田洪濤
摘要:函數(shù)的概念及相關內容是高中和職業(yè)類教材中非常重要的部分,許多學生認為這些內容比較抽象、難懂、圖像多,方法靈活多樣。以致部分學生對函數(shù)知識產(chǎn)生恐懼感。就教學過程中學生的反應和自己的反思,淺淡幾點自己的看法。
關鍵詞:函數(shù);對應;映射;數(shù)形結合
1.加強數(shù)形結合
數(shù)學是人們對客觀世界定性把握和定量刻畫、逐漸抽像概括、形成方法和理論,并進行廣泛應用的過程。在7—12年級所研究的函數(shù)主要是冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和三角函數(shù),對每一類函數(shù)都是利用其圖像來研究其性質的,作圖在教學中顯得無比重要。我認為這一部分的教學要做到學生心中有形,函數(shù)圖像就相當于佛教教徒心中各種各樣的佛像,只要心中有形,函數(shù)性質就比較直觀,處理問題時就會得心應手。函數(shù)觀念和數(shù)形結合在數(shù)列及平面幾何中也有廣泛的應用。
2.將映射概念下放
就前面三種函數(shù)概念而言,能提示函數(shù)實質的只有“對應說”,如果在初中階段把“變量說”的定義替換成“對應說”的定義,可有以下優(yōu)點:⑴體現(xiàn)數(shù)學知識的系統(tǒng)性,也顯示出時代信息,為學生今后的學習作準備。⑵凸顯數(shù)學內容的生活化和現(xiàn)實性,函數(shù)是刻畫現(xiàn)實世界數(shù)量變化規(guī)律的數(shù)學模型。⑶變抽像內容形像化,替換后學生會感到函數(shù)概念不再那么抽像難懂,好像伸手會觸摸到一樣,身邊到處都有函數(shù)。學生就會感到函數(shù)不再那么可怕,它無非是一種映射。只需將集合論的初步知識下放一些即可,學生完全能夠接受,因為從小學第一學段就已接觸到集合的表示方法,第二學段已接觸到集合的運算,沒有必要作過多擔心。以前有人提出將概率知識下放的觀點,當時不也有人得出反對意見嗎?可現(xiàn)在不也下放到了小學嗎?如果能下放到初中,就使得知識體系更完備,銜接更自然,學生易于接受,學生就不會提出“到底什么是函數(shù)?”這樣的問題。
3.區(qū)分函數(shù)與方程
盡管函數(shù)和方程都是反映量與量之間的關系,可函數(shù)反映的是變量和變量之間的關系,強調的是一個變量隨另一個變量的變化情況,從函數(shù)的角度來看,考慮的是x和y在各自取值范圍內,彼此間怎樣相互變化。而方程反映的是未知量和已知量之間的關系,等式F(x,y)=0是一個方程,只有在一定條件下才能確定為一個函數(shù),從方程的角度來看,考慮的是x和y選取哪些數(shù)值時才能使等式成立,另一方面,如果變量x和y的函數(shù)關系可以用解析式y(tǒng)=f(x)表示,那就得到一個方程y-f(x)=0,它們是可以互相轉化的,有時用方程知識去研究函數(shù),也常用函數(shù)知識去研究方程。
(作者單位:河南省淅川二高 474450)
學習報·教育研究2016年3期