劉暢 李來庚*
(中國科學(xué)院上海生命科學(xué)研究院植物生理生態(tài)研究所,上海200032;*通訊聯(lián)系人,E-mail:lgli@sibs.ac.cn)
?
水稻抗倒伏性狀的分子機(jī)理研究進(jìn)展
劉暢 李來庚*
(中國科學(xué)院上海生命科學(xué)研究院植物生理生態(tài)研究所,上海200032;*通訊聯(lián)系人,E-mail:lgli@sibs.ac.cn)
劉暢,李來庚.水稻抗倒伏性狀的分子機(jī)理研究進(jìn)展.中國水稻科學(xué),2016,30(2):216-222.
摘 要:倒伏是水稻高產(chǎn)穩(wěn)產(chǎn)的一個(gè)重要限制因素。水稻倒伏主要受植株形態(tài)、莖稈結(jié)構(gòu)與細(xì)胞壁成分的影響。近年來,隨著水稻基因組學(xué)和分子生物學(xué)的發(fā)展,水稻抗倒伏性狀的研究已逐漸從植株表型分析發(fā)展到分子水平調(diào)控機(jī)理解析。本文綜述了水稻株型、莖稈特性與細(xì)胞壁化學(xué)組成對水稻抗倒伏性狀影響的分子機(jī)理。這些研究為水稻抗倒伏分子育種奠定了重要的理論基礎(chǔ)。
關(guān)鍵詞:水稻;倒伏;細(xì)胞壁;莖稈
倒伏是影響水稻高產(chǎn)的主要限制因素之一。水稻倒伏多發(fā)生在谷粒灌漿后期,此時(shí)貯藏在水稻莖鞘中的光合產(chǎn)物與營養(yǎng)物質(zhì)向籽粒中轉(zhuǎn)移,造成莖稈機(jī)械強(qiáng)度下降,最終導(dǎo)致水稻莖稈從直立狀態(tài)到倒伏狀態(tài)。水稻倒伏可分為彎曲型倒伏(culm bending-type lodging)、挫折型倒伏(culm breaking)和扭轉(zhuǎn)型倒伏(root lodging)[1]。彎曲型倒伏指作用于莖稈的負(fù)荷尚未達(dá)到使莖稈折斷的強(qiáng)度,在穗重或風(fēng)雨的作用下水稻上部節(jié)間呈彎曲狀態(tài)。挫折型倒伏指當(dāng)作用于莖稈的負(fù)荷超過抗折強(qiáng)度時(shí),莖稈下部折斷引起的倒伏,主要受莖稈結(jié)構(gòu)及細(xì)胞壁化學(xué)組成的影響。扭轉(zhuǎn)型倒伏是指水稻根系不發(fā)達(dá)不能支撐地上部的重量從而被直接從土壤中拔出的莖稈基部倒伏現(xiàn)象,多發(fā)生在直播稻中。水稻倒伏后,植株生長狀態(tài)變差,葉片光合效率銳減,光合產(chǎn)物運(yùn)輸受阻,最終導(dǎo)致產(chǎn)量降低[2]。
20世紀(jì)60年代,以作物矮化育種為目標(biāo)的綠色革命使矮稈基因被廣泛用于水稻抗倒伏品種的選育,曾為解決水稻倒伏問題發(fā)揮了關(guān)鍵作用。傳統(tǒng)的矮稈品種由于自身生物量積累較少,進(jìn)一步提高產(chǎn)量受到較大限制。隨著超高產(chǎn)水稻品種的選育與推廣,倒伏問題再次引起育種家重視。相關(guān)研究表明,水稻株型、莖稈結(jié)構(gòu)、細(xì)胞壁化學(xué)成分是影響倒伏的主要因素[3,4]。隨著分子生物學(xué)的發(fā)展,對水稻抗倒伏研究已從表型分析逐漸深入到抗倒伏性狀QTL定位及相應(yīng)分子機(jī)理的闡明。本文對該方面研究進(jìn)展進(jìn)行綜述。
1.1 株高
株高是影響水稻倒伏的重要因素之一,與倒伏指數(shù)呈顯著正相關(guān)[5]。20世紀(jì)60年代作物育種的綠色革命即攜帶sd1半矮稈基因的品種取代傳統(tǒng)的高稈品種,從而降低了節(jié)間長度和莖稈高度,提高了水稻的耐肥抗倒性,使糧食產(chǎn)量得到大規(guī)模提升[3]。SD1(semi dwarf 1)編碼赤霉素(gibberellic acid,GA)合成途徑中的GA20氧化酶,催化GA53轉(zhuǎn)換為GA20,是調(diào)控赤霉素合成的關(guān)鍵酶。該基因的變異導(dǎo)致赤霉素合成受阻,細(xì)胞伸長受到抑制[6-8]。SD1基因具有明顯的組織表達(dá)特異性,主要在莖稈中表達(dá),含有sd1基因的矮稈品種只降低株高,產(chǎn)量不受影響[7,8]。利用SD1等位變異基因,生產(chǎn)上培育了大量的抗倒伏矮稈水稻品種[9,10]。雖然赤霉素合成受阻可以使水稻植株矮化從而提高抗倒伏性,但矮化植株無法在生物量積累上獲得突破。Okuno等[11]研究水稻GA缺失突變體及GA過量合成突變體抗倒伏性及生物產(chǎn)量的結(jié)果顯示,GA缺失突變體株型偏矮,很少發(fā)生彎曲型倒伏,但容易發(fā)生挫折型倒伏且生物產(chǎn)量減少;GA過量合成植株較易發(fā)生彎曲型倒伏,但木質(zhì)素含量增加及莖稈增粗,抗挫折型倒伏的能力得到了增強(qiáng),同時(shí)生物產(chǎn)量增加。因此,適當(dāng)增加株高對增強(qiáng)莖稈抗倒伏能力及增加水稻生物學(xué)產(chǎn)量均有利。
1.2 分蘗夾角
分蘗夾角體現(xiàn)了水稻空間占有情況,若分蘗夾角過大,植株呈匍匐狀生長,抗倒伏能力差,產(chǎn)量低;分蘗夾角適當(dāng)減小,植株莖稈直立,抗倒伏能力增強(qiáng),有利于水稻高產(chǎn)穩(wěn)產(chǎn)[12]。在長期進(jìn)化與栽培過程中,控制水稻分蘗夾角的基因受到了人工選擇。PROG1(PROSTRATE GROWTH 1)基因編碼一個(gè)含有鋅指結(jié)構(gòu)的核轉(zhuǎn)錄因子,其蛋白序列T152S的氨基酸替換是栽培稻與野生稻相比分蘗夾角減小的主要原因[13,14]。TAC1(tiller angle control 1)基因控制現(xiàn)有栽培稻分蘗角度,該基因表達(dá)量與分蘗角度正相關(guān)[15,16]。具有緊湊株型的粳稻該基因第4內(nèi)含子3′端剪切位點(diǎn)處基因序列由“agga”突變?yōu)椤癵gga”,導(dǎo)致該內(nèi)含子在mRNA加工過程中不能正常剪切,3′非翻譯區(qū)改變,mRNA穩(wěn)定性降低,分蘗夾角減?。?5,16]。Li等[17]利用水稻大分蘗夾角突變體克隆到基因LA1(LAZY1),該基因通過調(diào)節(jié)生長素的極性運(yùn)輸來調(diào)控水稻地上部的向重性,從而影響水稻分蘗角度的大小。OsTB1(teosinte branched 1)是一個(gè)作用于獨(dú)腳金內(nèi)酯(strigolactones)下游的基因,編碼TCP家族的一個(gè)轉(zhuǎn)錄因子,抑制水稻側(cè)芽的生長,負(fù)調(diào)節(jié)水稻分蘗數(shù)[18-20]。包含OsTB1等位基因SCM3(strong culm 3)的水稻品種分蘗數(shù)雖然減少,但穎花數(shù)目增多、莖稈強(qiáng)度增大[21]。因此,適當(dāng)減小分蘗夾角與分蘗數(shù)并不會造成減產(chǎn),反而會使植株抗倒伏性增強(qiáng)而增加生物學(xué)產(chǎn)量。
1.3 穗型
同時(shí)改良穗型與抗倒伏性的基因?qū)τ谒驹霎a(chǎn)具有重要價(jià)值[22]。DEP1(DENSE PANICLE 1)基因是控制我國北方粳稻直立穗型的主效基因[23,24]。該基因突變后促進(jìn)細(xì)胞分裂,減小穗長并使稻穗變密、枝梗數(shù)增加、每穗籽粒數(shù)增多,從而促進(jìn)水稻增產(chǎn)15%~20%[23,25]。而具有直立穗型的粳稻品種莖稈抗折力增大,抗倒伏性顯著增強(qiáng)[26]。LP(large panicle)/EP3(erect panicle 3)基因編碼一個(gè)F-box蛋白質(zhì),可能參與形成SCF復(fù)合體調(diào)節(jié)細(xì)胞分裂素氧化酶的蛋白水平[27,28]。該基因突變體一次枝梗數(shù)與每穗粒數(shù)增多,莖稈壁加厚,大小維管束數(shù)量增多,厚壁細(xì)胞層數(shù)增加,莖稈機(jī)械強(qiáng)度增大[28,29]。OsAPO1(aberrant panicle organization 1)基因也編碼一個(gè)F-box蛋白質(zhì),正調(diào)節(jié)水稻一次枝梗數(shù)目和維管束形成[30,31]。攜帶該基因功能獲得型等位基因SCM2(Strong Culm 2)的近等基因系莖稈強(qiáng)度增大的同時(shí)每穗粒數(shù)增多,產(chǎn)量增加[32]。因此,將這些能同時(shí)改善穗型與莖稈強(qiáng)度的基因進(jìn)行合理的聚合與應(yīng)用,無疑會是調(diào)節(jié)高產(chǎn)與抗倒伏矛盾的有效途徑。
1.4 其他株型性狀
水稻理想株型育種策略之一是適當(dāng)增加株高以提高生物學(xué)產(chǎn)量,但同時(shí)必須增強(qiáng)植株的抗倒伏能力[33,34]。研究表明,通過改變OsmiR156對OsSPL14基因的調(diào)控可以塑造出既高產(chǎn)又抗倒伏的水稻理想株型[35,36]。OsSPL14(SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14)/IPA1 (ideal plant architecture 1)/WFP(WEALTHY FARMER′S PANICLE)基因編碼一個(gè)植物特有的轉(zhuǎn)錄因子,是OsmiR156的直接作用靶標(biāo),并參與調(diào)控水稻株型與穗型的發(fā)育[37]。該基因OsmiR156靶點(diǎn)處的一個(gè)點(diǎn)突變干擾了OsmiR156對OsS-PL14的調(diào)控,使水稻分蘗數(shù)減少、每穗粒數(shù)和千粒重增加,同時(shí)莖稈變粗壯,抗倒伏能力增強(qiáng)[35,36]。編碼OsmiR156前體的基因OsmiR156h的功能獲得型突變體sdt中OsmiR156成熟體表達(dá)水平增加,使水稻分蘗數(shù)增多、植株變矮、抗倒伏性增強(qiáng)[38]。通過聚合sdt基因與sd1基因,使水稻產(chǎn)量在目前超級稻的基礎(chǔ)上提高了20%[38]。由此可見,將調(diào)控株型基因進(jìn)行合理聚合對于培育水稻高產(chǎn)抗倒伏新品種具有重要意義。
2.1 莖稈物理特性
水稻莖稈支撐著水稻植株的重量,因此莖稈形態(tài)及強(qiáng)度決定了植株的抗倒伏性[3,4]。Kashiwagi 和Ishimaru[39]通過對Nipponbare與Kasalath雜交組合后代莖稈相關(guān)表型分析,找到5個(gè)與抗壓力相關(guān)的QTL和6個(gè)與莖稈直徑相關(guān)的QTL,并發(fā)現(xiàn)多個(gè)莖稈直徑相關(guān)QTL的組合可能會提高水稻莖稈強(qiáng)度及抗倒伏能力[40]。Hirano等[41]對水稻莖稈抗折突變體smos1(small organ size 1)進(jìn)行研究,發(fā)現(xiàn)稈壁厚度對水稻抗倒伏也起到重要作用。SMOS1基因編碼一個(gè)AP2-type轉(zhuǎn)錄因子,通過生長素依賴形式調(diào)節(jié)細(xì)胞伸展。smos1基因突變導(dǎo)致細(xì)胞延展能力下降,但細(xì)胞數(shù)目卻增多,稈壁厚度與莖稈直徑明顯增加,導(dǎo)致莖稈抗折力增大[42]。目前,smos1基因已被用于厚壁粗稈抗倒伏水稻品種的培育[42]。劉慧娟等[43]研究發(fā)現(xiàn)葉鞘包裹莖稈增強(qiáng)了莖稈的物理強(qiáng)度,且位于第4染色體上RM548 -RM6997區(qū)間的QTL是同時(shí)調(diào)控水稻葉鞘長、干質(zhì)量及葉鞘厚的主效基因座。
2.2 莖稈化學(xué)成分
水稻屬于喜硅作物,其植株中SiO2含量高達(dá)20%[44]。編碼水稻硅轉(zhuǎn)運(yùn)蛋白基因的突變體植株地上部分硅含量降低,對病蟲害很敏感,產(chǎn)量受到嚴(yán)重影響[45-47]。水稻莖稈基部稈壁厚度和抗折力與莖稈SiO2的含量顯著相關(guān)[48];施加硅肥后,水稻莖稈粗壯、機(jī)械強(qiáng)度增大[49];且抗倒伏能力強(qiáng)的水稻品種莖鞘中硅含量明顯高于抗倒伏能力弱的品種[50]。
水稻灌漿后期莖稈中貯藏物質(zhì)的多少對維持莖稈強(qiáng)度有重要作用[50]。Kashiwagi等[39]鑒定到一個(gè)與水稻莖稈下部節(jié)間抗壓力相關(guān)的主效QTL prl5。該位點(diǎn)能夠在籽粒干物質(zhì)形成后減緩葉綠體退化、延遲葉片衰老,使莖鞘中碳水化合物重新積累;從而提高親本莖稈下部節(jié)間的干質(zhì)量、碳水化合物的含量及密度,增強(qiáng)莖稈抗壓力[51]。Ishimaru等[52]鑒定到一個(gè)與水稻莖稈上部節(jié)間抗壓力相關(guān)QTLlrt5;該位點(diǎn)能夠增加水稻倒2葉的葉綠體數(shù)量,進(jìn)而提高莖稈上部節(jié)間的淀粉含量;莖稈密度與莖稈直徑也相應(yīng)增大,抗壓力增強(qiáng),使莖稈上部節(jié)間在遭受臺風(fēng)襲擊后仍然保持相對直立。
次生細(xì)胞壁是決定水稻莖稈機(jī)械強(qiáng)度的物質(zhì)基礎(chǔ),其成分結(jié)構(gòu)與水稻抗倒伏性直接相關(guān)[53]。作為次生細(xì)胞壁主要成分之一的纖維素的含量與莖稈抗折力密切相關(guān)[54]。水稻次生細(xì)胞壁纖維素合酶單體OsCESA9與OsCESA4的錯義突變會直接導(dǎo)致次生細(xì)胞壁纖維素合成受阻、含量下降,莖稈易折斷[55-57]。而其他一些基因突變也會間接影響次生細(xì)胞壁纖維素合成從而降低水稻抗倒伏能力。水稻動力蛋白基因OsDRP2B突變會導(dǎo)致水稻植株纖維素含量下降28%~36%,從而使厚壁組織次生細(xì)胞壁變薄,莖稈機(jī)械強(qiáng)度減弱[58];水稻類幾丁質(zhì)酶基因BC15/OsCTL1的突變會引起莖稈厚壁細(xì)胞纖維素含量降低,次生細(xì)胞壁變薄,莖稈機(jī)械強(qiáng)度嚴(yán)重下降[59];編碼水稻UDP-葡萄糖核糖轉(zhuǎn)運(yùn)因子的基因BC14錯義突變會引起細(xì)胞壁多糖糖基合成缺陷,次生細(xì)胞壁纖維素合成受阻,從而導(dǎo)致植株機(jī)械強(qiáng)度降低[60];水稻糖基轉(zhuǎn)移酶BC10可通過調(diào)節(jié)細(xì)胞壁纖維素合成和阿拉伯半乳聚糖蛋白含量來控制水稻植株機(jī)械強(qiáng)度[61]。水稻MYB轉(zhuǎn)錄因子Os-MYB103L可以調(diào)控纖維素合成酶基因(CesAs)的表達(dá)水平,進(jìn)而使植株纖維素含量及莖稈強(qiáng)度發(fā)生改變[62]。Huang等[63]對不同類型水稻GA突變體的研究表明,水稻DELLA蛋白SLR1可以與正調(diào)控水稻CESA表達(dá)的轉(zhuǎn)錄因子NAC29/31[64]互作,促進(jìn)NAC29/31的降解從而抑制CesA基因的表達(dá)。當(dāng)GA存在時(shí),抑制作用被解除,OsCesA基因表達(dá)量升高,纖維素含量增加,莖稈強(qiáng)度增大。纖維素的結(jié)晶化程度及微纖絲排列方向的改變也會間接造成次生壁的變化進(jìn)而影響植株抗倒伏性[65]。BC1基因編碼一個(gè)胞外磷脂酰肌醇(GPI)錨定COBRA蛋白[66],其N端碳水化合物結(jié)合結(jié)構(gòu)域(CBM)可以特異結(jié)合結(jié)晶態(tài)纖維素,通過調(diào)節(jié)纖維素微纖絲結(jié)晶度來影響次生細(xì)胞壁的薄厚及莖稈機(jī)械強(qiáng)度[67]。水稻驅(qū)動蛋白基因kinesin-4缺失突變體bc12中細(xì)胞骨架微管排列方向紊亂,纖維素微纖絲沉積方向改變,次生細(xì)胞壁變薄,莖稈機(jī)械強(qiáng)度下降[]。
次生細(xì)胞壁半纖維素含量的變化也會引起莖稈機(jī)械強(qiáng)度的改變[54]。β-(1,3)-(1,4)葡聚糖是禾本科植物特有的半纖維素多糖,負(fù)責(zé)合成該類多糖的類纖維素合酶F(OsCSLF)亞家族的主效基因CSLF6突變體中β-(1,3)-(1,4)葡聚糖含量顯著降低,幼苗及成熟期莖稈細(xì)胞壁變得脆弱,莖稈機(jī)械強(qiáng)度明顯降低[69-70]。Li等[71]通過對36株不同水稻細(xì)胞壁突變體次生壁成分與抗倒伏關(guān)系的研究,發(fā)現(xiàn)纖維素結(jié)晶度與水稻植株抗倒伏性呈負(fù)相關(guān),而半纖維素阿拉伯糖可能通過與纖維素β-(1,4)葡聚糖發(fā)生交聯(lián)后負(fù)調(diào)纖維素結(jié)晶度從而提高水稻的抗倒伏性。
次生細(xì)胞壁木質(zhì)素含量的變化同樣會造成水稻莖稈機(jī)械強(qiáng)度改變,水稻對香豆酸輔酶A連接酶是木質(zhì)素單體合成過程中關(guān)鍵酶[72];編碼水稻對香豆酸輔酶A連接酶(4-coumarate:CoA ligase,4CL)基因Os4CL3的表達(dá)量下調(diào)的植株大部分發(fā)生矮化且莖稈強(qiáng)度顯著低于野生型[73]。肉桂醇脫氫酶(cinnamyl alcohol dehydrogenase,CAD)在木質(zhì)素單體合成過程中最后一步將醛類中間產(chǎn)物進(jìn)一步還原為相應(yīng)的木質(zhì)醇[74]。編碼水稻肉桂醇脫氫酶的基因OsCAD7突變后,肉桂醇脫氫酶活性顯著降低,木質(zhì)素含量下降、細(xì)胞壁變薄,最終導(dǎo)致該突變體莖稈機(jī)械強(qiáng)度減弱[75]。Ookawa等[76]從另一個(gè)水稻肉桂醇脫氫酶突變體gh2/OsCAD2[77]與粗稈品種水稻雜交后代中選育出木質(zhì)素單體含量偏低但莖稈粗壯的抗倒伏品種。這些研究為水稻抗倒伏分子育種提供了重要的基因資源[65]。
表1 已知水稻抗倒伏基因Table 1.Reported Lodging resistance genes in rice.
培育抗倒伏能力強(qiáng)的水稻品種是實(shí)現(xiàn)水稻高產(chǎn)穩(wěn)產(chǎn)所面對的重要課題。矮化品種的推廣曾為解決水稻倒伏問題發(fā)揮了重要作用[78],但世界人口總數(shù)不斷增長對糧食產(chǎn)量提出了新要求。傳統(tǒng)的矮稈品種由于自身生物量積累較少,進(jìn)一步提高產(chǎn)量受到較大限制。增加株高可以提高生物學(xué)產(chǎn)量,但株高增加又會引入新的倒伏問題,為了保證現(xiàn)有生物學(xué)產(chǎn)量不變就必須增強(qiáng)植株的抗倒伏能力[33],對抗倒伏性狀分子調(diào)控機(jī)理的解析就顯得非常重要。如表1所示,影響水稻抗倒伏性的基因相繼被克隆并進(jìn)行了功能解析,這些基因除控制株高外,還包括控制分蘗夾角、莖鞘內(nèi)化學(xué)元素和可溶性糖含量、莖稈厚壁組織層數(shù)及次生細(xì)胞壁組成與結(jié)構(gòu)等。其中一些關(guān)鍵基因在高產(chǎn)抗倒伏品種選育中也已得到成功應(yīng)用,如DEP1基因已成功用于我國北方粳稻直立穗型高產(chǎn)抗倒伏品種的選育[23-24]。對OsmiR156與OsSPL14基因關(guān)系的解析對于水稻理想株型育種也具有重要應(yīng)用價(jià)值[35-38]。另外,水稻根系結(jié)構(gòu)對抗倒伏的影響也受到了關(guān)注,一些相關(guān)基因也得到了鑒定和克?。?9]。因此,未來對水稻抗倒伏的研究應(yīng)進(jìn)一步結(jié)合分子遺傳方法,挖掘有利于提高水稻抗倒伏能力的基因,全面系統(tǒng)解析水稻抗倒伏性狀的分子機(jī)制,構(gòu)建抗倒伏性狀的分子調(diào)控網(wǎng)絡(luò),在此基礎(chǔ)上通過分子標(biāo)記輔助育種方法將有利于水稻抗倒伏的不同基因進(jìn)行聚合,從而選育出更多高產(chǎn)抗倒伏的優(yōu)良水稻品種。
參考文獻(xiàn):
[1] Donald C M,Hamblin J.The biological yield and harvest index of cereals as agronomic and plant breeding criteria.Adv Agron,1976:361-405.
[2] 楊波,楊文鈺.水稻抗倒伏研究進(jìn)展.耕作與栽培,2011,(2):1-5,9.Yang B,Yang W Y.Progress of research on lodging resistance in rice.Till Cult,2011,(2):1-5,9.(in Chinese)
[3] Khush G S.Green revolution:Preparing for the 21st century.Genome,1999,42(4):646-655.
[4] 楊惠杰,楊仁崔,李義珍,等.水稻莖稈性狀與抗倒性的關(guān)系.福建農(nóng)業(yè)學(xué)報(bào),2000,(2):1-7.Yang H J,Yang S R,Li Y Z,et al.Relationship between culm traits and lodging resistance of rice cultivars.Fujiang J Agric Sci,2000,(2):1-7.(in Chinese with English abstract)
[5] 孫旭初.水稻莖稈抗倒性的研究.中國農(nóng)業(yè)科學(xué),1987,20 (4):32-37.Sun X C.Studies on the resistance of the culm of rice to lodging.Sci Agric Sin,1987,20(4):32-37.(in Chinese with English abstract)
[6] Spielmeyer W,Ellis M H,Chandler P M.Semidwarf(sd-1),“green revolution”rice,contains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci USA,2002,99(13):9043-9048.
[7] Monna L,Kitazawa N,Yoshino R,et al.Positional cloning of rice semidwarfing gene,sd-1:Rice“green revolution gene”encodes a mutant enzyme involved in gibberellin synthesis.DNA Res,2002,9(1):11-17.
[8] Sasaki A,Ashikari M,Ueguchi-Tanaka M,et al.Green revolution:A mutant gibberellin-synthesis gene in rice.Nature,2002,416(6882):701-702.
[9] Oikawa T,Koshioka M,Kojima K,et al.A role of Os-GA20ox1,encoding an isoform of gibberellin 20-oxidase,for regulation of plant stature in rice.Plant Mol Biol,2004,55 (5):687-700.
[10]Asano K,Yamasaki M,Takuno S,et al.Artificial selection for a green revolution gene during japonica rice domestication.Proc Natl Acad Sci USA,2011,108(27):11034-11039.
[11]Okuno A,Hirano K,Asano K,et al.New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.PLoS One,2014,9 (2):e86870.
[12]林澤川,曹立勇.水稻株型相關(guān)基因的定位與克隆研究進(jìn)展.中國稻米,2014,(1):17-22,27.Lin Z C,Cao L Y.Progress on mapping and cloning of genes related to rice plant type.China Rice,2014(1):17-22,27.(in Chinese with English abstract)
[13]Jin J,Huang W,Gao J P,et al.Genetic control of rice plant architecture under domestication.Nat Genet,2008,40(11):1365-1369.
[14]Tan L,Li X,Liu F,et al.Control of a key transition from prostrate to erect growth in rice domestication.Nat Genet,2008,40(11):1360-1364.
[15]Yu B,Lin Z,Li H,et al.TAC1,a major quantitative trait locus controlling tiller angle in rice.Plant J,2007,52(5):891-898.
[16]Jiang J,Tan L,Zhu Z,et al.Molecular evolution of the TAC1 gene from rice(Oryza sativa L.).J Genet Genom,2012,39 (10):551-560.
[17]Li P,Wang Y,Qian Q,et al.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.Cell Res,2007,17(5):402-410.
[18]Guo S,Xu Y,Liu H,et al.The interaction between Os-MADS57and OsTB1 modulates rice tillering via DWARF14.Nat Commun,2013,4:1566.
[19]Minakuchi K,Kameoka H,Yasuno N,et al.FINE CULM1 (FC1)works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice.Plant Cell Physiol,2010,51 (7):1127-1135.
[20]Takeda T,Suwa Y,Suzuki M,et al.The OsTB1 gene negatively regulates lateral branching in rice.Plant J,2003,33 (3):513-520.
[21]Yano K,Ookawa T,Aya K,et al.Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism.Mol Plant,2015,8(2):303-314.
[22]陳溫福,徐正進(jìn),張龍步.水稻超高產(chǎn)育種生理基礎(chǔ).沈陽:遼寧科技出版社,2003:220-223.Chen W F,Xu Z J,Zhang L B.The physidogical Basis of Rice Super High Yielding Breeding.Shenyang:Liaoning Science andTechnology Publishing House,2003:220-223.
[23]Huang X,Qian Q,Liu Z,et al.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet,2009,41 (4):494-497.
[24]Yan C J,Zhou J H,Yan S,et al.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice(Oryza sativa L.).Theor Appl Genet,2007,115 (8):1093-1100.
[25]Zhou Y,Zhu J,Li Z,et al.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics,2009,183 (1):315-324.
[26]張喜娟,李紅嬌,李偉娟,等.北方直立穗型粳稻抗倒性的研究.中國農(nóng)業(yè)科學(xué),2009,42(7):2305-2313.Zhang X J,Li H J,Li W J,et al.The lodging resistance of erect panicle japonica rice in Northern China.Sci Agric Sin,2009,42(7):2305-2313.(in Chinese with English abstract)
[27]Piao R,Jiang W,Ham T H,et al.Map-based cloning of the ERECT PANICLE 3 gene in rice.Theor Appl Genet,2009,119(8):1497-1506.
[28]Li M,Tang D,Wang K,et al.Mutations in the F-box gene LARGER PANICLEimprove the panicle architecture and enhance the grain yield in rice.Plant Biotechnol J,2011,9(9):1002-1013.
[29]Yu H,Murchie EH,González-Carranza Z H,et al.Decreased photosynthesis in the erect panicle 3(ep3)mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development.J Exp Bot,2015,66(5):1543-1552.
[30]Ikeda-Kawakatsu K,Maekawa M,Izawa T,et al.ABERRANT PANICLE ORGANIZATION 2/RFL,the rice ortholog of Arabidopsis LEAFY,suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.Plant J,2012,69(1):168-180.
[31]Ikeda K,Ito M,Nagasawa N,et al.Rice ABERRANT PANICLE ORGANIZATION 1,encoding an F-box protein,regulates meristem fate.Plant J,2007,51(6):1030-1040.
[32]Ookawa T,Hobo T,Yano M,et al.New approach for rice improvement using apleiotropic QTL gene for lodging resistance and yield.Nat Commun,2010,1:132.
[33]程式華.我國超級稻育種的理論與實(shí)踐.中國農(nóng)技推廣,2005,(4):27-29.Cheng S H.Theory and practice of suger rice breeding in China.Chin Agric Technol Ext,2005,(4):27-29.(in Chinese)
[34]胡江,藤本寬,郭龍彪,等.水稻抗倒力及相關(guān)抗倒伏性狀的QTL分析.中國水稻科學(xué),2008,29(2):211-214.Hu J,Kan F,Guo L B,et al.QTL analysis of lodging resistance force and lodging resistance-related traits in rice.Chin J Rice Sci.2008,29(2):211-214.(in Chinese with English abstract)
[35]Jiao Y,Wang Y,Xue D,et al.Regulation of OsSPL14 by OsmiR156defines ideal plant architecture in rice.Nat Genet,2010,42(6):541-544.
[36]Miura K,Ikeda M,Matsubara A,et al.OsSPL14promotes panicle branching and higher grain productivity in rice.Nat Genet,2010,42(6):545-549.
[37]Lu Z,Yu H,Xiong G,et al.Genome-wide binding analysis of the transcription activator ideal plant architecture1reveals a complex network regulating rice plant architecture.Plant Cell,2013,25(10):3743-3759.
[38]Zhao M,Liu B,Wu K,et al.Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice.PLoS One,2015,10(5):e0126154.
[39]Kashiwagi T,Ishimaru K.Identification and functional analysis of a locus for improvement of lodging resistance in rice.Plant Physiol,2004,134(2):676-683.
[40]Kashiwagi T,Togawa E,Hirotsu N,et al.Improvement of lodging resistance with QTLs for stem diameter in rice(Oryza sativa L.).Theor Appl Genet,2008,117(5):749-757.
[41]Hirano K,Okuno A,Hobo T,et al.Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance.PLoS One,2014,9(7):e96009.
[42]Aya K,Hobo T,Sato-Izawa K,et al.A novel AP2-type transcription factor,SMALL ORGAN SIZE1,controls organ size downstream of an auxin signaling pathway.Plant Cell Physiol,2014,55(5):897-912.
[43]劉慧娟,饒玉春,楊窯龍,等.水稻葉鞘相關(guān)性狀的遺傳分析.分子植物育種,2011(3):278-287.Liu H J,Rao Y C,Yang Y L,et al.QTL analysis of leaf sheath traits in rice(Oryza sativa L.).Mol Plant Breed,2011 (3):278-287.(in Chinese with English abstract)
[44]陳平平.硅在水稻生活中的作用.生物學(xué)通報(bào),1998,33(8):6-8.Chen P P.The role of silicon in rice life.Bull Biol,1998,33 (8):6-8(in Chinese).
[45]Ma J F,Tamai K,Yamaji N,et al.A silicon transporter in rice.Nature,2006,440(7084):688-691.
[46]Ma J F,Yamaji N,Mitani N,et al.An efflux transporter of silicon in rice.Nature,2007,448(7150):209-212.
[47]Yamaji N,Ma J F.A transporter at the node responsible for intervascular transfer of silicon in rice.Plant Cell,2009,21 (9):2878-2883.
[48]楊長明,楊林章,顏廷梅,等.不同養(yǎng)分和水分管理模式對水稻抗倒伏能力的影響.應(yīng)用生態(tài)學(xué)報(bào),2004,(4):646-650.Yang C M,Yang L Z,Yan T M,et al.Effects of nutrient and water regimes on lodging resistance of rice.Chin J Appl Ecol,2004,(4):646-650(in Chinese with English abstract).
[49]邢雪榮,張蕾.植物的硅素營養(yǎng)研究綜述.植物學(xué)通報(bào),1998,15(2):34-41.Xing X R,Zhang L.Review of the studies on silicon nutrition of plants.Chin Bull Bot,1998,15(2):34-41.(in Chinese with English abstract)
[50]張豐轉(zhuǎn),金正勛,馬國輝,等.灌漿成熟期粳稻抗倒伏性和莖鞘化學(xué)成分含量的動態(tài)變化.中國水稻科學(xué),2010,24(3):264-270.Zhang F Z,Jin Z X,Ma G H,et al.Dynamic changes of lodging resistance and chemical component contents in culm and sheaths of japonica rice during grain filling.Chin J Rice Sci,2010,24(3):264-270.(in Chinese with English abstract)
[51]Kashiwagi T,Madoka Y,Hirotsu N,et al.Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation.Plant Physiol Biochem,2006,44(2/3):152-157.
[52]Ishimaru K,Togawa E,Ookawa T,et al.New target for rice lodging resistance and its effect in a typhoon.Planta,2008,227(3):601-609.
[53]Sherratt M J,Baldock C,Haston J L,et al.Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues.J Mol Biol,2003,332(1):183-193.
[54]羅茂春,田翠婷,李曉娟,等.水稻莖稈形態(tài)結(jié)構(gòu)特征和化學(xué)成分與抗倒伏關(guān)系綜述.西北植物學(xué)報(bào),2007,27(11):2346-2353.Luo M C,Tian C T,Li X J,et al.Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice(Oryza sativa L.).Acta Bot Bor-Occid Sin,2007,27(11):2346-2353.(in Chinese with English abstract).
[55]Kotake T,Aohara T,Hirano K,et al.Rice Brittle culm 6encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls.J Exp Bot,2011,62(6):2053-2062.
[56]Yan C,Yan S,et al,Gu M.Fine mapping and isolation of Bc7 (t),allelic to OsCesA4.J Genet Genom,2007,34(11):1019-1027.
[57]Zhang B,Deng L,Qian Q,et al.A missense mutation in the transmembrane domain of CESA4affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice.Plant Mol Biol,2009,71(4/5):509-524.
[58]Hirano K,Kotake T,Kamihara K,et al.Rice BRITTLE CULM 3(BC3)encodes a classical dynamin OsDRP2Bessential for proper secondary cell wall synthesis.Planta,2010,232(1):95-108.
[59]Wu B,Zhang B,Dai Y,et al.Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice.Plant Physiol,2012,159(4):1440-1452.
[60]Zhang B,Liu X,Qian Q,et al.Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice.Proc Natl Acad Sci USA,2011,108(12):5110-5115.
[61]Zhou Y,Li S,Qian Q,et al.BC10,a DUF266-containing and Golgi-located type II membrane protein,is required for cellwall biosynthesis in rice(Oryza sativa L.).Plant J,2009,57 (3):446-462.
[62]Yang C,Li D,Liu X,et al.OsMYB103L,an R2R3-MYB transcription factor,influences leaf rolling and mechanical strength in rice(Oryza sativa L.).BMC Plant Biol,2014,14:158.
[63]Huang D,Wang S,Zhang B,et al.A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice.Plant Cell,2015,27(6):1681-1696.
[64]Zhong R,Lee C,McCarthy R L,et al.Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors.Plant Cell Physiol,2011,52 (10):1856-1871.
[65]Zhang B,Zhou Y.Rice brittleness mutants:A way to open the‘black box’of monocot cell wall biosynthesis.J Integr Plant Biol,2011,53(2):136-142.
[66]Li Y,Qian Q,Zhou Y,et al.BRITTLE CULM1,which encodes a COBRA-like protein,affects the mechanical properties of rice plants.Plant Cell,2003,15(9):2020-2031.
[67]Liu L,Shang-Guan K,Zhang B,et al.Brittle Culm1,a COBRA-like protein,functions in cellulose assembly through binding cellulose microfibrils.PLoS Genet,2013,9(8):e1003704.
[68]Zhang M,Zhang B,Qian Q,et al.Brittle Culm 12,a dualtargeting kinesin-4protein,controls cell-cycle progression and wall properties in rice.Plant J,2010,63(2):312-328.
[69]Vega-Sánchez M E,Verhertbruggen Y,Christensen U,et al.Loss of cellulose synthase-like F6function affects mixed-linkage glucan deposition,cell wall mechanical properties and defense responses in vegetative tissues of rice.Plant Physiol,2012,159(1):56-69.
[70]Burton R A,Wilson S M,Hrmova M,et al.Cellulose synthase-like CslF genes mediate the synthesis of cell wall(1,3;1,4)-beta-D-glucans.Science,2006,311(5769):1940-1942.
[71]Li F,Zhang M,Guo K,et al.High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.Plant Biotechnol J,2015,13(4):514-525.
[72]Hu W J,Kawaoka A,Tsai C J,et al.Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen(Populus tremuloides).Proc Natl Acad Sci USA,1998,95(9):5407-5412.
[73]Gui J,Shen J,Li L.Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice.Plant Physiol,2011,157(2):574-586.
[74]Grima-Pettenati J,Campargue C,Boudet A,et al.Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from Phaseolus vulgaris.Phytochemistry,1994,37 (4):941-947.
[75]Li X,Yang Y,Yao J,et al.FLEXIBLE CULM 1encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice.Plant Mol Biol,2009,69(6):685-697.
[76]Ookawa T,Inoue K,Matsuoka M,et al.Increased lodging resistance in long-Culm,low-lignin gh2rice for improved feed and bioenergy production.Sci Rep,2014,4:65-67.
[77]Hirano K,Aya K,Kondo M,et al.OsCAD2is the major CAD gene responsible for monolignol biosynthesis in rice culm.Plant Cell Rep,2012,31(1):91-101.
[78]王勇,向波,冼季夏,等.水稻抗倒伏研究現(xiàn)狀及存在的問題.廣西農(nóng)業(yè)科學(xué),2007,39(2):141-144.Wang Y,Xiang B,Xian L X,et al.Research status and existing problems of rice resistance to lodging.J Guangxi Agric Sci,2007,39(2):141-144.(in Chinese with English abstract)
[79]吳偉明,程式華.水稻根系育種的意義與前景.中國水稻科學(xué),2005,19(2):174-180.Wu W M,Cheng S H.Significance and prospects of breeding for root system in rice(Oryza sativa).Chin J Rice Sci,2005,19(2):174-180.(in Chinese with English abstract)
Advances in Molecular Understanding of Rice Lodging Resistance
LIUChang,LI Lai-geng*
(Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200032,China;*Corresponding author,E-mail:lgli@sibs.ac.cn)
LIU Chang,LI Laigeng.Advances in molecular understanding of rice lodging resistance.Chin J Rice Sci,2016,30(2):216-222.
Abstract:Rice lodging is a serious problem impairing grain yield.Plant stature,culm structure and cell wall components play major roles in shaping rice lodging resistance.Genomic and genetic dissection of rice has generated insightful information into mechanistic elucidation of the rice lodging resistance.Here,we summarize the recent advances in molecular understanding of the lodging resistance in association with rice stature,culm character and chemical composition of cell walls.The knowledge helps to establish new molecular strategies for breeding rice varieties with enhanced lodging resistance properties.
Key words:rice;lodging;cell wall;culm
中圖分類號:Q945.7;S511.034
文獻(xiàn)標(biāo)識碼:A
文章編號:1001-7216(2016)02-0216-07
基金項(xiàng)目:中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA08020203)。
收稿日期:2015-07-20;修改稿收到日期:2015-11-25。