樂 琦
(江西財(cái)經(jīng)大學(xué) 信息管理學(xué)院, 江西 南昌 330013)
?
得分信息下考慮不確定心理行為的雙邊匹配
樂琦
(江西財(cái)經(jīng)大學(xué) 信息管理學(xué)院, 江西 南昌 330013)
摘要:從不確定心理行為的角度研究得分信息下的雙邊匹配問題.首先將期望得分視作參照點(diǎn),計(jì)算了得分的相對收益,進(jìn)而構(gòu)建了收益矩陣;再根據(jù)TODIM理論,將收益矩陣轉(zhuǎn)換為價(jià)值矩陣;進(jìn)一步,構(gòu)建了匹配模型;通過求解模型得到匹配方案;供需匹配實(shí)例說明了所提方法的有效性.
關(guān)鍵詞:雙邊匹配;得分;不確定心理行為;TODIM
YUE Qi
(SchoolofInformationManagement,JiangxiUniversityofFinanceandEconomics,Nanchang330013,China)
雙邊匹配問題涉及如何匹配雙方離散的主體,其中每個(gè)主體都對另一方主體給出自身偏好.在現(xiàn)實(shí)生活中,穩(wěn)定婚姻問題[1]、報(bào)業(yè)匹配問題[2]、大學(xué)招生問題[3]、IT服務(wù)外包匹配問題[4]等均為雙邊匹配問題,應(yīng)用前景十分廣闊.更合理的匹配方案有利于提升匹配雙方的社會(huì)活動(dòng)效率及滿意度.因此,以雙邊匹配為主題的研究具有重要的理論和現(xiàn)實(shí)意義.
近年來,基于序數(shù)和得分信息的雙邊匹配問題,受到了學(xué)者們的廣泛關(guān)注[5-11].例如,為了解決基于不完全得分信息的雙邊匹配問題,文獻(xiàn)[5]提出了以滿意度最大化為目標(biāo)的匹配模型.文獻(xiàn)[6]針對基于得分信息的雙邊匹配問題,提出了一種決策方法.文獻(xiàn)[7]針對不確定得分環(huán)境下的雙邊匹配問題,提出了相應(yīng)的匹配方法.文獻(xiàn)[8]針對嚴(yán)格得分信息下的匹配問題,著重分析了如何得到穩(wěn)定匹配.文獻(xiàn)[9-10]從主體心理行為的視角研究了基于序數(shù)信息的雙邊匹配問題.此外,文獻(xiàn)[12-15]從圖論角度出發(fā),研究了相關(guān)匹配問題中的幾何結(jié)構(gòu)和表示形式.
已有研究促進(jìn)了雙邊匹配問題的相關(guān)理論、方法及實(shí)際應(yīng)用的發(fā)展.但針對主體給出的偏好為得分信息的相關(guān)研究較少.另一方面,在大部分相關(guān)研究中,主體多被看作是完全理性的;而現(xiàn)實(shí)匹配過程剛好相反[16].基于此,本文在文獻(xiàn)[6,9-10]的基礎(chǔ)上,進(jìn)一步考慮有限理性表現(xiàn)為雙方主體的不確定心理行為,本文著重研究得分信息下考慮不確定心理行為的雙邊匹配問題.
1符號描述
針對得分信息下考慮不確定心理行為的雙邊匹配問題,在文獻(xiàn)[9-10,17]的基礎(chǔ)上,給出有關(guān)變量的符號說明如下:
M={1,2,…,m}:下標(biāo)1,2,…,m的集合;
N={1,2,…,n}:下標(biāo)1,2,…,n的集合;
P={P1,P2,…,Pm}:P方主體集合,m≥2;
Pi:集合P的第i個(gè)元素,i∈M;
Q={Q1,Q2,…,Qn}:Q方主體集合,n≥m;
Qj:集合Q的第j個(gè)元素,j∈N;
SP:集合P到Q的得分集合,SP={s0,s1,…,snp};
SQ:集合Q到P的得分集合,SQ={s0,s1,…,snq};
ΓTwo:匹配主體對集合(雙方主體對形式);
ΓOne:單身主體對集合(Q方主體對形式);
Γ:雙邊匹配,Γ=ΓTwo∪ΓOne.
2雙邊匹配
2.1建立價(jià)值矩陣
考慮到期望得分能夠反映雙方主體預(yù)期的心理感受,且當(dāng)作參照點(diǎn)能夠較好地繼承前景理論的多種性質(zhì)[9-10],因此這里選擇期望得分為雙方主體的參照點(diǎn).
(1)
(2)
(3)
(4)
(5)
(6)
2.2建立匹配模型
(7a)
(7b)
s.t.,
(7c)
(7d)
yij∈{0,1},i∈M,j∈N.
(7e)
2.3求解匹配模型
采用線性加權(quán)法求解.設(shè)wP(wQ)表示ZP(ZQ)的權(quán)重,滿足wP,wQ≥0,wP+wQ=1,則可將匹配模型(7)轉(zhuǎn)換為匹配模型(8)
, (8a)
s.t.,
(8b)
(8c)
yij∈{0,1},i∈M,j∈N,
(8d)
注4權(quán)重wP和wQ可由中介依據(jù)雙邊主體的地位來確定[17].
2.4實(shí)施步驟
基于上述分析,得分信息下考慮不確定心理行為的雙邊匹配的實(shí)施步驟如下:
步驟4運(yùn)用線性加權(quán)法,將匹配模型(7)轉(zhuǎn)換為匹配模型(8);
步驟5求解匹配模型(8),得到雙邊匹配Γ.
3算例分析
以供需匹配問題為例,說明所提出方法的實(shí)用性.
表1 完全得分矩陣SP→Q和期望得分
表2 完全得分矩陣SQ→P和期望得分
為說明本文所提方法的實(shí)用性,簡單給出如下過程分析.
表3 系數(shù)矩陣V
為進(jìn)一步說明本文所提方法的意義,進(jìn)行如下過程分析.
表4 系數(shù)矩陣
表5 雙邊匹配Γ*對比分析
4結(jié)論
從不確定心理行為的視角,研究了得分信息下的雙邊匹配問題.將期望得分當(dāng)作參照點(diǎn),計(jì)算了得分的相對收益;根據(jù)TODIM理論計(jì)算了感知價(jià)值,進(jìn)一步,構(gòu)建了匹配模型.得到:不確定心理行為影響雙邊匹配的確定;鑒于在實(shí)際匹配中有限理性的主體占據(jù)絕大多數(shù),所提方法能更有效地反映雙方主體的匹配行為.
參考文獻(xiàn)(References):
[2]CHANDRA A, COLLARD-WEXLER A. Mergers in two-sided markets: An application to the Canadian newspaper industry[J]. Journal of Economics & Management Strategy,2009,18(4):1045-1070.
[3]BRAUN S, DWENGER N, KüBER D, et al. Implementing quotas in university admissions: An experimental analysis[J]. Games and Economic Behavior,2014,85(1):232-251.
[4]陳希,樊治平.考慮滿意度交互的IT服務(wù)外包匹配決策方法[J].工業(yè)工程與管理,2012,17(2):90-96.
CHEN Xi, FAN Zhiping. A matching decision method in IT service outsourcing considering interactive satisfaction degree information[J]. Industrial Engineering and Management,2012,17(2):90-96.
[5]樂琦.基于不完全得分信息的雙邊匹配決策方法[J].系統(tǒng)工程,2013,31(9):79-83.
YUE Qi. Decision method for two-sided matching based on incomplete score information[J]. Systems Engineering,2013,31(9):79-83.
[6]樂琦.基于得分信息的雙邊匹配決策方法[J].模糊系統(tǒng)與數(shù)學(xué),2014,28(1):106-112.
YUE Qi. Decision method for two-sided matching based on score information [J]. Fuzzy Systems and Mathematics, 2014,28(1):106-112.
[7]YUE QI. Two-sided matching decision under uncertain score environment[J]. International Journal of Multimedia and Ubiquitous Engineering,2014,9(12):193-202.
[8]YUE QI. Decision method for stable matching based on strict score information[J]. Advances in Information Sciences and Service Science,2013,5(10):1018-1025.
[9]樂琦,張磊,王中興.不完全序值信息下考慮主體心理行為的匹配決策[J].模糊系統(tǒng)與數(shù)學(xué),2014,28(4):90-99.
YUE Qi, ZHANG Lei, WANG Zhongxing. Matching decision considering agents’ psychological behavior with incomplete ordinal number information[J]. Fuzzy Systems and Mathematics,2014,28(4):90-99.
[10]樂琦.考慮主體心理行為的雙邊匹配決策方法[J].系統(tǒng)工程與電子技術(shù),2013,35(1):120-125.
YUE Qi. Decision method for two-sided matching considering agents’ psychological behavior [J]. Systems Engineering and Electronic,2013,35(1):120-125.
[11]樊治平,李銘洋,樂琦.考慮穩(wěn)定匹配條件的雙邊滿意匹配決策方法[J].中國管理科學(xué),2014,22(4):112-118.
FAN Zhiping, LI Mingyang, YUE Qi. Decision analysis method for two-sided satisfied matching considering stable matching condition[J]. Chinese Journal of Management Science,2014,22(4):112-118.
[12]LI Q L, SHIU W C, YAO H Y. Matching preclusion for cube-connected cycles[J]. Discrete Applied Mathematics,2015,190/191(20):118-126.
[13]ALOUPIS G, BARBA L, LANGEMAN S, et al. Bichromatic compatible matchings[J]. Computational Geometry, 2015, 48(8):622-633.
[14]BABU J, CHANDRAN L S, VAIDYANATHAN K. Rainbow matchings in strongly edge-colored graphs[J]. Discrete Mathematics,2015,338(7):1191-1196.
[15]LAMT. The uncrossing partial order on matchings is Eulerian[J]. Journal of Combinatorial Theory: Ser A,2015,135(1):105-111.
[16]BARTCZAK A, CHILTON S, MEYERHOFF J. Wildfires in poland: The impact of risk preferences and loss aversion on environmental choices[J]. Ecological Economics,2015,116(4):300-309.
[17]樊治平,樂琦.基于完全偏好序信息的嚴(yán)格雙邊匹配方法[J].管理科學(xué)學(xué)報(bào),2014,17(1):21-34.
FAN Zhiping, YUE Qi. Strict two-sided matching method based on complete preference ordinal information[J]. Journal of Management Sciences in China,2014,17(1):21-34.
Two-sided matching considering uncertain psychological behavior with score information. Journal of Zhejiang University(Science Edition), 2016,43(2):242-246
Abstract:This paper investigates the two-sided matching problem with scores from view of uncertain psychological behavior. Firstly, the expectation scores are chosen as the reference points, and the relative gains corresponding to scores are calculated. So, the gain matrixes are built. According to the theory of TODIM, the gain matrixes are converted into the value matrixes. Furthermore, a matching model is developed. The matching alternative is obtained by solving the model. The example for the demander-supplier matching illustrates the good validity of the proposed method.
Key Words:two-sided matching; score; uncertain psychological behavior; TODIM
中圖分類號:C 934
文獻(xiàn)標(biāo)志碼:A
文章編號:1008-9497(2016)02-242-05
DOI:10.3785/j.issn.1008-9497.2016.02.021
作者簡介:樂琦(1983-),ORCID:http://orcid.org/0000-0001-9821-5859,男,副教授,博士,主要從事決策理論與方法研究,E-mail:yueqichina@126.com.
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(71261007,71261006,71462015,71361021,71363022);江西省自然科學(xué)基金資助項(xiàng)目(20151BAB201026);江西財(cái)經(jīng)大學(xué)2014年度校級課題(K06492015).
收稿日期:2015-06-09.