm(Bombyx mori)microRNAs and their expressions in multiple developmental stages[J].PLoS One,3:e2997.

      [14]Yu X,Zhou Q,Cai Y,Luo Q,Lin H,Hu S,Yu J.A discovery of novel microRNAs in the silkworm(Bombyx mori)genome[J].Genomics,2009,94(6):438~444.

      [15]Huang Y,Zou Q,Tang SM,Wang LG,Shen XJ.Computational identification and characteristics of novel microRNAs from the silkworm(Bombyx mori L.)[J].Mol Biol Rep,2010,37(7):3171~3176.

      [16]Liu S,Zhang L,Li Q,Zhao P,Duan J,Cheng D,Xiang Z,Xia Q.MicroRNA expression profiling during the life cycle of the silkworm(Bombyx mori)[J].BMC Genomics,2009,10:455.

      [17]Liu S,Gao S,Zhang D,Yin J,Xiang Z,Xia Q.MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori[J].BMC Genomics,2010,11:85.

      [18]Zhang Y,Zhou X,Ge X,Jiang J,Li M,Jia S,Yang X,Kan Y,Miao X,Zhao G,Li F,Huang Y.Insect-Specific microRNA involved in the development of the silkworm Bombyx mori[J].PLoS One,2009,4(3):e4677.

      [19]Cai Y,Yu X,Zhou Q,Yu C,Hu H,Liu J,Lin H,Yang J,Zhang B,Cui P,Hu S,Yu J.Novel microRNAs in silkworm(Bombyx mori)[J].Funct Integr Genomics,2010,10:405~415.

      [20]Jagadeeswaran G,Zheng Y,Sumathipala N,Jiang H,Arrese EL,Soulages JL,Zhang W,Sunkar R.Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development[J].BMC Genomics,2010,11:52.

      [21]Liu S,Li D,Li Q,Zhao P,Xiang Z,Xia Q.MicroRNAs of Bombyx mori identified by Solexa sequencing[J].BMC Genomics,2010,11:148.

      [22]Liu S,Xia Q,Zhao P,Cheng T,Hong K,Xiang Z.Characterization and expression patterns of let-7 microRNA in the silkworm(Bombyx mori)[J].BMC Dev Biol,2007,7:88.

      [23]Ling L,Ge X,Li Z,Zeng B,Xu J,Aslam AF,Song Q,Shang P,Huang Y,Tan A.MicroRNA Let-7 regulates molting and metamorphosis in the silkworm,Bombyx mori[J].Insect Biochem Mol Biol,2014,53:13~21.

      [24]Jiang J,Ge X,Li Z,Wang Y,Song Q,Stanley DW,Tan A,Huang Y.MicroRNA-281 regulates the expression of ecdysone receptor(EcR)isoform B in the silkworm,Bombyx mori[J].Insect Biochem Mol Biol,2013,43(8):692~700.

      [25]Chen A,Xia D,Qiu Z,Gao P,Tang S,Shen X,Zhu F,Zhao Q.Expression of a vitelline membrane protein,Bm-VMP23,is repressed by bmo-miR-1a-3p in silkworm,Bombyx mori[J].FEBS Lett,2013,587(7):970~975.

      [26]Song F,Huang YC,Wang X,Tang S,Shen X.Bmo-miR-9A down regulates the expression of Bm-ase gene in vitro[J].Bioorg Khim,2013,39(2):194~199.

      [27]Ling L,Ge X,Li Z,Zeng B,Xu J,Chen X,Shang P,James AA,Huang Y,Tan A.MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori[J].RNA Biol,2015,12(7):742~748.

      [28]劉仕平,黃亞璽,尹紀(jì)云,吳小燕,周蘭庭,王偉,夏慶友.家蠶Bmyan基因的克隆表達(dá)和作為microRNA7靶基因的驗(yàn)證[J].生物工程學(xué)報(bào),2015,31(11):1612~1622.

      [29]Li J,Cai Y,Ye L,Wang S,Che J,You Z,Yu J,Zhong B. MicroRNA expression profiling of the fifth-instar posterior silk gland of Bombyx mori[J].BMC Genomics,2014,15:410.

      [30]Li J,Ye L,Wang S,Che J,You Z,Zhong B.MicroRNA of the fifth-instar posterior silk gland of silkworm identified by Solexa sequencing[J].Genom Data,2014,2:318~319.

      [31]Cao J,Tong C,Wu X,Lv J,Yang Z,Jin Y.Identification of conserved microRNAs in Bombyx mori(silkworm)and regulation of fibroin L chain production by microRNAs in heterologous system[J].Insect Biochem Mol Biol,2008,38(12):l066~1071.

      [32]Chen C,F(xiàn)an YY,Wang X,Song F,Jiang T,Qian P,Tang SM,Shen XJ.bmo-miR-0001 and bmo-miR-0015 down-regulate expression of Bombyx mori fibroin light chain gene in vitro[J].J Zhejiang Univ Sci B,2016,17(2):127~135.

      [33]Huang Y,Zou Q,Shen XJ,Tang SM,Wang SP,Zhao QL. Differential expression of microRNA-2b with potential target coding P25 in the fifth instar larvae posterior silk gland of the silkworm[J].Mol Biol(Mosk),2011,45(4):627~632.

      [34]Wu Y,Cheng T,Liu C,Liu D,Zhang Q,Long R,Zhao P,Xia Q.Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm,Bombyx mori[J].PLoS One,2016,11(1):e0147147.

      [35]向仲懷,楊煥明.家蠶基因組研究對(duì)蠶業(yè)學(xué)科和產(chǎn)業(yè)發(fā)展的影響[J].世界科技研究與發(fā)展,2003,25(6):1~5.

      [36]顧國(guó)達(dá),王昭榮,張磊.世界蠶繭和生絲生產(chǎn)量的預(yù)測(cè)[J].蠶業(yè)科學(xué),2002,28(3):242~246.

      [37]呂鴻聲.昆蟲(chóng)免疫學(xué)原理[M].上海:上海科學(xué)技術(shù)出版社.2008.

      [38]呂鵬,潘曄,王鵬,周陽(yáng),馬上上,姚勤,陳克平.家蠶抗核型多角體病毒的研究進(jìn)展[J].科學(xué)通報(bào),2015,60(14):1285~1297.

      [39]Sabin LR,Hanna SL,Cherry S.Innate antiviral immunity in Drosophila[J].Cur Opin in Immunol,2010,22:4~9.

      [40]Wang J,Valanne S,R?met M.Drosophila as a model for antiviral immunity[J].World J Biol Chem,2010,1(5):151~159.

      [41]Han Y,Luo Y,Wu Q,Jovel J,Wang X,Aliyari R,Han C,Li W,Ding S.RNA-based immunity terminates viral infection in adult drosophila in the absence of viral suppression of rna interference:Characterization of viral small interfering RNA populations in wild-type and mutant flies[J].J Virol,2011,85(24):13153~13163.

      [42]Schultz KL,F(xiàn)riesen PD.Baculovirus DNA replicationspecific expression factors trigger apoptosis and shutoff of host protein synthesis during infection[J].J Virol,2009,83(21):11123~11132.

      [43]VandergaastR,Schultz KL,Cerio RJ,F(xiàn)riesen PD.Active depletion of host cellinhibitor-of-apoptosis proteins triggers apoptosis upon baculovirus DNA replication[J].J Virol,2011,85(16):8348~8358.

      [44]Ponnuvel KM,Nakazawa H,F(xiàn)urukawa S,Asaoka A,Ishibashi J,Tanaka H,Yamakawa M.A lipase isolated from thesilkwormBombyxmorishowsantiviralactivity against nucleopolyhedrovirus[J].J Virol,2003,77(19):10725~10729.

      [45]Nakazawa H,Tsuneishi E,Ponnuvel KM,F(xiàn)urukawa S,Asaoka A,Tanaka H,Ishibashi J,Yamakawa M.Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus[J].Virology,2004,321(1):154~162.

      [46]Selot R,Kumar V,Shukla S,Chandrakuntal K,Brahmaraju M,Dandin SB,Laloraya M,Kumar PG.Identification of a soluble NADPH oxidoreductase(BmNOX)with antiviral activities in the gut juice of Bombyx mori[J].Biosci Biotechnol Biochem,2007,71(1):200~205.

      [47]Jiang L,Wang G,Cheng T,Yang Q,Jin S,Lu G,Wu F,Xiao Y,Xu H,Xia Q.Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms[J].Arch Virol,2012,157(7):1323~1328.

      [48]徐家萍,陳克平,姚勤,徐慶剛,劉曉勇,高貴田.利用熒光差異顯示技術(shù)分離的家蠶抗NPV相關(guān)基因s3a[J].昆蟲(chóng)學(xué)報(bào),2005,48(3):347~352.

      [49]Iwanaga M,Shimada T,Kobayashi M,Kang WK.Identification of differentially expressed host genes in Bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization[J].Appl Entomol Zool,2007,42(1):151~159.

      [50]Bao YY,Tang XD,Lv ZY,Wang XY,Tian CH,Xu YP,Zhang CX.Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels[J].Genomics,2009,94(2):138~145.

      [51]Bao YY,Lv ZY,Liu ZB,Xue J,Xu YP,Zhang CX.Comparative analysis of Bombyx mori nucleopolyhedrovirusresponsive genes in fat body and haemocyte of B.mori resistant and susceptible strains[J].Insect Mol Biol,2010,19(3):347~358.

      [52]Liu X,Yao Q,Wang Y,Chen K.Proteomic analysis of nucleopolyhedrovirus infection resistance in the silkworm,Bombyx mori(Lepidoptera:Bombycidae)[J].J Invertebr Pathol,2010,105(1):84~90.

      [53]Sagisaka A,F(xiàn)ujita K,Nakamura Y,Ishibashi J,Noda H,Imanishi S,Mita K,Yamakawa M,Tanaka H.Genomewide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus[J].Virus Res,2010,147(2):166~175.

      [54]Zhou Y,Gao L,Shi H,Xia H,Gao L,Lian C,Chen L,Yao Q,Chen K,Liu X.Microarray analysis of gene expression profile in resistant and susceptible Bombyx mori strains reveals resistance-related genes to nucleopolyhedrovirus[J].Genomics,2013,101(4):256~262.

      [55]Qin L,Xia H,Shi H,Zhou Y,Chen L,Yao Q,Liu X,F(xiàn)eng F,Yuan Y,Chen K.Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus[J].J Proteomics,2012,75(12):3630~3638.

      [56]Gottwein E,Cullen BR.Viral and cellular microRNAs as determinants of viral pathogenesis and immunity[J].Cell Host Microbe,2008,3(6):375~387.

      [57]Ghosh Z,Mallick B,Chakrabarti J.Cellular versus viral microRNAs in host-virus interaction[J].Nucleic Acids Res,2009,37(4):1035~1048.

      [58]Hussain M,Asgari S.Functional analysisof a cellular microRNA in insect host-ascovirus interaction[J].JVirol,2010,84(1):612~620.

      [59]Hussain M,Asgari S.MicroRNAs as mediators of insect host-pathogen interactions and immunity[J].JInsect Physiol,2014,70:151~158.

      [60]Skalsky RL,Cullen BR.Viruses,microRNAs,and host interactions[J].Annu Rev Microbiol,2010,64:123~141.

      [61]Skalsky RL,Vanlandingham DL,Scholle F,Higgs S,Cullen BR.Identification of microRNAs expressed in two mosquito vectors,Aedes albopictus and Culex quinquefasciatus[J].BMC Genomics,2010,11:119.

      [62]Asgari S.Role of microRNAs in insect host-microorganism interactions[J].Front Physiol,2011,2:48.

      [63]Shimoni Y,F(xiàn)riedlander G,Hetzroni G,Niv G,Altuvia S,Biham O,Margalit H.Regulation of gene expreddion by small non-coding RNAs:a quantitative view[J].MolSyst Boil,2007,3:138~146.

      [64]Singh CP,Singh J,Nagaraju J.A baculovirus-encoded MicroRNA(miRNA)suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran[J].J Virol,2012,86(15):7867~7879.

      [65]Jayachandran B,Hussain M,Asgari S.Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection[J].J Invertebr Pathol,2013,114(2):151~157.

      [66]Mehrabadi M,Hussain M,Asgari S.MicroRNAome of Spodoptera frugiperda cells(Sf9)and its alteration following baculovirus infection[J].J Gen Virol,2013,94(Pt 6):1385~1397.

      [67]Campbell CL,Harrison T,Hess AM,Ebel GD.MicroRNA levels are modulated in Aedes aegypti after exposure to Dengue-2[J].Insect Mol Biol,2014,23(1):132~139.

      [68]Wu P,Han S,Chen T,Qin G,Li L,Guo X.Involvement of microRNAs in infection of silkworm with Bombyx mori cytoplasmic polyhedrosis virus(BmCPV)[J].PLoS One,2013,8(7):e68209.

      [69]Wu P,Qin G,Qian H,Chen T,Guo X.Roles of miR-278-3p in IBP2 regulation and Bombyx mori cytoplasmic polyhedrosis virus replication[J].Gene,2016,575(2 Pt 1):264~269.

      [70]Zhang J,He Q,Zhang CD,Chen XY,Chen XM,Dong ZQ,Li N,Kuang XX,Cao MY,Lu C,Pan MH.Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11[J].Antiviral Res,2014,104:143~152.

      Research Progress of miRNA in the Silkworm,Bombyx mori and its Roles in Antiviral Mechanisms

      WANG Ya-ting,JIANG Cai-ying*
      (College of Life Sciences,Zhejiang Sci-Tech University,Hangzhou 310018,China)

      MiRNAs,found in eukaryotes,play important roles in various physiological processes through posttranscriptional regulation of gene expression.The research progress of miRNA in the silkworm,Bombyx mori and its roles in the antiviral mechanisms were introduced briefly in this paper.The research on the roles of miRNA in B.mori against viruses may not only contribute tounderstanding of B.mori miRNA functions,but also be important to promote early diagnosis of virus diseases,new approaches of disease defense and antiviral breeding of B.mori.

      Bombyx mori;miRNA;antiviral mechanism

      S884.5

      A

      0258-4069[2016]02-001-06

      國(guó)家自然科學(xué)基金項(xiàng)目(31200974)

      王雅婷(1991-),女,浙江臺(tái)州人,碩士研究生,從事家蠶miRNA功能研究。E-mail:972099701@qq.com

      蔣彩英,女,副研究員。E-mail:jcy@zstu.edu.cn

      猜你喜歡
      家蠶抗病毒昆蟲(chóng)
      家蠶原原種“871”“872”種性變化分析
      RFID昆蟲(chóng)閱讀放大鏡
      玩具世界(2022年3期)2022-09-20 01:48:20
      慢性乙型肝炎抗病毒治療是關(guān)鍵
      肝博士(2022年3期)2022-06-30 02:48:52
      抗病毒治療可有效降低HCC的發(fā)生及改善患者預(yù)后
      肝博士(2021年1期)2021-03-29 02:32:14
      抗BmNPV家蠶新品種“川抗1號(hào)”的育成
      家蠶猝倒病的發(fā)生與防治
      抗病毒藥今天忘吃了,明天要多吃一片嗎?
      肝博士(2020年4期)2020-09-24 09:21:26
      借昆蟲(chóng)上課
      甘肅教育(2020年2期)2020-09-11 08:01:48
      對(duì)抗病毒之歌
      我最喜歡的昆蟲(chóng)——知了
      宁蒗| 赫章县| 皋兰县| 泉州市| 兴安盟| 天祝| 沂源县| 北碚区| 崇阳县| 永和县| 五指山市| 孟连| 高雄市| 曲阜市| 民和| 宜都市| 寿阳县| 神农架林区| 乌拉特前旗| 甘洛县| 巴楚县| 铁力市| 云南省| 共和县| 新昌县| 彭州市| 汉川市| 获嘉县| 鄂州市| 宣武区| 乌拉特后旗| 南涧| 中江县| 仁寿县| 凭祥市| 沅江市| 沾益县| 临澧县| 黄浦区| 五原县| 卓尼县|