王騰騰,徐 浩,王擁軍,3,施 杞,梁倩倩**
(1.上海中醫(yī)藥大學(xué)附屬龍華醫(yī)院 上海 200032;2.上海中醫(yī)藥大學(xué)脊柱病研究所 上海 200032;3.上海中醫(yī)藥大學(xué)康復(fù)醫(yī)學(xué)院 上海 200120)
以腫瘤壞死因子α轉(zhuǎn)基因小鼠為類風(fēng)濕關(guān)節(jié)炎模型的研究進(jìn)展*
王騰騰1,2,徐 浩1,2,王擁軍1,2,3,施 杞1,2,梁倩倩1,2**
(1.上海中醫(yī)藥大學(xué)附屬龍華醫(yī)院 上海 200032;2.上海中醫(yī)藥大學(xué)脊柱病研究所 上海 200032;3.上海中醫(yī)藥大學(xué)康復(fù)醫(yī)學(xué)院 上海 200120)
類風(fēng)濕關(guān)節(jié)炎(Rheumatoid Arthritis,RA)是一種慢性自身免疫疾病,腫瘤壞死因子α(Tumor Necrosis Factor,TNF-α)過表達(dá)在本病的發(fā)病過程中起到重要的作用,并介導(dǎo)了多種炎癥因子的表達(dá)。目前抗TNF藥物已廣泛應(yīng)用于RA臨床。過表達(dá)人TNF-α的轉(zhuǎn)基因小鼠可出現(xiàn)類似RA的病理表現(xiàn):起病緩慢、發(fā)病率高、模型穩(wěn)定。因此,TNF轉(zhuǎn)基因(TNF-Tg)小鼠模型在RA研究中具有重要的意義,現(xiàn)已廣泛應(yīng)用于RA的診療技術(shù)和病理機(jī)制研究,尤其是淋巴管功能的研究,并取得一系列成果。本文針對(duì)該模型小鼠的生理病理特征、研究進(jìn)展進(jìn)行綜述。
腫瘤壞死因子α 轉(zhuǎn)基因小鼠 類風(fēng)濕關(guān)節(jié)炎 淋巴
RA是一種以對(duì)稱性、多發(fā)性關(guān)節(jié)炎為主要臨床表現(xiàn)的慢性免疫性疾病,主要的病理改變?yōu)椋夯さ脑錾?、炎性因子的浸?rùn)、軟骨及骨組織的破壞等[1]。為研究其病理機(jī)制及治療方法,多種動(dòng)物模型已應(yīng)用于基礎(chǔ)醫(yī)學(xué)研究中。常見模型有誘導(dǎo)型、手術(shù)型及轉(zhuǎn)基因型。誘導(dǎo)型又包括佐劑誘導(dǎo)、蛋白酶誘導(dǎo)及血清誘導(dǎo)等[2]。轉(zhuǎn)基因模型包括:過表達(dá)TNF及其受體、過表達(dá)膠原酶、K/BxN轉(zhuǎn)基因模型等。上述模型已運(yùn)用于風(fēng)寒濕型、風(fēng)濕熱型、脾虛型[3]等中醫(yī)病證結(jié)合模型研究中。
隨著抗TNF-α藥物的出現(xiàn),TNF-Tg小鼠模型已成為常用的研究RA的模型,本文對(duì)該動(dòng)物模型的文獻(xiàn)進(jìn)行綜述如下。
TNF-α在腫瘤惡病質(zhì)、內(nèi)毒素休克、器官移植后免疫排斥、自發(fā)性免疫病及RA等多種疾病的進(jìn)展中起著重要的作用。在RA患者的炎性滑膜、軟骨及血管翳中,TNF-α水平異常升高,TNF-α本身既可引起關(guān)節(jié)炎癥,還可引起成纖維細(xì)胞樣的滑膜細(xì)胞的增生,導(dǎo)致滑膜炎癥;可通過促進(jìn)膠原酶的產(chǎn)生、抑制關(guān)節(jié)軟骨細(xì)胞蛋白多糖的合成從而引起軟骨的破壞;或可通過泛素連接酶抑制間充質(zhì)干細(xì)胞向成骨細(xì)胞分化[4]、刺激破骨細(xì)胞生成、抑制破骨細(xì)胞凋亡[5],或促進(jìn)前體破骨細(xì)胞隨血液循環(huán)進(jìn)入NF-κB受體激活蛋白配體(Receptor Activator for Nuclear Factor-κB Ligand,RANKL)高表達(dá)水平的滑膜關(guān)節(jié)從而引起骨的侵蝕[6,7]。大量研究已經(jīng)證明,在RA中TNF-α位居多種促炎癥因子的上游,抑制TNF-α可以抑制白介素1(Interleukin1,IL-1)、IL-6、IL-8及粒細(xì)胞-巨噬細(xì)胞集落刺激因子(Granulocyte-Macrophage Colony-Stimulating Factor,GM-CSF)等其他促炎癥因子。抑制TNF-α幾乎可以緩解所有的RA模型動(dòng)物的關(guān)節(jié)炎癥狀,更進(jìn)一步證明了TNF-α在RA中的重要作用。Manara等[8]和Catrina等[9]的多中心臨床對(duì)照試驗(yàn)表明抗TNF-α療法可緩解RA患者的關(guān)節(jié)炎癥、提高其患肢功能及活動(dòng)度,減輕軟骨及骨組織的破壞,抗TNF-α療法可促進(jìn)RA患者滑膜巨噬細(xì)胞的凋亡,提高患者關(guān)節(jié)功能?;诳筎NF-α的藥物已應(yīng)用于臨床,常見藥物有依那西普(TNFR2抑制劑)、塞來昔布等。
TNF-α因其可促進(jìn)腫瘤壞死而命名,在急性炎癥反應(yīng)中,主要由活化的巨噬細(xì)胞分泌,T細(xì)胞、NK細(xì)胞、肥大細(xì)胞、淋巴細(xì)胞、中性粒細(xì)胞、上皮細(xì)胞、角質(zhì)細(xì)胞及成纖維細(xì)胞均有產(chǎn)生。TNF-α存在跨膜型和分泌型兩種活性形式,作用各不相同[10]。一般認(rèn)為,跨膜蛋白可在TNF-α轉(zhuǎn)化酶(Tumor Necrosis Factor-α Converting Enzyme,TACE)的作用下,轉(zhuǎn)化為分泌蛋白,從而發(fā)揮作用。但是,將編碼分泌蛋白1-12號(hào)氨基酸的序列敲除,使TNF-α不能分泌,轉(zhuǎn)基因小鼠依然可表現(xiàn)出關(guān)節(jié)炎癥,且抗TNF-α單抗治療有效,TNF轉(zhuǎn)化酶抑制劑治療無效,證明TNF-α的跨膜蛋白也具有生物活性,在關(guān)節(jié)炎癥與骨侵蝕方面也起著重要的作用。
TNF-α主要受其本身mRNA的3’-UTR端的AU富集區(qū)(AU-Rich Element,ARE)的調(diào)控。在細(xì)胞靜息狀態(tài)下,TNF-α的降解主要由ARE介導(dǎo),鋅指蛋白36(Tristetraprolin,TTP)也參與了抑制TNF-α的過程。在調(diào)控過程正常運(yùn)行的情況下,TNF-α可介導(dǎo)急性炎癥。若該調(diào)控過程發(fā)生紊亂,如:TNF-α過表達(dá)及TTP敲除的轉(zhuǎn)基因小鼠,可發(fā)生慢性炎癥,從而繼發(fā)一系列全身的病理改變。
常見的TNF-Tg小鼠模型1981年于George Kollias實(shí)驗(yàn)室培育成功[11],利用基因打靶載體,將人TNF基因ARE的3’-UTR端由β球蛋白的3’-UTR端代替,保證了TNF-α的轉(zhuǎn)錄效率,可使該系小鼠關(guān)節(jié)、肺、脾等組織慢性、持續(xù)性過表達(dá)人TNF-α。
TNF相關(guān)的轉(zhuǎn)基因小鼠亦存在多種形式。將ARE的3’-UTR端敲除可得到TNFΔARE小鼠[12],可出現(xiàn)類似克羅恩病的腸炎,關(guān)節(jié)炎出現(xiàn)率為100%,全身關(guān)節(jié)均受累,該品系小鼠也是第一個(gè)顳頜關(guān)節(jié)炎模型。但如果把白足小鼠Tnf基因的整個(gè)3’-UTR端敲除,可發(fā)展成為強(qiáng)直性脊柱炎而無周圍關(guān)節(jié)炎的表現(xiàn)。因人TNF-α只能與TNFR1結(jié)合而不能與TNFR2結(jié)合,提示在某種程度上,TNFR2可能與RA發(fā)病無關(guān);但是TNFR2敲除會(huì)加重TNFΔARE小鼠的關(guān)節(jié)炎癥,其在關(guān)節(jié)炎癥中的作用有待進(jìn)一步研究。
常見的無發(fā)育缺陷的TNF-Tg有2個(gè)亞型:3647和197。3647品系攜帶人的1個(gè)TNF拷貝基因,2月齡開始出現(xiàn)踝關(guān)節(jié)腫脹。197品系攜帶5個(gè)拷貝基因,4-5周齡出現(xiàn)表型,且癥狀較3647更為嚴(yán)重;9-10周齡后肢喪失活動(dòng)能力,體質(zhì)量逐漸減輕,純合子的197品系12-14周即死亡。因此,3647品系存活時(shí)間長(zhǎng),炎癥進(jìn)展緩慢,實(shí)用性較高,本文重點(diǎn)討論該品系。
3647品系小鼠以C57BL/6VBA為雜交背景,雜合子的雄性與野生型雌性雜交而生,出生雜合子陽(yáng)性小鼠的概率約為50%。小鼠表現(xiàn)為對(duì)稱性、多發(fā)性關(guān)節(jié)炎。整個(gè)病程都可見滑膜的增生及炎癥細(xì)胞的浸潤(rùn)。病程的晚期可出現(xiàn)軟骨及骨組織的侵蝕,骨的表面出現(xiàn)大量多核抗酒石酸酸性磷酸酶(Tartrate-Resistant Acid Phosphatase,TRAP)染色陽(yáng)性的破骨細(xì)胞。以上病理表現(xiàn)與RA患者的臨床表現(xiàn)極為相似,但是整個(gè)病程中小鼠血清的類風(fēng)濕因子是陰性的??筎NF可完全阻斷炎癥的產(chǎn)生,純合子的飼養(yǎng)需要持續(xù)的抗TNF治療。
TNF-Tg小鼠的最大優(yōu)勢(shì)在于其病程進(jìn)展呈現(xiàn)慢性炎癥、病情穩(wěn)定。與之相比,膠原誘導(dǎo)模型更為嚴(yán)重,佐劑誘導(dǎo)模型有一定自限性[13]。而且,該模型小鼠是非免疫依賴型的,與重組活化基因(RAG)敲除小鼠(無T細(xì)胞、B細(xì)胞)雜交后,仍可表現(xiàn)侵蝕性關(guān)節(jié)炎,證明該病程非免疫依賴性,有利于研究RA除自身免疫性疾病以外的分子機(jī)制。該模型小鼠與易發(fā)關(guān)節(jié)炎的DBA/1雜交后,關(guān)節(jié)炎發(fā)病更早,程度更重,說明致敏基因DBA/1與TNF-α聯(lián)合作用可加重RA。
盡管TNF-α的RA的發(fā)病中十分重要,在TNF-α缺失的情況下,破骨細(xì)胞生成、侵蝕性關(guān)節(jié)炎及骨溶解仍可發(fā)生。敲除TNF-α或TNFR1后,小鼠仍可出現(xiàn)膠原誘導(dǎo)型關(guān)節(jié)炎(Collagen-Induced Arthritis,CIA),但發(fā)生率降低。因此,TNF-α極有可能在RA的某個(gè)階段發(fā)揮作用。臨床上30%的患者應(yīng)用抗TNF-α療法無效,亦證明了這一猜測(cè)。TNF-Tg小鼠為研究RA的病理分期提供了良好的模型。
TNF-Tg小鼠為研究TNF-α與其他炎性因子的上下游關(guān)系提供了依據(jù)。IL-1可以促進(jìn)基質(zhì)金屬蛋白酶(Matrix Metalloproteinase,MMP)的產(chǎn)生,促進(jìn)軟骨的降解及骨吸收。用IL-1受體阻斷劑治療該品系小鼠,可抑制關(guān)節(jié)炎癥的進(jìn)展,提示IL-1可能是TNF-α的下游因子。而且,循環(huán)系統(tǒng)中的人TNF-α減少,證明阻斷IL-1會(huì)對(duì)TNF-α產(chǎn)生負(fù)反饋調(diào)節(jié)[14]。IL-6升高在RA中會(huì)導(dǎo)致炎性細(xì)胞的浸潤(rùn)、滑膜增生以及破骨細(xì)胞的活化。TNF-Tg小鼠血清IL-6水平升高,但與IL-6基因沉默的小鼠雜交,對(duì)病程進(jìn)展無明顯影響,避免了病理分子機(jī)制研究的混雜性[15]。與之相比,CIA模型對(duì)IL-6呈依賴性,敲除IL-6或IL-1后,CIA模型關(guān)節(jié)炎癥可減輕或完全抑制。在關(guān)節(jié)炎中,對(duì)組織起直接破壞作用的是MMP,其中MMP-1、3、9、13在RA患者的滑膜、滑液及血清中高表達(dá),抗TNF-α治療可下調(diào)其水平,證明TNF-α?xí)龠M(jìn)MMPs表達(dá)[16]。TNF-Tg小鼠關(guān)節(jié)中MMP-3、 9、13是高表達(dá)的,TMP治療可緩解骨破壞。
RANKL/RANK信號(hào)通路骨吸收過程中起著重要作用,骨保護(hù)素(Osteoprotegerin,OPG)治療有效,提示針對(duì)該通路治療骨侵蝕意義重大。肌生成抑制蛋白(Myostatin)在該模型小鼠中高表達(dá),敲除Myostatin或使用單克隆抗體治療后,小鼠的骨破壞得到緩解,提示TNF-α可能通過高表達(dá)Myostatin激活RANKL/RANK信號(hào)通路實(shí)現(xiàn)骨破壞[17]。
TNF-Tg小鼠滑膜有明顯的血管新生,這與RA患者的臨床表現(xiàn)一致。抗血管新生藥物內(nèi)皮抑素治療轉(zhuǎn)基因小鼠有效[18],提示了血管增生在TNF-α介導(dǎo)的關(guān)節(jié)炎中的重要作用。
淋巴管的生成及功能在RA中的作用越來越受到重視。血管內(nèi)皮生長(zhǎng)因子(Vascular Endothelial Growth Factor,VEGF)可通過促進(jìn)淋巴回流功能減輕關(guān)節(jié)炎癥[19]。研究表明,TNF-Tg模型小鼠關(guān)節(jié)中的前體破骨細(xì)胞通過NF-κB通路VEGF的表達(dá)量增高,促進(jìn)淋巴管生成;CIA模型小鼠也觀察到相同的改變[20]。該模型炎癥發(fā)病前,腘窩淋巴結(jié)腫大,腘窩淋巴結(jié)、髂淋巴結(jié)的萎縮可作為關(guān)節(jié)炎發(fā)病的標(biāo)志,并進(jìn)一步探討了其機(jī)制可能與B細(xì)胞的遷移有關(guān)[21,22]。獨(dú)活寄生湯[23]、阿魏酸[24]可通過促進(jìn)淋巴管回流功能起到治療該小鼠模型關(guān)節(jié)炎的作用。淋巴管功能的改變已得到臨床試驗(yàn)的驗(yàn)證,有可能成為評(píng)價(jià)RA發(fā)病的新指標(biāo)[25]。
在診療技術(shù)方面,Micro-CT及增強(qiáng)對(duì)比磁共振技術(shù)對(duì)關(guān)節(jié)滑膜體積、淋巴結(jié)體積[18]、多普勒超聲可有效檢測(cè)該模型小鼠的關(guān)節(jié)體積及多普勒信號(hào)[26,27],拓展了RA的早期診斷技術(shù)范圍。
該模型小鼠用來證明TNF-α在壓迫性骨髓水腫的發(fā)病過程中起到重要作用,可通過生物力學(xué)的改變緩解;單純抗TNF-α治療無效[28]。5月齡的TNF-Tg小鼠因?yàn)楣瞧茐膰?yán)重,作為繼發(fā)性骨質(zhì)疏松的模型,也被用來進(jìn)行拉曼光譜學(xué)[29]的測(cè)量,實(shí)驗(yàn)證明,該模型小鼠股骨斷裂載荷及斷裂韌性降低,可能通過泛素連接酶Smurf1介導(dǎo)了骨丟失[30]。
TNF-Tg小鼠模型表型穩(wěn)定,存活周期相對(duì)較長(zhǎng),不需借助藥物誘導(dǎo),是一種有效的工具,在類風(fēng)濕性關(guān)節(jié)炎的病理機(jī)制、分期分型等研究中具有重要的意義,有利于藥物的開發(fā)及診療技術(shù)的改進(jìn)[31],值得推廣研究。但是,作為一種轉(zhuǎn)基因小鼠模型,它也有自身的局限性,存在不能完全復(fù)制疾病的病理狀態(tài)、存在其他生理缺陷、動(dòng)物繁殖數(shù)量有限等多種問題,但這并不能掩蓋它的應(yīng)用價(jià)值。鑒于TNF-α在多種疾病中的重要作用,該模型小鼠也將應(yīng)用到與TNF-α有關(guān)的病理機(jī)制的研究中,有利于探討多種疾病的相同分子機(jī)制,可拓展藥物的治療范圍及中醫(yī)學(xué)“異病同治”理論的研究。TNF-Tg小鼠淋巴管回流功能、淋巴管內(nèi)壓下降,亦可成為研究淋巴管結(jié)構(gòu)與功能的工具。
參考文獻(xiàn)
1 Sidiropoulos P I, Goulielmos G, Voloudakis G K, et al. Inflammasomes and rheumatic diseases: evolving concepts. Ann Rheum Dis, 2008, 67(10): 1382-1389.
2 陳程,黃光輝,黃豆豆,等.類風(fēng)濕關(guān)節(jié)炎嚙齒類實(shí)驗(yàn)動(dòng)物模型的研究進(jìn)展.現(xiàn)代藥物與臨床.2013,28(3): 428-434.
3 姬潔瑩,李晉奇,郭阿霞.類風(fēng)濕性關(guān)節(jié)炎動(dòng)物模型復(fù)制與評(píng)價(jià).山西中醫(yī)學(xué)院學(xué)報(bào).2013,14(3): 73-76.
4 Zhao L, Huang J, Zhang H, et al. Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 2011, 29(10): 1601-1610.
5 Zhang Q, Badell I R, Schwarz E M, et al. Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression through Ets-2. Arthritis Rheum, 2005, 52(9): 2708-2718.
6 Lam J, Takeshita S, Barker J E, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest, 2000, 106(12): 1481-1488.
7 Schwarz E M, Looney R J, Drissi M H, et al. Autoimmunity and bone. Ann N Y Acad Sci, 2006, 1068: 275-283.
8 Manara M, Sinigaglia L. Bone and TNF in rheumatoid arthritis: clinical implications. RMD Open, 2015, 1(Suppl 1): e000065.
9 Catrina A I, Trollmo C, af Klint E, et al. Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheum, 2005, 52(1): 61-72.
10 Olleros M L, Guler R, Corazza N, et al. Transmembrane TNF induces an efficient cell-mediated immunity and resistance to Mycobacterium bovis bacillus Calmette-Guerin infection in the absence of secreted TNF and lymphotoxin-alpha. J Immunol, 2002, 168(7): 3394-3401.
11 Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J, 1991, 10(13): 4025-4031.
12 Kontoyiannis D, Pasparakis M, Pizarro T T, et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements:implications for joint and gut-associated immunopathologies. Immunity, 1999, 10(3): 387-398.
13 林紅,賀永懷,黎燕,等. Ⅱ型膠原蛋白與弗氏完全佐劑大鼠關(guān)節(jié)炎模型的建立和比較.中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào).1999,7(1): 4-9.
14 Probert L, Plows D, Kontogeorgos G, et al. The type I interleukin-1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF-transgenic mice. Eur J Immunol, 1995, 25(6): 1794-1797.
15 Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity, 1997, 6(3): 315-325.
16 Schett G, Hayer S, Tohidast-Akrad M, et al. Adenovirus-based overexpression of tissue inhibitor of metalloproteinases 1 reduces tissue damage in the joints of tumor necrosis factor alpha transgenic mice. Arthritis Rheum, 2001, 44(12): 2888-2898.
17 Dankbar B, Fennen M, Brunert D, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med, 2015, 21(9): 1085-1090.
18 Proulx S T, Kwok E, You Z, et al. Longitudinal assessment of synovial, lymph node, and bone volumes in inflammatory arthritis in mice by in vivo magnetic resonance imaging and microfocal computed tomography. Arthritis Rheum, 2007, 56: 4024-4037.
19 Zhou Q, Guo R, Wood R, et al. Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum, 2011, 63(8): 2318-2328.
20 Zhang Q, Lu Y, Proulx S T, et al. Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res Ther, 2007, 9(6): R118.
21 Bouta E M, Wood R W, Brown E B, et al. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. J Physiol, 2014, 592(6): 1213-1223.
22 Li J, Kuzin I, Moshkani S, et al. Expanded CD23(+)/CD21(hi) B cells in inflamed lymph nodes are associated with the onset of inflammatoryerosive arthritis in TNF-transgenic mice and are targets of anti-CD20 therapy. J Immunol, 2010, 184(11): 6142-6150.
23 Chen Y, Li J, Li Q, et al. Du-Huo-Ji-Sheng-Tang attenuates inflammation of TNF-Tg mice related to promoting lymphatic drainage function. Evid Based Complement Alternat Med, 2016, 2016: 7067691.
24 Liang Q, Ju Y, Chen Y, et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther, 2016, 18: 62.
25 Rahimi H, Bell R, Bouta E M, et al. Lymphatic imaging to assess rheumatoid flare: mechanistic insights and biomarker potential. Arthritis Res Ther, 2016, 18: 194.
26 Bouta E M, Ju Y, Rahimi H, et al. Power Doppler ultrasound phenotyping of expanding versus collapsed popliteal lymph nodes in murine inflammatory arthritis. PLoS One, 2013, 8(9): e73766.
27 Bouta E M, Banik P D, Wood R W, et al. Validation of power Doppler versus contrast-enhanced magnetic resonance imaging quantification of joint inflammation in murine inflammatory arthritis. J Bone Miner Res, 2015, 30(4): 690-694.
28 Papuga M O, Kwok E, You Z, et al. TNF is required for the induction but not the maintenance of compression-induced BME signals in murine tail vertebrae: limitations of anti-TNF therapy for degenerative disc disease. J Orthop Res, 2011, 29(9): 1367-1374.
29 Inzana J A, Maher J R, Takahata M, et al. Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis. J Biomech, 2013,46(4): 723-730.
30 Guo R, Yamashita M, Zhang Q, et al. Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem, 2008, 283(34): 23084-23092.
31 Zhang L, Wang T, Li Q, et al. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo. Int J Nanomedicine, 2016, 11: 2663-2673.
A Research Progress on the Rheumatoid Arthritis Model Using TNF Transgenic Mouse
Wang Tengteng1,2, Xu Hao1,2, Wang Yongjun1,2, Shi Qi1,2, Liang Qianqian1,2
(1. Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; 2. Institute of Spine Disease, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; 3. School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China)
Rheumatoid arthritis (RA) was recognized as a chronic and autoimmune disease. The overexpression of tumor necrosis factor alpha (TNF-α) was of great significance in the pathogenesis of RA and mediated the levels of various inflammatory factors. At present, anti-TNF agents were widely used for the treatment of RA in clinic. The genetically modified mice, overexpressing human TNF-α, could appear pathological manifestations being similar to RA with slow onset, high incidence rate and stable occurrence. Therefore, TNF transgenic (TNFTg) mouse model was significant in the study, generally applied to the curative and mechanism researches of RA, especially some remarkable and fruitful studies over lymphatic vessels. In this study, we summarized the pathophysiological characteristics of the mouse model based on the current research status.
Tumor necrosis factor alpha, transgenic mice, rheumatoid arthritis, lymph
10.11842/wst.2016.11.006
R274
A
(責(zé)任編輯:朱黎婷,責(zé)任譯審:朱黎婷)
2016-11-04
修回日期:2016-11-20
* 國(guó)家自然科學(xué)基金委重點(diǎn)項(xiàng)目(81330085):痰瘀型類風(fēng)濕性關(guān)節(jié)炎與淋巴關(guān)系的基礎(chǔ)研究,負(fù)責(zé)人:施杞;國(guó)家自然科學(xué)基金委重大國(guó)際合作項(xiàng)目(81220108027):益氣祛濕法調(diào)控淋巴系統(tǒng)對(duì)炎癥性關(guān)節(jié)炎的影響,負(fù)責(zé)人:王擁軍;教育部高等學(xué)校全國(guó)優(yōu)秀博士學(xué)位論文作者專項(xiàng)資金資助項(xiàng)目(201276):負(fù)責(zé)人:梁倩倩;上海市龍華醫(yī)院龍醫(yī)創(chuàng)新團(tuán)隊(duì)(LYCX-01):祛瘀化瘀防治頸痛和炎性關(guān)節(jié)炎的基礎(chǔ)研究,負(fù)責(zé)人:梁倩倩;上海市衛(wèi)計(jì)委中醫(yī)藥三年行動(dòng)計(jì)劃項(xiàng)目(ZY3-CCCX-2-1002):國(guó)家中醫(yī)臨床研究基地建設(shè)項(xiàng)目,負(fù)責(zé)人:崔學(xué)軍;筋骨理論與治法教育部重點(diǎn)實(shí)驗(yàn)室,負(fù)責(zé)人:王擁軍;上海市長(zhǎng)寧區(qū)衛(wèi)生與計(jì)劃生育委員會(huì)“光華卓越PI工程”項(xiàng)目(2016-01),負(fù)責(zé)人:施杞。
** 通訊作者:梁倩倩,副研究員,碩士生導(dǎo)師,主要研究方向:中醫(yī)藥治療關(guān)節(jié)炎癥性疾病的療效及機(jī)制研究。