李娟,全占軍,張春暉,史娜娜,韓煜,王琦,張淇翔
1.中國礦業(yè)大學(xué)(北京)化學(xué)與環(huán)境工程學(xué)院,北京100083
2.中國環(huán)境科學(xué)研究院,北京100012
植物銅耐性機(jī)理的研究進(jìn)展
李娟1,2,全占軍2,*,張春暉1,史娜娜2,韓煜2,王琦2,張淇翔2
1.中國礦業(yè)大學(xué)(北京)化學(xué)與環(huán)境工程學(xué)院,北京100083
2.中國環(huán)境科學(xué)研究院,北京100012
主要從植物根細(xì)胞壁積累固定、細(xì)胞膜對(duì)銅的吸收控制、金屬配體的螯合作用、銅在系統(tǒng)液泡的分隔機(jī)制及脅迫蛋白的合成5個(gè)方面,分別闡述植物對(duì)銅分子的耐性機(jī)制的研究進(jìn)展,全面了解了銅在植物中的亞細(xì)胞分布、銅在植物根系到地上部分運(yùn)輸過程的轉(zhuǎn)運(yùn)機(jī)制以及植物在銅脅迫下的抗性反應(yīng)等。并在此基礎(chǔ)上提出了存在的問題以及今后研究的重點(diǎn)。
銅;植物;細(xì)胞膜;螯合作用;脅迫蛋白
李娟,全占軍,張春暉,等.植物銅耐性機(jī)理的研究進(jìn)展[J].生態(tài)毒理學(xué)報(bào),2016,11(3):53-60
Li J,Quan Z J,Zhang C H,et al.Research Progress of the Tolerance Mechanism of Plants to Copper[J].Asian Journal of Ecotoxicology,2016,11(3): 53-60(in Chinese)
銅是植物生長所必需的微量營養(yǎng)元素之一,其參與植物體內(nèi)多種生理生化反應(yīng),是細(xì)胞色素氧化酶、Cu/Zn超氧化物歧化酶、多酚氧化酶等胞內(nèi)酶所必需的組分或輔酶,在植物光合、呼吸、抗氧化、細(xì)胞壁代謝以及激素反應(yīng)中起著重要作用[1]。然而,過量的銅可能會(huì)抑制植物的光合作用及色素合成,且能夠與細(xì)胞膜蛋白巰基結(jié)合,從而導(dǎo)致膜破壞,產(chǎn)生脂質(zhì)過氧化反應(yīng),使細(xì)胞膜透性增加,造成膜內(nèi)電解質(zhì)和非電解質(zhì)的外滲,破壞胞內(nèi)環(huán)境的穩(wěn)定性[2]。大量研究表明,低濃度Cu處理能夠促進(jìn)植物的生長,而高濃度Cu則抑制其生長[3-4]。不僅如此,在長期的進(jìn)化過程中,生長于銅污染脅迫下的植物,逐漸在細(xì)胞內(nèi)形成了嚴(yán)格的調(diào)控機(jī)制調(diào)節(jié)銅在植物體內(nèi)的含量[5]。本文針對(duì)植物對(duì)銅的吸收控制機(jī)理及防御機(jī)理,主要從植物根細(xì)胞壁的固定機(jī)制、細(xì)胞膜對(duì)銅的吸收控制機(jī)理、金屬配體的螯合作用、銅在細(xì)胞液泡的分割機(jī)理以及脅迫蛋白的合成5個(gè)方面總結(jié)植物對(duì)銅毒害的解毒作用機(jī)制。
1.1 根細(xì)胞壁固定機(jī)制
根細(xì)胞壁是重金屬進(jìn)入細(xì)胞的第一道屏障。長期生存在銅污染環(huán)境中的植物,大部分銅積累在植物根系,只有少量的銅會(huì)轉(zhuǎn)移到地上部[4,6-7],而根系中的銅又大多被吸附在根細(xì)胞壁上[8-11],大大減少了銅離子向原生質(zhì)體的跨膜運(yùn)輸,降低了銅的生物毒性,這是銅耐性植物抵抗銅毒害的重要機(jī)制。
細(xì)胞壁對(duì)重金屬的吸附作用通過細(xì)胞壁中的多糖、蛋白質(zhì)及木質(zhì)素等組分提供的各種帶負(fù)電的配位基團(tuán)完成,這些配位基團(tuán)主要包括羧基、羥基、醛基、氨基及磷酸基等[12],其數(shù)量決定了細(xì)胞壁對(duì)重金屬的吸附能力[13-14]。武貝等[15]經(jīng)研究發(fā)現(xiàn),海州香薷細(xì)胞壁纖維素和木質(zhì)素中的羧基、氨基和羥基是銅的主要結(jié)合位點(diǎn),且細(xì)胞壁結(jié)合Cu的分子形態(tài)類似于Cu-草酸、Cu-組氨酸以及水合態(tài)銅離子。隨后,劉婷婷等[12]進(jìn)一步研究發(fā)現(xiàn),海州香薷根系中的果膠為銅離子提供了羥基官能團(tuán),纖維素和半纖維素為銅離子提供了羧基官能團(tuán),而細(xì)胞壁蛋白提供了氨基官能團(tuán)等結(jié)合位點(diǎn)。Merdy等[16]發(fā)現(xiàn),銅離子在小麥細(xì)胞壁上的結(jié)合位點(diǎn)主要是羧基和酚基。隨后,又有研究發(fā)現(xiàn),劍葉舌葉蘚將過量的Cu累積在其原絲體的細(xì)胞壁上,且43%的Cu結(jié)合在果膠的同型半乳糖醛酸上[8]。這說明,不同植物的細(xì)胞壁結(jié)構(gòu)及組成不同,其銅離子的結(jié)合位點(diǎn)及各組分在對(duì)銅離子吸附固定過程中所起到的作用不同,且細(xì)胞壁中的纖維素、半纖維素以及果膠在植物抗Cu毒過程中起到了關(guān)鍵作用。
另外,在植物對(duì)銅的耐性機(jī)制中,細(xì)胞壁不僅僅是銅的被動(dòng)積累場(chǎng)所,在脅迫環(huán)境持續(xù)作用下,細(xì)胞壁也會(huì)發(fā)生一系列變化,而這種變化又增強(qiáng)了其對(duì)重金屬的吸附能力,同時(shí)降低了微量金屬元素向原生質(zhì)體的滲透率[9]。例如,Liu等[17]發(fā)現(xiàn)隨著土壤介質(zhì)中銅含量的增加,各種細(xì)胞壁多糖的含量也相應(yīng)增加,且其中包含較多羧基的細(xì)胞壁多糖為銅離子提供了更多的結(jié)合位點(diǎn)。此外,過量的銅也會(huì)影響胞內(nèi)多糖在根細(xì)胞壁的分布,改變細(xì)胞壁的結(jié)構(gòu),這種改變不僅增加了細(xì)胞壁富集微量元素的能力,還降低了微量金屬元素向原生質(zhì)體的滲透性[9,17]。
1.2 細(xì)胞膜對(duì)銅的吸收控制機(jī)理
銅離子的吸收和其在細(xì)胞內(nèi)的平衡由具體轉(zhuǎn)運(yùn)載體和金屬泵控制,它們屬于不同的植物金屬轉(zhuǎn)運(yùn)蛋白家族,能夠在組織水平或器官水平起作用[18]。Küpper等[19]研究發(fā)現(xiàn),跨膜的金屬轉(zhuǎn)運(yùn)蛋白在重金屬的吸收、木質(zhì)部的裝載、卸載以及液泡區(qū)室化作用中可能起著決定性作用。近年來,對(duì)植物體吸收及運(yùn)輸銅的機(jī)制的研究取得了長足進(jìn)步。目前已經(jīng)發(fā)現(xiàn)了幾種銅轉(zhuǎn)運(yùn)家族,包括COPT轉(zhuǎn)運(yùn)體、Cu運(yùn)輸P型ATP酶、銅伴侶蛋白等[20]。
COPT轉(zhuǎn)運(yùn)體在調(diào)控植物細(xì)胞對(duì)重金屬Cu的吸收及分配中起到關(guān)鍵作用,主要負(fù)責(zé)細(xì)胞質(zhì)膜對(duì)高親和性Cu+的吸收[21-22]。通過質(zhì)膜銅吸收系統(tǒng)突變體的功能互補(bǔ)篩選實(shí)驗(yàn),在擬南芥中基因組中鑒定出6個(gè)編碼COPT的基因,即COPT1-6,其中COPT1、COPT2、COPT3、COPT5、COPT6對(duì)Cu均具有很高的運(yùn)輸能力,最新發(fā)現(xiàn)的COPT6是位于細(xì)胞質(zhì)膜上的銅吸收轉(zhuǎn)運(yùn)體,在銅缺失或過量時(shí),對(duì)擬南芥體內(nèi)銅含量的調(diào)控具有重要作用[22-25]。擬南芥中COPT1存在于擬南芥細(xì)胞質(zhì)膜上[26],能彌補(bǔ)釀酒酵母(Saccharomyces cerevisiae)銅吸收缺失突變體,被認(rèn)為是一個(gè)銅轉(zhuǎn)運(yùn)體,在植物吸收銅的過程中發(fā)揮重要作用[27-28],COPT1基因主要在根尖、表皮毛、氣孔、花粉和種胚等部位表達(dá)[28],其表達(dá)受Cu負(fù)調(diào)控[22],增加了植物對(duì)Cu毒性的敏感性[29]。目前,已有研究表明Cu以還原形式的Cu+進(jìn)入細(xì)胞質(zhì)[30],且相對(duì)于家族內(nèi)其他蛋白,COPT1對(duì)Cu+具有較高親和力[22]。
Cu運(yùn)輸P型ATP酶能將無機(jī)陽離子運(yùn)入或排出細(xì)胞,HMA重金屬轉(zhuǎn)運(yùn)蛋白隨其分布的組織、亞細(xì)胞定位以及金屬特異性的不同而具備不同的功能。Baxter等[31]在擬南芥體內(nèi)發(fā)現(xiàn)了P1B型ATPases的8個(gè)成員,并將其分別命名為AtHMA1-8,其中包括之前已經(jīng)命名的PAA1(AtHMA6),RAN1 (AtHMA7),PAA2(AtHMA8)。AtHMA1-AtHMA4屬于P1B-2型ATPases,為二價(jià)陽離子載體,如Cu2+、Cd2+等;而AtHMA5-AtHMA8屬于P1B-1型ATPases,為一價(jià)陽離子載體,如Cu+,Ag+等[32]。Nuria等[33]通過對(duì)兩個(gè)功能缺失突變體進(jìn)行研究發(fā)現(xiàn),AtHMA5能夠?qū)u+從細(xì)胞質(zhì)運(yùn)出胞外或運(yùn)入相應(yīng)器官,其在植物根部和花中大量表達(dá),此外,酵母雙雜交實(shí)驗(yàn)發(fā)現(xiàn),銅分子伴侶ATX1或CCH相互作用能與AtHMA5的氨基端相互作用[34-35]。AtHMA1、AtHMA6都存在于葉綠體內(nèi)膜上,分別通過不同的方式將Cu轉(zhuǎn)運(yùn)到葉綠體基質(zhì)中[36-37]。經(jīng)過對(duì)葉綠體被膜上的ATPase分析發(fā)現(xiàn),AtHMA1的活性僅僅受到Cu的刺激,表明AtHMA1對(duì)銅具有特異性[37]。AtHMA8編碼位于葉綠體類囊體上的Cu運(yùn)輸P型ATPases,可將葉綠體基質(zhì)中的Cu+轉(zhuǎn)運(yùn)到類囊體腔中,Cu向質(zhì)體藍(lán)素的傳遞需要AtHMA6和AtHMA8共同作用[38]。Rodriguez等[39]發(fā)現(xiàn)RAN1(AtHMA7)是定位于內(nèi)質(zhì)網(wǎng)膜上的銅結(jié)合蛋白,在運(yùn)輸Cu到乙烯受體中起作用。然而,又由于RAN1與酵母中位于高爾基膜泡上的Cu+-ATPase Ccc2p的功能具有相似性,都負(fù)責(zé)將Cu+運(yùn)輸?shù)紼TR1[40],故推測(cè)RAN1可能位于高爾基膜泡上。關(guān)于RAN1的定位及在植物中的功能還需要進(jìn)一步確定。單子葉植物水稻(Oryza sativa)基因組中發(fā)現(xiàn)了9個(gè)基因,即OsHMA1-9[41]。水稻體內(nèi)的OsHMA5負(fù)責(zé)將根系中的銅向木質(zhì)部加載,參與銅在體內(nèi)由根系向地上部的運(yùn)輸,且通過對(duì)OsHMA5抗體進(jìn)行免疫染色,發(fā)現(xiàn)其定位于細(xì)胞質(zhì)膜[42]。目前,對(duì)于HMAs的研究多集中于雙子葉植物擬南芥,而對(duì)于單子葉植物中的HMAs的相關(guān)功能及研究較少,對(duì)其基因定位及功能尚需要更進(jìn)一步的研究。
自從酵母中的銅伴侶蛋白ATX1被確認(rèn)為Cu+的受體后,銅伴侶蛋白的概念逐漸為人們所知[43],它能在細(xì)胞溶質(zhì)中與低溶解性、高活性的Cu+結(jié)合,再把Cu傳遞給所需的亞細(xì)胞體[35,44],保護(hù)細(xì)胞免受重金屬毒害[22,45]。在植物體內(nèi)的銅伴侶蛋白主要包括:CCH[44,46]、AtCOX17[47]、AtCCS[48]和AtATX1[49]。CCH是擬南芥中第一個(gè)被發(fā)現(xiàn)的銅伴侶蛋白[44],含有植物特異的羧基端區(qū)域CTD和獨(dú)特的結(jié)構(gòu)特征,CCH能夠在植物的韌皮部、葉柄和衰老的葉片等表達(dá)[46]。CCH與酵母中的ATX1為同源蛋白,能夠?qū)~離子傳遞給與CCC2同源的RAN1,然后由RAN1將Cu傳遞給分泌道促使乙烯產(chǎn)生信號(hào)[49-51]。Puig等[35]發(fā)現(xiàn)高等植物體內(nèi)含有兩種類ATX1銅伴侶蛋白,即之前已經(jīng)發(fā)現(xiàn)的CCH和AtATX1。AtATX1存在于細(xì)胞質(zhì)中,能互補(bǔ)酵母atx1和sod1突變體的表型,通過酵母雙雜交實(shí)驗(yàn)發(fā)現(xiàn)AtATX1能夠?qū)u+轉(zhuǎn)運(yùn)給RAN1,但其轉(zhuǎn)運(yùn)效率低于CCH。Balandin和Castresana[47]發(fā)現(xiàn)了與酵母中COX17同源的AtCOX17,它能夠?qū)u傳遞給線粒體的細(xì)胞色素氧化酶復(fù)合體上。與酵母Ccs1p/Lys7p同源的AtCCS能夠?qū)u+轉(zhuǎn)運(yùn)到SOD1,其在葉綠體中行使功能,可能向機(jī)制中Cu/Zn SOD供應(yīng)Cu+,保持Cu+在質(zhì)體藍(lán)素和SOD中的穩(wěn)態(tài)含量,同時(shí),AtCCS的ATX-like域?qū)ζ溷~伴侶蛋白的功能至關(guān)重要[52]。
2.1 金屬配體的螯合作用
重金屬進(jìn)入根細(xì)胞后,特異性蛋白質(zhì)會(huì)通過螯合作用調(diào)控銅在植物體內(nèi)的生態(tài)平衡,一方面,保證足量的Cu來維持植物的正常代謝功能,另一方面,避免銅在體內(nèi)過多積累而對(duì)植物產(chǎn)生毒害作用[53]。銅離子對(duì)多肽、巰基、羧基以及酚羥基均具有很強(qiáng)的親和力,其經(jīng)細(xì)胞膜進(jìn)入細(xì)胞質(zhì)后,以結(jié)合態(tài)存在于細(xì)胞中[29],隨后,經(jīng)金屬載體轉(zhuǎn)運(yùn)至相應(yīng)的細(xì)胞器或液泡中儲(chǔ)存。植物體內(nèi)的金屬配體主要包括有機(jī)酸、氨基酸、金屬硫蛋白(metallothioneins,MTs)、植物螯合肽(phytochelatins,PCs)及其他低分子量化合物。
植物體內(nèi)螯合銅的有機(jī)酸主要是檸檬酸、蘋果酸和草酸,但不同種類植物螯合重金屬的有機(jī)酸種類不同,且有機(jī)酸是否能夠?qū)χ参矬w內(nèi)銅起到解毒作用仍存在很大爭議[54]。Murphy等[55]發(fā)現(xiàn)短期的K+外排可增加擬南芥對(duì)Cu的耐性,而此過程又伴隨著檸檬酸的釋放,且Cu促進(jìn)了檸檬酸鹽的釋放。此后,Bernal等[56]也發(fā)現(xiàn)在大豆細(xì)胞懸浮液暴露于銅環(huán)境時(shí),檸檬酸首先合成。目前,有機(jī)配體提高植物抗Cu毒的研究相對(duì)較少,有機(jī)酸是否能夠提高植物耐Cu毒的能力及其作用機(jī)制需進(jìn)一步研究。氨基酸(如組氨酸等)也可作為重金屬的配位基,在重金屬的解毒和耐受機(jī)制中發(fā)揮作用,能夠通過巰基、氨基、羧基和銅離子結(jié)合,形成穩(wěn)定的螯合物從而起到一定的解毒作用。White等[57]發(fā)現(xiàn)在大豆?jié)B出物中銅主要與天冬酰胺和組氨酸結(jié)合,在番茄中主要與組氨酸、谷氨酰胺和天冬酰胺結(jié)合。經(jīng)Cu處理后的耐銅品種B1139和敏感品種B1195兩品種水稻木質(zhì)部汁液中的各種氨基酸的含量均有所上升,其中絲氨酸含量最高、上升最快,然而,其在水稻木質(zhì)部中與Cu在水稻木質(zhì)部中的運(yùn)輸和解毒是否相關(guān)尚需要進(jìn)一步研究[58]。
金屬螯合蛋白對(duì)銅的螯合能力遠(yuǎn)大于其他配體[59]。MTs是一類富含半胱氨酸(Cys)殘基,可以結(jié)合重金屬的低分子量蛋白質(zhì)。Guo等[60]已經(jīng)通過研究證明了MTs在調(diào)節(jié)植物體內(nèi)金屬平衡的作用。過量的Cu經(jīng)常誘導(dǎo)MTs的產(chǎn)生[61],MTs可通過Cys殘基上的巰基與銅離子結(jié)合形成無毒或低毒絡(luò)合物,消除其毒害作用。Thomas等[62]將酵母中的金屬硫蛋白(CUP1)引入煙草體內(nèi),發(fā)現(xiàn)在銅脅迫下植物體內(nèi)的CUP1轉(zhuǎn)錄水平下降,但轉(zhuǎn)基因植物葉片積累的銅含量較對(duì)照植物依然增加了2~3倍。另有研究發(fā)現(xiàn)過量表達(dá)OsMT2c的轉(zhuǎn)基因擬南芥比野生植物對(duì)銅的耐性更強(qiáng),且對(duì)ROS的清理能力也更強(qiáng)[63]。PCs是以谷胱甘肽為底物由PC合成酶催化而成的金屬螯合肽[64],和游離的重金屬離子螯合形成無毒或低毒的化合物。雖然,PCs能夠通過Cu離子誘導(dǎo)產(chǎn)生,但由于PC-Cu復(fù)合物并未在液泡中隔離,且PCs突變體對(duì)銅的敏感性較小,故推測(cè)PC的誘導(dǎo)合成不是植物解銅毒的主要機(jī)制[65]。隨后,Lee和Kang[66]通過研究發(fā)現(xiàn),過量表達(dá)擬南芥AtPCS1的Cd耐性轉(zhuǎn)基因植物對(duì)銅不具有耐性,擬南芥突變體cad2-1對(duì)銅的耐性高于野生型植物,這些都說明PCs對(duì)銅并沒有顯著的解毒作用。
2.2 銅在細(xì)胞液泡的分隔機(jī)理
銅能夠通過位于液泡膜上的金屬載體從胞質(zhì)轉(zhuǎn)運(yùn)至液泡中儲(chǔ)存[15]。重金屬轉(zhuǎn)運(yùn)蛋白及金屬螯合蛋白通過與金屬離子結(jié)合形成一種臨時(shí)儲(chǔ)存形式封存于液泡中,其中,液泡膜轉(zhuǎn)運(yùn)蛋白ABCCs在其向液泡的運(yùn)輸起到了關(guān)鍵作用。液泡含有多種蛋白質(zhì)、有機(jī)酸、有機(jī)堿以及其他能夠結(jié)合重金屬的物質(zhì),這些物質(zhì)都能與重金屬離子結(jié)合從而降低其生物毒性[11]。研究發(fā)現(xiàn),生長于銅污染環(huán)境中的駱駝刺(Alhagi camelorumFisch)并未產(chǎn)生明顯的銅毒害癥狀,這是因?yàn)檫^量的銅大多被儲(chǔ)存于植物葉片中的液泡(48%)和葉綠體(7%)中[67]。經(jīng)過銅處理后的大蒜,銅主要聚集在根尖細(xì)胞的液泡中[68]。另外,通過投射電鏡觀察發(fā)現(xiàn),某些被子植物液泡中積累了大量的銅離子[69],泡泡草根細(xì)胞中的液泡膜上可見黑色沉積物[70]。以上研究結(jié)果均表明,液泡是除細(xì)胞壁以外的另一主要的重金屬隔離位點(diǎn),通過將Cu隔離在液泡中,減少銅離子在植物細(xì)胞質(zhì)中的含量,從而抑制其對(duì)植物的毒害作用。Wu等[71]通過研究發(fā)現(xiàn),在匍匐翦股穎(Agrostis stolonifera)體內(nèi),銅以可溶或不可溶的復(fù)合物形態(tài)存在于細(xì)胞質(zhì)或液泡中,蓄積在液泡中的銅離子是沒有毒性的,這一耐性機(jī)制對(duì)一些地上部分含銅量高的植物,特別是低等植物和超積累植物具有尤為重要的作用。另外,除液泡以外,隔離作用也可以發(fā)生在質(zhì)外體或特殊細(xì)胞中,如表皮細(xì)胞及毛狀體中[4]。由于分離高純度的液泡難度較大,對(duì)于銅是如何進(jìn)入植物液泡以及銅是以何種形態(tài)存在于液泡中尚需要進(jìn)一步深入研究。
2.3 脅迫蛋白的合成/抗氧化酶保護(hù)系統(tǒng)
銅逆境影響能夠誘導(dǎo)脅迫響應(yīng)蛋白的表達(dá),從而使植物細(xì)胞適應(yīng)脅迫環(huán)境[17]。通過蛋白質(zhì)組分析,已經(jīng)在多種植物中發(fā)現(xiàn)了多種重金屬敏感蛋白,主要包括:抗氧化保護(hù)蛋白、與蛋白折疊相關(guān)的蛋白(如熱激蛋白、伴侶蛋白和蛋白質(zhì)二硫鍵異構(gòu)酶)、病程相關(guān)蛋白及參與脂質(zhì)代謝的蛋白、蛋白和離子轉(zhuǎn)運(yùn)蛋白,這些蛋白的表達(dá)量均在金屬脅迫下上調(diào)[72]。張黛靜等[73]通過KEGG富集分析發(fā)現(xiàn),檢測(cè)出的2 283個(gè)差異表達(dá)基因(DEGs)被注釋到31個(gè)代謝途徑中,涉及植物生長發(fā)育的各個(gè)方面。
許多研究表明,在Cu脅迫下植物體內(nèi)的多種蛋白出現(xiàn)上調(diào)或下調(diào)現(xiàn)象[61,63,74-75]。Smith等[76]研究發(fā)現(xiàn),銅脅迫下擬南芥種子中AtGSTF2,AtGSTF6,AtGSTF7和AtGSTU19的RNA表達(dá)提高,這與張黛靜等[73]研究發(fā)現(xiàn)的銅脅迫下小麥谷胱甘肽硫轉(zhuǎn)移酶(GSTs)等抗性蛋白質(zhì)表達(dá)升高一致,這說明GSTs在植物低于重金屬銅毒害中發(fā)揮了重要的作用。Li等[77]利用蛋白質(zhì)組學(xué)方法研究小麥中銅脅迫響應(yīng)蛋白的種類,在其根系和葉片中分別發(fā)現(xiàn)了49種和44種差異表達(dá)蛋白。其中,信號(hào)傳導(dǎo)、脅迫防御、能量代謝等方面的功能蛋白豐度顯著上調(diào),而在糖代謝、蛋白質(zhì)代謝以及光合作用方面的功能蛋白豐度顯著降低。Chen等[75]通過對(duì)比研究抗銅水稻品種B1139和銅敏感水稻品種B1195根系對(duì)銅結(jié)合蛋白的差異性表達(dá),兩種水稻根系中的Cu-IMAC結(jié)合蛋白含量在銅脅迫環(huán)境下高于對(duì)照,而B1139根系中的Cu-IMAC結(jié)合蛋白含量高于B1195。這說明Cu-IMAC結(jié)合蛋白對(duì)植物對(duì)銅的耐性和解毒能力的增強(qiáng)發(fā)揮了積極的作用。同時(shí),通過MALDITOF/TOF MS發(fā)現(xiàn)了34種差異性表達(dá)的蛋白點(diǎn),經(jīng)數(shù)據(jù)庫搜索后確定了27種銅結(jié)合蛋白。這些銅響應(yīng)蛋白分別參與到植物的抗氧化防御和解毒,發(fā)病機(jī)理,基因轉(zhuǎn)錄調(diào)控,氨基酸合成,蛋白質(zhì)合成、修飾、運(yùn)輸以及降解,細(xì)胞壁合成和分子信號(hào)轉(zhuǎn)換等過程。
銅污染是一個(gè)嚴(yán)重的環(huán)境問題,過量的銅會(huì)嚴(yán)重?fù)p害植物的細(xì)胞結(jié)構(gòu)和細(xì)胞膜,抑制植物基本的運(yùn)輸和代謝功能,同時(shí)能夠經(jīng)過食物鏈的積累作用危害人類健康。目前,植物耐銅脅迫的機(jī)理大多集中于生理生化水平,且已經(jīng)取得了很大的進(jìn)展。研究植物耐銅脅迫的生理機(jī)制,可以全面了解銅在植物中的亞細(xì)胞分布、銅在植物根系到地上部分運(yùn)輸過程的轉(zhuǎn)運(yùn)機(jī)制以及植物在銅脅迫下的抗性反應(yīng)等,促進(jìn)富集重金屬轉(zhuǎn)基因植物的開發(fā)。但在分子水平上,植物對(duì)銅耐性和積累性的機(jī)理仍不明確,如植物細(xì)胞如何感應(yīng)銅信號(hào)的刺激,植物耐銅的相關(guān)基因如何進(jìn)行表達(dá)和調(diào)控,植物耐受銅的基因的鑒定、分離、克隆及其功能研究等還未進(jìn)行較為深入的研究。隨著分子生物學(xué)、蛋白組學(xué)以及分子遺傳學(xué)等新興技術(shù)的應(yīng)用,在今后的研究中應(yīng)集中從分子和蛋白水平上研究耐性植物和超積累植物細(xì)胞參與對(duì)重金屬銅的解毒和耐性機(jī)理,進(jìn)而利用分子遺傳學(xué)手段創(chuàng)造培育出低積累、高耐性的農(nóng)作物新品種以及生長快、高生物量、高積累的超富集植物新品種。
致謝:感謝中國環(huán)境科學(xué)研究院張風(fēng)春老師在文章修改中給予的幫助。
(References):
[1] Pilon M,Abdel-Ghany S E,Cohu C M,et al.Copper cofactor delivery in plant cells[J].Current Opinion in Plant Biology,2006,9(3):256-263
[2] Gill T,Dogra V,Kumar S,et al.Protein dynamics during seed germination under copper stress inArabidopsisoverexpressing potentilla superoxide dismutase[J].Journal of Plant Research,2012,125(1):165-172
[3] 王小玲,高柱,黃益宗,等.銅脅迫對(duì)3種草本植物生長和重金屬積累的影響[J].生態(tài)毒理學(xué)報(bào),2014,9(4): 699-706
Wang X L,Gao Z,Huang Y Z,et al.Effects of copper stress on three kinds of herbaceous plants growth and heavy metal accumultaion[J].Asian Journal of Ecotoxicology,2014,9(4):699-706(in Chinese)
[4] Sahi S V,Israr M,Srivastava A K,et al.Accumulation, speciation and cellular localization of copper inSesbania drummondii[J].Chemosphere,2007,67(11):2257-2266
[5] Garcia L,Welchen E,Gonzalez D H.Mitochondria and copper homeostasis in plants[J].Mitochondrion,2014, 19:269-274
[6] 申鴻,劉于,李曉林,等.叢枝菌根真菌(Glomus caledonium)對(duì)銅污染土壤生物修復(fù)機(jī)理初探[J].植物營養(yǎng)與肥料學(xué)報(bào),2005,11(2):199-204
Shen H,Liu Y,Li X L,et al.Influence of arbuscular mycorrhizal fungus(Glomus caledonium)on maize seedlings grown in copper contaminated soil[J].Plant Nutrition and Fertilizer Science,2005,11(2):199-204(in Chinese)
[7] 劉小紅.九華銅礦重金屬污染調(diào)查及耐銅植物的篩選、耐性機(jī)理研究[D].合肥:安徽農(nóng)業(yè)大學(xué),2005:35-36
Liu X H.Heavy metal contamination and copper tolerant plants in the vicinity of Jiuhua copper mine[D].Hefei: Anhui Agricultural University,2005:35-36(in Chinese)
[8] Konno H,Nakashima S,Katoh K.Metal-tolerant moss Scopelophila cataractaeaccumulates copper in the cell wall pectin of the protonema[J].Journal of Plant Physiology,2010,167(5):358-364
[9] Krzes?owska M.The cell wall in plant cell response to trace metals:Polysaccharide remodeling and its role in defense strategy[J].Acta Physiologiae Plantarum,2011,33: 35-51
[10] Konno H,Nakato T,Nakashima S,et al.Lygodium japonicumfern accumulates copper in the cell wall pectin [J].Journal of Experimental Botany,2005,56(417):1923-1931
[11] Liu T,Li F,Zhang X,et al.Tracing intracellular localization and chemical forms of copper inElsholtzia splendens with cluster analysis[J].Biological Trace Element Research,2014,160(3):418-426
[12] 劉婷婷,彭程,王夢(mèng),等.海州香薷根細(xì)胞壁對(duì)銅的吸附固定機(jī)制研究[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(2):514-523
Liu T T,Peng C,Wang M,et al.Mechanism of fixation and adsorption of copper on root cell wall ofElsholtzia splendens[J].Acta Scientiae Circumstantiae,2014,34(2): 514-523(in Chinese)
[13] Pelloux J,Rusterucci C,Mellerowicz E J.New insights into pectin methylesterase structure and function[J]. Trends in Plant Science,2007,12(6):267-277
[14] Davis T A,Volesky B,Mucci A.A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Research,2003,37(18):4311-4330
[15] 武貝.海州香薷Cu耐性與積累機(jī)制研究[D].杭州:浙江大學(xué),2009:45-49
Wu B.Study of mechanisms for Cu tolerance and accu-mulation inElsholtzia splendens[D].Hangzhou:Zhejiang University,2009:45-49(in Chinese)
[16] Merdy P,Guillon E,Dumonceau J,et al.Spectroscopic study of copper(II)--wheat straw cell wall residue surface complexes[J].Environmental Science&Technology, 2002,36(8):1728-1733
[17] Liu T,Shen C,Wang Y,et al.New insights into regulation of proteome and polysaccharide in cell wall ofElsholtzia splendensin response to copper stress[J].PLoS One, 2014,9(10):e109573
[18] Pilon M,Cohu C M,Ravet K,et al.Essential transition metal homeostasis in plants[J].Current Opinion in Plant Biology,2009,12(3):347-357
[19] Küpper H,Zhao F J,Mcgrath S P.Cellular compartmentation of zinc in leaves of the hyperaccumulatorThlaspi caerulescens[J].Plant Physiology,1999,119:305-311
[20] Sahi S V,Israr M,Srivastava A K,et al.Accumulation, speciation and cellular localization of copper inSesbania drummondii[J].Chemosphere,2007,67(11):2257-2266
[21] Puig S,Lee J,Lau M,et al.Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake[J]. Journal of Biological Chemistry,2002,277(29):26021-26030
[22] Sancenon V,Puig S,Mira H,et al.Identification of a copper transporter family inArabidopsis thaliana[J].Plant Molecular Biology,2003,51(4):577-587
[23] Jung H I,Gayomba S R,Rutzke M A,et al.COPT6 is a plasma membrane transporter that functions in copper homeostasis inArabidopsisand is a novel target of SQUAMOSA promoter-binding protein-like 7[J].Journal of Biological Chemistry,2012,287(40):33252-33267
[24] Antoni G,Nuria A,Ana P,et al.TheArabidopsisCOPT6 transport protein functions in copper distribution under copper-deficient conditions[J].Plant and Cell Physiology, 2013,54(8):1378-1390
[25] Penarrubia L,Nuria A,Moreno J,et al.Regulation of copper transport inArabidopsis thaliana:A biochemical oscillator?[J].Journal of Biological Inorganic Chemistry, 2010,15(1):29-36
[26] Nuria A,Ana P,Puig S,et al.Deregulated copper transport affectsArabidopsisdevelopment especially in the absence of environmental cycles[J].Plant Physiology,2010, 153(1):170-184
[27] Kampfenkel K,Kushnir S,Babiychuk E,et al.Molecular characterization of a putativeArabidopsis thalianacopper transporter and its yeast homologue[J].Journal of Biological Chemistry,1995,270(47):28479-28486
[28] Sancenon V,Puig S,Isabel M,et al.TheArabidopsiscopper transporter COPT1 functions in root elongation and pollen development[J].Journal of Biological Chemistry, 2004,279(15):15348-15355
[29] 張紅曉,張芬琴.銅在植物細(xì)胞中的運(yùn)輸和分布[J].洛陽理工學(xué)院學(xué)報(bào):自然科學(xué)版,2011,27(3):1-5
Zhang H X,Zhang F Q.Copper delivery and distribution in plant cells[J].Journal of Luoyang Institute of Science and Technology:Natural Science Edition,2011,27(3):1-5 (in Chinese)
[30] Eisses J F,Kaplan J H.The mechanism of copper uptake mediated by human CTR1:A mutational analysis[J]. Journal of Biological Chemistry,2005,280(44):37159-37168
[31] Baxter I,Tchieu J,Sussman M R,et al.Genomic comparison of P-type ATPase ion pumps inArabidopsisand rice [J].American Society of Plant Biologists,2003,132(2): 618-628
[32] 金楓,王翠,林海建,等.植物重金屬轉(zhuǎn)運(yùn)蛋白研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(7):1875-1882
Jin F,Wang C,Lin H J,et al.Heavy metal-transport proteins in plants:A review[J].Chinese Journal of Applied Ecology,2010,21(7):1875-1882(in Chinese)
[33] Nuria A,Vicente S,Susana R,et al.TheArabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots[J].Plant Journal,2006,45(2):225-236
[34] Williams L E,Mills R F.P(1B)-ATPases--An ancient family of transition metal pumps with diverse functions in plants[J].Trends in Plant Science,2005,10(10):491-502
[35] Puig S,Mira H,Dorcey E,et al.Higher plants possess two different types of ATX1-like copper chaperones[J]. Biochemical and Biophysical Research Communication, 2007,354(2):385-390
[36] Boutigny S,Sautron E,Finazzi G,et al.HMA1 and PAA1,two chloroplast-envelope PIB-ATPases,play distinct roles in chloroplast copper homeostasis[J].Journal of Experimental Botany,2014,65(6):1529-1540
[37] Daphne S,Gravot A,Auroy P,et al.HMA1,a new Cu-ATPase of the chloroplast envelope,is essential for growth under adverse light conditions[J].Journal of Biological Chemistry,2006,281(5):2882-2892
[38] Salah E A,Patricia M,Niyogi K K,et al.Two P-type ATPases are required for copper delivery inArabidopsis thalianachloroplasts[J].Plant Cell,2005,17(4):1233-1251
[39] Rodriguez F I,Esch J J,Hall A E,et al.A copper cofactor for the ethylene receptor ETR1 fromArabidopsis[J].Science,1999,283(5404):996-998
[40] Chen Y F,Randlett M D,Findell J L,et al.Localization of the ethylene receptor ETR1 to the endoplasmic reticulum ofArabidopsis[J].Journal of Biological Chemistry, 2002,277(22):19861-19866
[41] 張玉秀,張媛雅,孫濤,等.植物重金屬轉(zhuǎn)運(yùn)蛋白P1BATPase結(jié)構(gòu)和功能研究進(jìn)展[J].生物工程學(xué)報(bào),2010, 25(6):715-725
Zhang Y X,Zhang Y Y,Sun T,et al.Structure and function of heavy metal transporter P1B-ATPase in plant:A review[J].Chinese Journal of Biotechnology,2010,25(6): 715-725(in Chinese)
[42] Deng F,Yamaji N,Xia J,et al.A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice[J].Plant Physiology,2013,163: 1353-1362
[43] Pufahl R A,Singer C P,Peariso K L,et al.Metal ion chaperone function of the soluble Cu(I)receptor Atx1[J]. Science,1997,278(5339):853-856
[44] Himelblau E,Mira H,Lin S J,et al.Identification of a functional homolog of the yeast copper homeostasis gene ATX1 fromArabidopsis[J].Plant Physiology,1998,117 (4):1227-1234
[45] 伍盈盈.金屬伴侶蛋白研究進(jìn)展[J].科技信息,2009, 33:428-429
Wu Y Y.The recent advances in study of metallochaperones[J].Science&Technology Information,2009,33: 428-429(in Chinese)
[46] Mira H,Fernando M,Penarrubia L.Evidence for the plant-specific intercellular transport of theArabidopsis copper chaperone CCH[J].Plant Journal,2001,25(5): 521-528
[47] Balandin T,Castresana C.AtCOX17,anArabidopsis homolog of the yeast copper chaperone COX17[J].Plant Physiology,2002,129(4):1852-1857
[48] Chu C C,Lee W C,Guo W Y,et al.A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity inArabidopsis[J]. Plant Physiology,2005,139(1):425-436
[49] Lin S J,Pufahl R A,Dancis A,et al.A role for theSaccharomyces cerevisiaeATX1 gene in copper trafficking and iron transport[J].Journal of Biological Chemistry, 1997,272(14):9215-9220
[50] Harrison M D,Jones C E,Solioz M,et al.Intracellular copper routing:The role of copper chaperones[J].Trends in Biochemical Sciences,2000,25(1):29-32
[51] Woeste K E,Kieber J J.A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype[J].Plant Cell,2000,12(3):443-455
[52] Salah E A,Burkhead J L,Gogolin K A,et al.AtCCS is a functional homolog of the yeast copper chaperone Ccs1/ Lys7[J].FEBS Letters,2005,579(11):2307-2312
[53] Yruela I.Copper in plants:Acquisition,transport and interactions[J].Functional Plant Biology,2009,36(5):1-64
[54] 傅曉萍,豆長明,胡少平,等.有機(jī)酸在植物對(duì)重金屬耐性和解毒機(jī)制中的作用[J].植物生態(tài)學(xué)報(bào),2010,34 (11):1354-1358
Fu X P,Dou C M,Hu S P,et al.A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants[J].Chinese Journal of Plant Ecology,2010,34(11):1354-1358(in Chinese)
[55] Murphy A S,Eisinger W R,Shaff J E,et al.Early copper-induced leakage of K(+)fromArabidopsisseedlings is mediated by ion channels and coupled to citrate efflux [J].Plant Physiology,1999,121(4):1375-1382
[56] Bernal M,Sánchez-Testillano P,Risue?o M,et al.Excess copper induces structural changes in cultured photosynthetic soybean cells[J].Functional Plant Biology,2006, 33(11):1001-1012
[57] White M C,Baker F D,Chaney R L,et al.Metal complexation in xylem fluid:II.Theoretical equilibrium model and computational computer program[J].Plant Physiology,1981,67(2):301-310
[58] 劉紅云.水稻(Oryza sativaL.)耐銅品種的篩選及其耐性機(jī)理研究[D].南京:南京農(nóng)業(yè)大學(xué),2007:86-89
Liu H Y.Identification of rice varieties with high tolerance or sensitivity to copper and characterization of the mechanisms of tolerance[D].Nanjing:Nanjing Agricultural U-niversity,2007:86-89(in Chinese)
[59] 張玉秀,柴團(tuán)耀,Burkard G.植物耐重金屬機(jī)理研究進(jìn)展[J].植物學(xué)報(bào),1999,41(5):453-457
Zhang Y X,Chai T Y,Burkard G.Research advances on the mechanisms of heavy metal tolerance in plants[J]. Acta Botanica Sinica,1999,41(5):453-457(in Chinese)
[60] Guo W J,Meetam M,Goldsbrough P B.Examining the specific contributions of individualArabidopsismetallothioneins to copper distribution and metal tolerance[J]. Plant Physiology,2008,146(4):1697-1706
[61] Zhang H,Lian C,Shen Z.Proteomic identification of small,copper-responsive proteins in germinating embryos ofOryza sativa[J].Annals of Botany,2009,103(6):923-930
[62] Thomas J C,Davies E C,Malick F K,et al.Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils[J].Biotechnology Progress,2003,19(2):273-280
[63] Liu J,Shi X,Qian M,et al.Copper-induced hydrogen peroxide upregulation of a metallothionein gene,OsMT2c, fromOryza sativaL.confers copper tolerance inArabidopsis thaliana[J].Journal of Hazardous Materials,2015, 294:99-108
[64] Rauser W E.Structure and function of metal chelators produced by plants:The case for organic acids,amino acids,phytin,and metallothioneins[J].Cell Biochemistry and Biophysics,1999,31(1):19-48
[65] Cobbett C,Goldsbrough P.Phytochelatins and metallothioneins:Roles in heavy metal detoxification and homeostasis[J].Annual Review of Plant Biology,2002,53:159-182
[66] Lee S,Kang B S.Phytochelatin is not a primary factor in determining copper tolerance[J].Journal of Plant Biology, 2005,48(1):32-38
[67] Boojar M M A,Tavakoli Z.Role of antioxidant enzyme response and phytochelatins in tolerance strategies ofAlhagi camelorum Fischgrowing on copper mine[J].Acta Botanica Croatica,2010,69(1):107-121
[68] Liu D,Kottke I.Subcellular localization of copper in the root cells ofAllium sativumby electron energy loss spectroscopy(EELS)[J].Bioresource Technology,2004,94 (2):153-158
[69] Elbaz B,Noa S,Ora D,et al.High expression in leaves of the zinc hyperaccumulatorArabidopsis halleriof AhMHX,a homolog of anArabidopsis thalianavacuolar metal/ proton exchanger[J].Plant Cell and Environment,2006, 29(6):1179-1190
[70] Burleigh S H,Kristensen B K,Bechmann I E.A plasma membrane zinc transporter fromMedicago truncatulais up-regulated in roots by Zn fertilization,yet down-regulated by arbuscular mycorrhizal colonization[J].Plant Molecular Biology,2003,52(5):1077-1088
[71] Wu L,Thurman D A,Bradshaw A D.The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones ofAgrostis stolonifera[J].New Phytologist,1975,75:225-229
[72] 譚九洲,黃迎波.植物重金屬耐受分子機(jī)理的研究進(jìn)展[J].安徽農(nóng)業(yè)科學(xué),2014,42(35):12782-12785
Tan J Z,Huang Y B.Research progress of the molecular mechanism of heavy metal tolerance of plants[J].Journal of Anhui Agricultural Sciences,2014,42(35):12782-12785(in Chinese)
[73] 張黛靜,王多多,董文,等.銅脅迫下小麥幼根轉(zhuǎn)錄組學(xué)及蛋白質(zhì)組學(xué)研究[J].河南農(nóng)業(yè)科學(xué),2015,44(4): 31-35
Zhang D J,Wang D D,Dong W,et al.Transcriptomics and proteomics analysis in root of wheat under copper stress[J].Journal of Henan Agricultural Sciences,2015, 44(4):31-35(in Chinese)
[74] Kung C C,Huang W N,Huang Y C,et al.Proteomic survey of copper-binding proteins inArabidopsisroots by immobilized metal affinity chromatography and mass spectrometry[J].Proteomics,2006,6(9):2746-2758
[75] Chen C,Song Y,Zhuang K,et al.Proteomic analysis of copper-binding proteins in excess copper-stressed roots of two rice(Oryza sativaL.)varieties with different Cu tolerances[J].PLoS One,2015,10(4):e0125367
[76] Smith A P,Deridder B P,Guo W J,et al.Proteomic analysisofArabidopsisglutathioneS-transferasesfrom benoxacor-and copper-treated seedlings[J].Journal of Biological Chemistry,2004,279(25):26098-26104
[77] Li G,Peng X,Xuan H,et al.Proteomic analysis of leaves and roots of common wheat(Triticum aestivumL.)under copper-stress conditions[J].Journal of Proteome Research,2013,12(11):4846-4861◆
Research Progress of the Tolerance Mechanism of Plants to Copper
Li Juan1,2,Quan Zhanjun2,*,Zhang Chunhui1,Shi Nana2,Han Yu2,Wang Qi2,Zhang Qixiang2
1.School of Chemical and Environmental Engineering,China University of Mining&Technology(Beijing),Beijing 100083,China
2.Chinese Research Academy of Environmental Sciences,Beijing 100012,China
20 July 2015 accepted 11 November 2015
Research progress of the tolerance mechanism of plants to copper was reviewed in five aspects:i)the copper accumulation of plant cell wall;ii)the absorption and control of plant membrane;iii)the chelation of metal ligands;iv)the separation of vacuole;and v)the synthesis of Cu-responsive proteins.The review provided us a better understanding of the subcellular distribution of copper in plant,the transport mechanism of copper from root to shoot of plants and the resistance of pants under copper stress.Based on the progress,the prospects of future studies were suggested.
copper;plant;plasma membrane;chelation;tolerance stress proteins
2015-07-20 錄用日期:2015-11-11
1673-5897(2016)3-053-08
X171.5
A
10.7524/AJE.1673-5897.20150720002
簡介:全占軍(1979—),男,博士,副研究員,主要研究方向?yàn)榛謴?fù)生態(tài)學(xué)。
中央級(jí)公益性科研院所基本科研業(yè)務(wù)專項(xiàng)(2013-YSKY-14);云南省環(huán)境保護(hù)廳生物多樣性保護(hù)專項(xiàng)“滇池土著水生植物保育區(qū)構(gòu)建示范研究”
李娟(1990-),女,碩士生,研究方向?yàn)橹亟饘傥廴就寥郎鷳B(tài)修復(fù),E-mail:jjlife307@126.com
*通訊作者(Corresponding author),E-mail:quanzj@craes.org.cn