劉瑞雪,李勇超,張 波(北京聯(lián)合大學(xué)功能食品科學(xué)技術(shù)研究院,應(yīng)用文理學(xué)院,北京100191)
腸道菌群微生態(tài)平衡與人體健康的研究進展
劉瑞雪,李勇超,張 波*
(北京聯(lián)合大學(xué)功能食品科學(xué)技術(shù)研究院,應(yīng)用文理學(xué)院,北京100191)
人體腸道微生物種類繁多且數(shù)量龐大。正常腸道菌群作為人體的天然屏障,對維持人體健康起著重要的作用。機體內(nèi)外環(huán)境的變化可影響腸道菌群的結(jié)構(gòu),造成腸道菌群失衡,繼而引發(fā)或加重疾病,影響人體健康。通過膳食補充益生菌和益生元,選擇性地剌激和調(diào)節(jié)腸道菌群的數(shù)量和組成,保持腸道菌群的微生態(tài)平衡,是預(yù)防和治療疾病,促進人體健康的有效措施。本文綜述了國內(nèi)外關(guān)于腸道菌群的組成及功能、與相關(guān)疾病及治療的關(guān)系以及維持腸道微生態(tài)平衡的措施。
腸道菌群,疾病,微生態(tài)平衡
人體腸道內(nèi)存在著數(shù)量龐大、種類繁多的微生物,約1000~1150種,超過100萬億個細菌,是人體細胞數(shù)量的10倍。人體腸道菌群從嬰兒出生開始就與人類相伴,組成了人體不可或缺的功能強大的微生態(tài)系統(tǒng),在人類營養(yǎng)、代謝、疾病等各個方面發(fā)揮著巨大的作用,影響著人類的發(fā)育和健康。因此,人體腸道的結(jié)構(gòu)和功能是當(dāng)今生命科學(xué)和醫(yī)學(xué)研究的主要熱點。
人類的腸道菌群是一個復(fù)雜的生態(tài)系統(tǒng),主要為細菌(總數(shù)超過1014,約1.5 kg)還包括一些其他微生物,如真菌、寄生蟲、病毒和古細菌。而這些微生物所攜帶的基因大約是人類基因組的150倍[1-2]。大量腸道細菌主要位居于結(jié)腸和遠端小腸,其密度分布隨著從腸道遠端向近端、從腸腔內(nèi)向腸腔外兩個方向遞減,同時腸道菌群菌多樣性也同向遞減。其中腸道專性厭氧菌占絕對優(yōu)勢,腸道兼性厭氧或需氧的革蘭陰性細菌只占細菌總數(shù)的0.11%。個體腸道菌群的組成在種水平上具有很大的差異,但在門水平上具有一定的穩(wěn)定性和保守性。大量研究發(fā)現(xiàn)[3-4],人體內(nèi)重要的細菌種類主要包括擬桿菌門(Bacteroidetes)、厚壁菌門(Firmicutes)、變形菌門(Proteobacteria)、放線菌門(Actinobacteria)、梭桿菌(Fusobacteria)和疣微菌門(Verrucomicrobia),而這些細菌中,厚壁菌門(Firmicutes)和擬桿菌門(Bacteroidetes)也是數(shù)量上最占優(yōu)勢的。
人類從出生開始通過多種方式獲得腸道菌群。新生兒體內(nèi)的微生物主要來源于母體產(chǎn)道、糞便以及體表的微生物,在嬰兒出生后一些兼性厭氧微生物如大腸桿菌、金黃色葡萄球菌和鏈球菌等通過分娩移植到新生兒腸道中并不斷增殖,造成新生兒腸道的厭氧環(huán)境,從而有利于厭氧微生物如擬桿菌和雙歧桿菌的生長繁殖[5-6]。母乳喂養(yǎng)是嬰兒出生后母體的菌群向嬰兒體內(nèi)轉(zhuǎn)移的一種重要方式,母乳喂養(yǎng)使母體微生物包括金黃色葡萄球菌、鏈球菌、雙歧桿菌以及乳酸桿菌等不斷向嬰兒腸道轉(zhuǎn)移并加速腸道菌群的增殖和成熟[7-8]。特別重要的是母乳中含有低聚糖等益生元使雙歧桿菌等益生菌大量增殖,益生菌和益生元共同調(diào)節(jié)嬰兒腸道的菌群,建立平衡的微生態(tài)環(huán)境,抑制病原微生物的增殖、調(diào)節(jié)腸道黏膜屏障功能及免疫功能[9-10]。母乳喂養(yǎng)的嬰兒1周歲時腸道菌群的發(fā)育已經(jīng)比較完善,3周歲時腸道菌群基本接近成年人[11-12]。因此,嬰幼兒期腸道菌群的定植和發(fā)育十分關(guān)鍵,將對嬰兒以致對成年以后的代謝與免疫疾病產(chǎn)生重要的影響。進入成年期后的腸道菌群比較穩(wěn)定,但當(dāng)進入老年期時,一些生理功能包括免疫系統(tǒng)功能的改變將顯著影響腸道菌群的組成[13]。
食物經(jīng)由胃和小腸分解、消化后進入大腸。腸道菌群利用人體未完全消化的食物成分、部分代謝產(chǎn)物以及腸道粘液等進行新陳代謝活動并維持自身的數(shù)量平衡,通過自身的各項生理活動在多個方面影響宿主的健康。
2.1 腸道菌群對腸道的保護作用
正常的腸道菌群通過構(gòu)建機械屏障、生物屏障和免疫屏障抵御外來病原微生物的入侵,維持腸道內(nèi)環(huán)境的穩(wěn)定和微生態(tài)平衡。人腸道中厭氧菌占絕對優(yōu)勢(99%以上),大量繁殖的腸道菌群消耗了絕大部分腸道微環(huán)境中細菌生長繁殖所必需的營養(yǎng)物,尤其是鐵離子,從外部入侵的致病菌由于其載鐵體遠不如正常菌群發(fā)達因而無法競爭生長,減少了其在腸道的定植[14]。此外,腸道菌群在代謝過程中產(chǎn)生揮發(fā)性脂肪酸、乳酸以及乙酸、丙酸、細菌素等,降低腸道內(nèi)的pH,促進酸對大腸桿菌、沙門氏菌的抑制和殺傷,抑制外籍菌的生長和繁殖,從而減少這些細菌產(chǎn)生的毒性物質(zhì)的形成,使結(jié)腸中的潛在致癌物的形成數(shù)量減少[15]。另外,厭氧菌和腸道黏膜上皮細胞緊密結(jié)合形成生物膜-菌群復(fù)合結(jié)構(gòu),對腸上皮組織起著重要的占位保護作用[16]。
2.2 腸道菌群與物質(zhì)能量代謝
定植于人體腸道的微生物群為宿主提供了多種人體自身所不具備的酶與生化途徑,能夠分解人體不易消化的多糖、寡聚糖以及糖蛋白質(zhì)等,生成短鏈脂肪酸為宿主提供能量以及為腸道菌群生長繁殖提供營養(yǎng)物質(zhì)[15]。除此之外,腸道菌群還能合成多種維生素包括B族維生素、維生素K、維生素C、生物素以及葉酸等,如大腸桿菌能合成維生素K,而人無法從食物中獲取。除此之外,腸道菌群還能通過與宿主發(fā)生共代謝作用,通過肝腸循環(huán)等多條代謝途徑參與藥物及其他外來化合物的分解代謝,膽汁酸及脂肪等的代謝便是其中最為典型的例子[17]。
2.3 腸道菌群與機體的免疫功能
腸道菌群通過細菌本身或細胞壁成分刺激宿主免疫系統(tǒng)使免疫細胞活化,通過增加抗體含量、調(diào)節(jié)淋巴細胞的吞噬作用以及增加干擾素的分泌等作用提高機體的免疫力。大量實驗結(jié)果表明,無菌動物的腸系膜淋巴結(jié)較小且數(shù)量也少于正常動物,抗體分泌水平也明顯低于正常動物[18]。粘膜免疫系統(tǒng)的主要功能是通過產(chǎn)生分泌型免疫球蛋白A(sIgA)阻止微生物在粘膜上皮定植和繁殖。Sjogren等[19]的研究發(fā)現(xiàn),初生嬰兒糞便中雙歧桿菌的數(shù)量與黏膜分泌型免疫球蛋白A(sIgA)的濃度呈顯著正相關(guān),表明雙歧桿菌能促進粘膜免疫系統(tǒng)的sIgA的成熟及分泌。
3.1 腸道菌群與炎癥性腸病
炎癥性腸病(inflammatory bowel disease,IBD)是發(fā)生于胃腸道的慢性復(fù)發(fā)性疾病,克羅恩?。–D)和潰瘍性結(jié)腸炎(UC)為其兩種主要表現(xiàn)形式,其致病因素及發(fā)病機制至今尚未完全闡明,但目前普遍認為IBD是由遺傳因素、免疫功能紊亂、腸道屏障功能障礙和腸道菌群改變等多因素所致。越來越多的研究表明[20-21],腸道菌群失調(diào)是參與IBD發(fā)病的重要因素,主要表現(xiàn)為微生物的組成和豐度的改變及功能的損傷。近年來人們對腸道菌群失調(diào)引起免疫損傷進而導(dǎo)致炎癥性腸病這一觀點表現(xiàn)出愈發(fā)濃厚的興趣。
大量研究表明,UC患者腸道菌群的豐度與多樣性發(fā)生了明顯的改變[22-23]。Machiels[24]發(fā)現(xiàn)在UC患者中兩種重要的厚壁菌門產(chǎn)丁酸細菌人酵母菌(Roseburia hominis),普拉梭菌(F.Prausnitzii)明顯減少。丁酸是腸上皮主要的能源來源,而且還具有防止病原體侵襲,調(diào)節(jié)免疫系統(tǒng)功能以及抗炎的作用[25]。研究還表明產(chǎn)丁酸細菌的數(shù)量會隨疾病的嚴重程度發(fā)生改變[26]。Varela等[27]發(fā)現(xiàn)F.prausnitzii的數(shù)量在UC緩解期明顯增加,因此認為F.pramnitzii對UC的治療起著重要的作用。此外,研究發(fā)現(xiàn)UC患者體內(nèi)腸道菌群的代謝產(chǎn)物短鏈脂肪酸尤其是具有顯著抗炎活性的乙酸、丙酸、丁酸的含量明顯減少[28]。愈來愈多的研究認為腸道菌群是UC免疫損傷過程的一個重要激發(fā)因素,促使致病菌滋生和益生菌缺失,破壞腸粘膜免疫系統(tǒng)對腸道菌群的耐受性,從而產(chǎn)生過度且持續(xù)的炎癥反應(yīng)。Vigsnaes等[29]采用熒光定量PCR的方法檢測UC患者糞便中腸道細菌的數(shù)量,發(fā)現(xiàn)UC患者乳酸桿菌的減少十分顯著。Pilarczyk-Zurek等[30]對30例活動期UC患者的炎癥組織和非炎癥組織的結(jié)腸黏膜進行活檢,發(fā)現(xiàn)病變腸段大腸埃希菌明顯增多,提示腸道大腸埃希菌和乳酸桿菌均與UC的發(fā)病有一定的關(guān)系。雖然到目前為止還不能確定腸道菌群紊亂與UC之間是原發(fā)性還是繼發(fā)性關(guān)系,但有一點可以肯定腸道菌群在抗炎與調(diào)節(jié)免疫方面發(fā)揮著重要的作用,調(diào)節(jié)腸道菌群對UC有一定的輔助治療作用[22-31]。大量研究發(fā)現(xiàn),益生菌對潰瘍性結(jié)腸炎具有明顯的緩解和治療作用,通過PI3K/Akt和NF-kB信號通路,降低促炎因子TNF-a、IL-1β等的水平,升高抗炎因子IL-10的分泌,UC癥狀明顯緩解[32-34]。另外,糞便菌群移植(FMT)技術(shù)治療UC也正逐漸成為研究的熱點[35]。
3.2 腸道菌群與肥胖
隨著人們生活水平的提高,肥胖的發(fā)病率日益增加,現(xiàn)已成為嚴重困擾世界各國的公共衛(wèi)生問題。肥胖的病因至今尚未完全明確,一般認為肥胖是在遺傳因素與環(huán)境因素兩方面共同作用的結(jié)果。目前許多研究表明腸道菌群在肥胖的發(fā)病過程中起到重要的作用[36-37]。腸道細菌最重要的代謝功能是能夠通過編碼大量的糖苷水解酶,從而發(fā)酵食物中宿主自身不能消化的多糖,將其轉(zhuǎn)化為單糖以及代謝終產(chǎn)物短鏈脂肪酸。Bjursell等[38]的研究顯示,缺失短鏈脂肪酸受體的小鼠體重明顯輕于野生型小鼠。Dinq等[39]的研究顯示,無菌小鼠在一定程度上可以抵抗飲食導(dǎo)致的肥胖,這在一定程度上證明了腸道菌群與肥胖的關(guān)系。腸道菌群不僅能夠促進宿主吸收更多的能量,而且還與慢性系統(tǒng)炎癥的發(fā)生有一定聯(lián)系。研究發(fā)現(xiàn)高脂飲食可以改變腸道菌群結(jié)構(gòu),增加革蘭陰性菌的比例,導(dǎo)致脂多糖產(chǎn)生增多,菌群比例的失調(diào)還可通過抑制腸道上皮細胞間緊密連接蛋白的表達,增加腸道上皮通透性,促使脂多糖進入血液引起代謝性內(nèi)毒素血癥并誘發(fā)肥胖[40-42]。Muccioli等[43]發(fā)現(xiàn),脂多糖可使內(nèi)源性大麻素活性增強,增加大麻素受體在結(jié)腸及脂肪組織中的表達,使腸道通透性增加以及脂肪儲存增多,而增加的腸道通透性又促使脂多糖進入血液,引發(fā)炎癥并進一步加重肥胖的進程。因此,改善腸道微生態(tài)可能是調(diào)整肥胖個體能量平衡的有效措施。
3.3 腸道菌群與肝臟疾病
慢性肝臟疾病與腸道菌群的改變息息相關(guān)。近10年來,由于對腸-肝軸認識的逐步深入,腸道菌群在慢性肝病發(fā)病過程中的作用備受關(guān)注[44]。正常情況下,肝臟可清除來自腸道的內(nèi)毒素、氨、吲哚、酚類等各種毒素。但是腸道微生態(tài)的改變使腸道屏障功能受損,各種代謝產(chǎn)物大量進入腸外器官,過度激活機體免疫系統(tǒng),引起異常免疫反應(yīng),導(dǎo)致肝細胞凋亡及壞死。大量研究還表明,慢性肝臟疾病患者存在不同程度的腸道菌群失調(diào),雙歧桿菌、乳酸桿菌等厭氧菌的數(shù)量減少,革蘭陰性細菌過度生長繁殖,并釋放大量內(nèi)毒素引發(fā)或加重慢性肝臟疾病。
對非酒精性脂肪性肝炎以及酒精性肝病患者腸道菌群的分析發(fā)現(xiàn),腸道菌群失調(diào)、腸桿菌比例明顯高于健康人群,說明腸道菌群異常在一定程度上促進肝病的發(fā)展??刂颇c道菌群失調(diào)可明顯改善臨床癥狀[45-50]。
通過膳食調(diào)節(jié)腸道微生態(tài)平衡的措施主要是補充益生菌和益生元。益生菌(probiotics)是一類通過改善腸道菌群組成從而發(fā)揮有益作用的活性微生物;益生元(prebiotics)是一些不被消化或難以被消化的食物成分,通常為低聚糖類,這些成分通過選擇性的剌激結(jié)腸內(nèi)細菌的增殖、活性,從而對宿主的健康產(chǎn)生有益作用。
4.1 益生菌
腸道中的益生菌,有序地定植于腸道黏膜形成生物屏障,減少病原微生物的侵染和定植,起著占位、爭奪營養(yǎng)和拮抗的作用,保護機體免受病原菌入侵。某些益生菌可產(chǎn)生具有廣譜抗菌作用的物質(zhì)如細菌素等,抑制腸道內(nèi)的大腸埃希菌、沙門氏菌和鏈球菌等的生長繁殖。益生菌還可以通過產(chǎn)生胞外糖苷酶阻止致病菌對腸黏膜細胞的侵襲。
通過膳食補充的益生菌主要是兩大類乳酸菌群:一類為雙歧桿菌如嬰兒雙歧桿菌、長雙歧桿菌、短雙歧桿菌以及青春雙歧桿菌等。另一類為乳桿菌如嗜酸乳桿菌、干酪乳桿菌、鼠李糖乳桿菌、植物乳桿菌和羅伊氏乳桿菌等。研究表明通過膳食補充雙歧桿菌和乳酸桿菌,可抑制病原菌對腸粘膜的粘附作用,穩(wěn)定微生物群落結(jié)構(gòu),改善胃黏膜的完整性和屏障功能,從而改善肥胖、炎癥性疾病以及代謝性并發(fā)癥[51]。普拉梭菌(Faecalibacterium prausnitzii)是人體腸道菌群中含量最豐富的細菌,占細菌總數(shù)的5%。F.pramnitzii代謝腸道中未吸收的糖類產(chǎn)生大量丁酸,是腸道中產(chǎn)生丁酸的主要細菌,對腸道健康起著重要的作用,其失調(diào)與多種疾病如特應(yīng)性皮炎、慢性特發(fā)性腹瀉、急性闌尾炎以及結(jié)直腸癌等的發(fā)生發(fā)展均存在相關(guān)性[52]。F.prausnitzii與炎癥性腸病關(guān)系的研究也是近幾年研究的熱點。2013年,Varela等[53]應(yīng)用實時定量PCR技術(shù)對116例處于緩解期的UC患者和16例健康人的糞便細菌進行了研究,發(fā)現(xiàn)UC患者F.prausnitzii細菌的定植明顯減少。且口服F.pramnitzii對緩解期UC患者有一定的治療作用[53-54]。動物實驗也表明F.pramnitzii培養(yǎng)上清液對2,4,6-三硝基苯磺酸誘導(dǎo)的小鼠結(jié)腸炎具有緩解作用。F.pramnitzii可能會作為一種新型的益生菌進行開發(fā)利用。
4.2 益生元
益生元主要指功能性低聚糖,包括各種寡糖類物質(zhì)(Oligosaccharides)或稱低聚糖(由2~10個單糖分子組成,如低聚木糖、低聚果糖、低聚半乳糖、水蘇糖、異麥芽糖、乳果糖和乳酮糖等)。由于人體胃腸道內(nèi)沒有代謝此類低聚糖的β-半乳糖苷酶系,當(dāng)其通過消化道時不能被其中的酸和酶分解,不被小腸消化吸收,直接進入大腸而被大腸中廣泛存在的微生物菌群所利用。近年來,國內(nèi)外對低聚糖調(diào)節(jié)腸道功能的研究十分活躍,如殼寡糖、低聚半乳糖以及低聚果糖通過激活動物腸上皮細胞、保護腸道緊密連接功能以及調(diào)節(jié)結(jié)腸上皮的杯狀細胞的分泌功能等機制保護腸道的屏障功能,預(yù)防結(jié)腸炎甚至結(jié)腸癌的發(fā)生[55-61]。國內(nèi)學(xué)者也對一些重要中藥多糖、植物多糖及其水解產(chǎn)物改善腸道的功能及機理進行了研究。如國內(nèi)學(xué)者對大黃多糖及水解物,魔芋多糖及其低聚糖調(diào)節(jié)腸道功能的作用進行了研究,結(jié)果表明大黃多糖及水解物,魔芋多糖及其低聚糖等可降低結(jié)腸黏膜MPO水平以及TNF-α表達量;提高結(jié)腸中雙歧桿菌和乳桿菌的數(shù)量并降低大腸桿菌及腸球菌的數(shù)量,改善腸道菌群失調(diào);提高結(jié)腸中短鏈脂肪酸(SCFA)的產(chǎn)量,從而治療和緩解TNBS誘導(dǎo)的結(jié)腸炎[62-66]。
綜上所述,腸道菌群和人體有著密不可分的互利共生關(guān)系,直接影響著每個人的健康,他們在人體消化、免疫和疾病防治等方面均起著重要的作用,并參與了多種非感染性疾病,特別是慢性代謝疾病的發(fā)生發(fā)展過程,同時也表明適當(dāng)?shù)恼{(diào)節(jié)腸道菌群可能成為疾病的一種潛在治療方式。年齡、生活方式、腸道動力異常、免疫功能障和抗生素的使用等一系列貫穿整個生命過程的復(fù)雜的、動態(tài)的交互因素均會引起腸道菌群的變化。日前膳食結(jié)構(gòu)對人體腸道菌群的影響也引起國內(nèi)外學(xué)術(shù)界的廣泛關(guān)注。合理地膳食補充益生菌和益生元可能會成為保持腸道菌群的微生態(tài)平衡,預(yù)防和治療疾病,促進宿主健康的新措施。然而,由于腸道菌群結(jié)構(gòu)和功能的復(fù)雜性,目前對于腸道菌群參與機體代謝、與機體相互作用的機制仍不明確,有待更深入的研究。
[1]Cénit MC,Matzaraki V,Tigchelaar EF,et al.Rapidly expanding knowledge on the role of the gut microbiome in health and disease[J].Biochim Biophys Acta,2014,1842(10):1981-1992.
[2]Raes J.The gut microbiome-a new target for understanding,diagnosing and treating disease[J].Arch Public Health,2014,72 (Suppl 1):K3.
[3]Qin J,Li R,Raes J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464(7285):59-65.
[4]Lozupone CA,Stombaugh JI,Gordon JI,et al.Diversity,stability and resilience of the human gut microbiota[J].Nature,2012,489 (7415):220-230.
[5]Dominguez-Bello MG,Costello EK,Contreras M,et al.Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J].Proc Natl Acad Sci U S A,2010,107(26):11971-11975.
[6]Biasucci G,Rubini M,Riboni S,et al.Mode of delivery affects the bacterial community in the newborn gut[J].Early Hum Dev,2010,86(1):13-15.
[7]Cabrera-Rubio R,Collado MC,Laitinen K,et al.The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery[J].Am J Clin Nutr,2012,96(3):544-551.
[8]Khodayar-Pardo P,Mira-Pascual L,Collado MC,et al.Impact of lactation stage,gestational age and mode of delivery on breast milk microbiota[J].J Perinatol,2014,34(8):599-605.
[9]Baril D,Rastall RA.Human milk and related oligosaccharides as prebiotics[J].Curr Opin Biotechnol,2013,24(2):214-219.
[10]Oozeer R,Van Limpt K,Ludwig T,et al.Intestinal microbiology in early life:specific prebiotics can have similar functionalities as human-milk oligosaccharides[J].Am J Clin Nutr,2013,98(2):561-571.
[11]Murgas Torrazza R,Neu J.The developing intestinal microbiome and its relationship to health and disease in the neonate[J].J Perinatol,2011,31(1):29-34.
[12]Yatsunenko T,Rey FE,Manary MJ,et al.Human gut microbiome viewed across ageand geography[J].Nature,2012,486(7042):222-227.
[13]Agans R,Rigsbee L,Kenche H,et al.Distal gut microbiota of adolescent children is different from that of adults[J].FEMS Microbiol Ecol,2011,77(2):404-412.
[14]管遠志.腸道菌群及其生物學(xué)意義[J].臨床兒科雜志,2009,27(11):1095-1097.
[15]Soldavini J,Kaunitz JD.Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity[J].Dig Dis Sci,2013,58(10):2756-2766.
[16]Kamada N,Seo SU,Chen GY,et al.Role of the gut microbiota in immunity and inflammatory disease[J].Nat Rev Immunol,2013,13(5):321-335.
[17]Foxx-Orenstein AE,Chey WD.Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders[J].Am J Gastroenterol 2012,1(1):41-46.
[18]Round JL,Mazmanian SK.The gut microbiota shapes intestinal immune responses during health and disease[J].Nat Rev Immunol,2009,9(5):313-323.
[19]Sjogren YM,Tomicic S,Lundberg A,et al.Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses[J].Clin Exp Allergy,2009,39(12):1842-1851.
[20]Kostic AD,Xavier RJ,Gevers D.The Microbiome in Inflammatory Bowel Disease:Current Statusand the Future Ahead [J].Gastroenterology,2014,146(6):1489-1499.
[21]Comito1 D,Cascio A,Romano C.Microbiota biodiversity in inflammatory bowel disease[J].Ital J Pediatr,2014,40:32-38.
[22]Cammarota G,Ianiro G,Cianci R,et al.The involvement of gut microbiota in inflammatory bowel disease pathogenesis:Potential for therapy[J].Pharmacol Ther,2015,149:191-212.
[23]Wang W,Chen L,Zhou R,et al.Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrateproducing bacteria in inflammatory bowel disease[J].J Clin Microbiol,2014,52(2):398-406.
[24]Machiels K,Joossens M,Sabino J,et al.A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J].Gut,2014,63(8):1275-1283.
[25]Chen WX,Ren LH,Shi RH.Enteric microbiota leads to new therapeutic strategies for ulcerative colitis[J].World J Gastroenterol,2014,20(42):15657-15663.
[26]Fite A,Macfarlane S,F(xiàn)urrie E,et al.Longitudinal analyses of gut mucosal microbiotas in ulcerative colitis in relation to patient ageand disease severity and duration[J].J Clin Microbiol 2013,51(3):849-856.
[27]Varela E,Manichanh C,Gallart M,et al.Colonisation byFaecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis[J].Aliment Pharmacol Ther,2013,38(2):151-161.
[28]Kostic AD,Xavier RJ,Gevers D.The microbiome in inflammatory bowel disease:current status and the future ahead [J].Gastroenterology,2014,146(6):1489-1499.
[29]Vigsn?s LK,Brynskov J,Steenholdt C,et al.Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls[J].Benef Microbes,2012,3(4):287-297.
[30]Pilarczyk-Zurek M,Chmielarczyk A,Gosiewski T,et al.Possible role of Escherichia coli in propagation and perpetuation of chronic inflammation in ulcerative colitis[J].BMCGastroenterol,2013,13:61-72.
[31]Chen WX,Ren LH,Shi RH.Enteric microbiota leads to new therapeutic strategies for ulcerative colitis[J].World J Gastroenterol,2015,20(42):15657-15663.
[32]Solovyeva O.Probiotics can extend remission of ulcerative colitis[J].Journal of Crohn's and Colitis,2014,8(Supple1):S221.
[33]Satish Kumar CS,Kondal Reddy K,Reddy AG,et al.Protective effect of Lactobacillus plantarum 21,a probiotic on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats[J].Int Immunopharmacol,2015,25(2):504-510.
[34]Dai C,Zheng CQ,Meng F,et al.VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis[J].Molecular and Cellular Biochemistry,2013,374(1-2):1-11.
[35]Colman RJ,Rubin DT.FecalReview Amicrobiota transplantation as therapy for inflammatory bowel disease:A systematic review and meta-analysisrticle[J].Journal of Crohn's and Colitis,2014,8(12):1569-1581.
[36]Everard A,Pharm MC,Patrice D.Diabetes,obesity and gut microbiota[J].Clinical Gastroenterology,2013,27(7):73-83.
[37]Musso G,Gambino R,Cassader M.Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J].Annu Rev Med,2011,62:361-380.
[38]Bjursell M,Admvre T,Goransson M,et al.Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet[J].Am J Physiol Endocrinol Metab,2011,300(1):E211-E220.
[39]Dinq S,Chi MM,Scull BP,et al.High-fat diet:bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse[J].Plos One,2010,5(8):e12191-e12204.
[40]Raybould HE.Gut microbiota,epithelial function and derangements in obesity[J].J Physiol,2012,590(Pt 3):441-446.
[41]Cani PD,Delzenne NM.The gut microbiome as therapeutic target[J].Pharmacol Ther,2011,130(2):202-212.
[42]De Lartigue G,De La Serre CB,Raybould HE.Vagal afferent neurons in high fat diet-induced obesity;intestinal microflora,gut inflammation and cholecystokinin[J].Physiol Behav,2011,105(1):100-105.
[43]Muccioli GG,Naslain D,BackhedF,etal.The endocannabinoid system links gut microbiota to adipogenesis[J].Mol Syst Biol,2010(6):392-407.
[44]Fowler JC,Zecchini VR,Jones PH.Intestinal activation of notch signaling induces rapid onset hepatic steatosis and insulin resistance[J].Plos One,2011,6(6):e20767-e20794.
[45]Mouzaki M,Comelli E M,Arendt B M,et al.Intestinal microbiotain patients with nonalcoholic fatty liver disease[J].Hepatology,2013,58(1):120-127.
[46]Zhu L,Baker SS,Gill C,et al.Characterization of the gut microbiomes in non-alcoholic steatohepatitis(NASH)patients:a connection between endogenous alcohol and NASH[J].Hepatology,2013,57(2):601-609.
[47]Miele L,Valenza V,La Torre G,et al.Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J].Hepatology,2009,49(6):1877-1887.
[48]Szabo G,Bala S,Petrasek J,et al.Gut-liver axis and sensing microbes[J].Dig Dis,2010,28(6):737-744.
[49]Musso G,Gambino R,Cassader M.Obesity,diabetes,and gut microbiota:the hygiene hypothesis expanded?[J].Diabetes Care,2010,33(10):2277-2284.
[50]Abu-Shanab A,Quigley EM.The role of the gut microbiota in nonalcoholic fatty liver disease[J].Nat Rev Gastroenterol Hepatol,2010,7(J):691-701.
[51]Shen J,Obin MS,Zhao L.The gut microbiota,obesity and insulin resistance[J].Molecular Aspects of Medicine,2013,34 (1):39-58.
[52]Miquel S,MartnR,Rossi O,et al.Faecalibacterium prausnitzii and human intestinal health[J].Curr Opin Microbiol,2013,16 (3):255-261.
[53]Varela E,Manichanh C,Gallart M,et al.Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis[J].Aliment Pharmacol Ther,2013,38(2):151-161.
[54]Siaw YH,Hart A.Commentary:is Faecalibacterium prausnitzii a potential treatment for maintaining remission in ulcerative colitis?[J].Aliment Pharmacol Ther,2013,38(5):551.
[55]Koleva PT,valcheva RS,Sun X,et al.Inulin and fructooligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats[J].Br J Nutr,2012,108:1663-1643.
[56]Muanprasat C,Wongkrasant P,Satitsri S,et al.Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells:Mechanism of action and potential applications in intestinal disorders[J].Biochem Pharmacol,2015,96(3):225-236.
[57]Xiong X,Yang HS,Wang XC,et al.Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology,immune response,antioxidant capacity,and barrier function in weaned piglets[J].J AnimSci,2015,95(3):1089-1027.
[58]Akbari P,Braber S,Alizadeh A,et al.Galactooligosaccharides Protect the Intestinal Barrier by Maintaining the TightJunction Network and Modulating the InflammatoryResponses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell Monolayers and B6C3F1 Mice[J].J Nutr,2015,145(7):1604-1613.
[59]Bruno-BarcenaJM,Azcarate-PerilMA.Galactooligosaccharides and Colorectal Cancer:Feeding our Intestinal Probiome[J].J Funct Foods,2015,12:92-108.
[60]Bhatia S,Prabhu PN,Benefiel AC,et al.Galactooligosaccharides may directly enhance intestinal barrier function through the modulation of goblet cells[J].Mol Nutr Food Res,2015,59(3):566-573.
[61]Hoseinifar SH,Soleimani N,Ring? E.Effects of dietary fructooligosaccharide supplementation on the growth performance,haemato-immunological parameters,gut microbiota and stress resistance of common carp(Cyprinus carpio)fry[J].Br J Nutr,2014,112(8):1296-1302.
[62]郭振軍,劉莉,張維璐,等.大黃、當(dāng)歸多糖對巨噬細胞甘露糖受體作用的研究[J].細胞與分子免疫學(xué)雜志,2008,24(5):514-516.
[63]Liu L,Guo Z,Lv Z,et al.The beneficial effect of Rheum tanguticum polysaccharide on protecting against diarrhea,colonic inflammation and ulceration in rats with TNBS-induced colitis:the role of macrophage mannose receptor in inflammation and immune response[J].Int Immunopharmacol,2008,8(11):1481-1492.
[64]Liu L,Yuan S,Long Y,et al.Immunomodulation of Rheum tanguticum polysaccharide(RTP)on the immuno suppressive effects of dexamethasone(DEX)on the treatment of colitis in rats induced by 2,4,6-trinitrobenzene sulfonic acid[J].Int Immunopharmacol,2009,9(13-14):1568-1577.
[65]鐵虹,孫陽,馮娟,等.降解魔芋多糖對三硝基苯磺酸誘導(dǎo)實驗性結(jié)腸炎的治療作用[J].第四軍醫(yī)大學(xué)學(xué)報,2009,30 (17):1564-1567.
[66]馮莉,安雪嬌,齊妍,等.魔芋低聚糖作為新食品原料的應(yīng)用研究[J].食品工業(yè)科技,2015,34(1):349-352.
Research progress on gut microbiota homeostasis and human health
LIU Rui-xue,LI Yong-chao,ZHANG Bo*
(Research Institute for Science and Technology of Functional Food,College of Arts and Science,Beijing Union University,Beijing 100191,China)
The human gut was colonized by a wide diversity of micro-organisms,which were known to play a key role in the human host.It will not only lead to intestinal dysbacteriosis but also induce and aggravate various diseases when the balance of the intestinal flora was disturbed by host and external environment change.Supplementing probiotics and prebiotics by nutritional management could stimulate the amount and composition of intestinal bacteria which considered as an effective method to prevent diseases and promote human health.Here was to make a review of the research progress in function,related diseases and therapeutic,homeostasis of gut microbiota.
gut microbiota;diseases;microbiota homeostasis
TS201.3
A
1002-0306(2016)06-0383-06
10.13386/j.issn1002-0306.2016.06.068
2015-06-30
劉瑞雪(1987-),女,碩士研究生,研究方向:生物活性物質(zhì)的功能與毒理,E-mail:liuruixue871024@163.com。
張波(1962-),女,教授,研究方向:生物活性物質(zhì)的功能與毒理,E-mail:zhangbo_wl@buu.edu.cn。
“十二五”國家科技支撐計劃課題(2012BAD33B06)。