• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-plane Analysis of a Circular Hole with Three Unequal Cracks in One-dimensional Hexagonal Piezoelectric Quasicrystals?

    2016-05-24 09:38:28YANGJuanLIXingDINGShenghu
    工程數(shù)學(xué)學(xué)報 2016年2期

    YANG JuanLI Xing?DING Sheng-hu

    (1-Institute of Ethnic Preparatory Education,Ningxia University,Yinchuan 750002;2-Institute of Mathematics and Computer Science,Ningxia University,Yinchuan 750021)

    1 Introduction

    As a class of smart materials,piezoelectric materials have been wide ly used in adaptive microelectro-mechanical systems such as sensors,actuators,and transducers due to a strong coupling characteristic between elastic and electric behavior[1;2].Now,piezoelectric sensors,actuators,and transducers of various configurations can be manufactured for specified functions[3].For example,in signal processing applications,with the aid of excitation or reception of the surface acoustic waves,an interdigital transducer is a thin piezoelectric layer bonded perfectly on a elastic substrate.And on the surface of the piezoelectric film,an array of electrodes is arranged according to different patterns[4].

    Quasicrystal as a new structure and material was first observed by Shechtman et al[5]and announced in 1984.Experiments have shown that quasicrystals are quite brittle Meng et al[6]and the defects of quasicrystalline materials have been observed[7].It is well known that the presence of defects such as holes,cracks and dislocations,greatly affects the physical and mechanical properties of solid materials including quasicrystals.Therefore,the study of crack problem of quasicrystalline materials is meaningful both in theoretical and practical applications.Many studies on elastic problems and fracture mechanics in quasicrystals have been available.Fan[8]presented the mathematical theory of quasicrystalline elasticity.Using this theory,a straight dislocation and a moving screw dislocation in 1D hexagonal quasicrystals were addressed by Li and his coauthors[9;10].It is well known that the complex variable method initially developed by Muskhelishvili is an effective method for solving various elasticity and defect problems[11].Therefore,some workers developed the complex variable method to solve defect problems of quasicrystals.For 1D hexagonal quasicrystals many efforts have been maDein the fields of the mechanic involving the elasticity and defects[12-15].

    But most of the paper mentioned before discussed various elasticity and defect problems of quasicrystals.To our knowledge,the piezoelectric quasicrystals researches are very little,especially the study of quasicrystals piezoelectric properties.Analytic solutions of two collinear fast propagating cracks in a symmetrical strip of 1D hexagonal piezoelectric quasicrystals have been studied[16].Yang and Li[17]investigated studied the anti-plane shear problem about a circular hole with a straight crack in 1D hexagonal quasicrystals with piezoelectric effects under the electrically impermeable and electrically permeable boundary condition.The present paper is devoted to investigating the elastic problem of a circular hole with three unequal cracks in 1D hexagonal piezoelectric quasicrystals by means of complex variable function method with conformal mapping.Two kinds of crack surface conditions,i.e.electrical impermeable and electrical permeable are adopted.The exact solutions of SIFs for the phonon field and the phason field,and the EDIFs are obtained respectively,which are very useful in practice.In the limiting cases,the analytic solutions of two asymmetric cracks,two symmetric cracks,and a straight crack originating from a circular hole the moDeLcrack and the Griffth crack[6]in 1D hexagonal piezoelectric quasicrystals are derived from the present solutions.Furthermore,in the absence of electric loading,the exact solutions of the field intensity factors presented in this paper can be degenerated into the corresponding results of in 1D hexagonal quasicrystals[18].The numerical results reveal the effects of geometric parameters on the field intensity factors.It is found that the horizontal crack length and the circle radius easily can promotes crack growth.

    2 Basic theory

    The generalized Hooke’s law of 1D hexagonal piezoelectric quasicrystals with point group 6mm,whose period plane is the(x1,x2)-plane and whose quasiperiodic direction is thex3-axis,is given by[8;13]

    whereσij,3)are the phonon and phason stress components;are the electric fields and the electric displacements;εijare the phonon and phason strains;K1,K2 are elastic constants in the phason field;)are phonon-phason coupling elastic constants;e1ijare piezoelectric coefficients;∈11,∈33 are two dielectric coefficients are elastic constants in the phonon field.C11,C12,C13,C33,C44,C66 are elastic constants in the phonon field.

    The strain-displacement and electric field-electric potential relations are given by

    whereuiandvdenote the displacements of phonon field and phason field,?is the electric potential.Andthe same notation hereafter.

    The equilibrium equations(if the body force and electric charge density are neglected)are given by

    (1)–(3)are the basic equations of elasticity theory of 1D hexagonal piezoelectric quasicrystals.

    It is assumed that the quasi-periodic direction of 1D hexagonal quasicrystals is along the positive direction ofx3axis.In this case,all field variables are independent ofx3and we have the following deformation geometrical equations

    Substituting(4)into(1)–(3)leads to one is a plane elasticity problem of general crystals,which can be solved by the route of linear elastic theory[11].We do not discuss it here.And the other is an anti-plane coupling elasticity problem as follows

    and

    Insertion of(7)into(5)and with the aid of(6),one has

    whereis the two dimensional Laplace operator,one obtain

    If

    the general solution of(9)can be expressed as

    in whichare arbitrary three analytic functions.

    3 Solution of elastic field

    We consider three unequal cracks originating from a circular hole in a 1D hexagonal piezoelectric quasicrystals.It is assumed that the quasi-periodic direction of 1D hexagonal quasicrystals is along the positive direction ofx3axis.The solid is subjected to uniform remote anti-plane shear loading and in-plane electric loading as shown in Figure 1.Ris the circle radius,L1andL2are the horizontal crack lengths,andL3is the vertical crack length.

    Figure1:A circular hole with three unequal cracks in 1D hexagonal piezoelectric quasicrystals

    3.1 Electric impermeable problem

    That by the linear elastic theory,this problem can be considered only in the crack surface stressthe electric impermeable boundary condition can be expressed as

    whereLdenotes the boundary of the circular hole with three unequal cracks.

    By(5)and(10),the stresses and the electric displacements can be written as

    where

    From(11)and(12),we have

    We propose the following conformal mapping:

    where

    It can be shown that(14)provides a conformal mapping from the outsiDeregion of the hole and cracks in the physical plane to the interior of a unit circle in theζplane,and

    We introduce the notationBy using the chain rule of derivative,we obtain

    Substituting(16)into(13),then multiplying both sides of(13)bywhereζis an arbitrary point inand integrating around the unit circle Γ,we have

    According to the Cauchy integral formula,one has

    Differentiating(14)with respect toζleads to

    where

    By(19),one has

    From(19),it can be found thatis analytic inand continuous inHence,according to the Cauchy’s integral formula of infinite region,one finds

    Sinceare analytic functions within the unit circle i.e.and(20),one has

    Substituting(18)and(21),(22)into(17),yields

    Substituting(23)into(12),we have

    Then the stresses fields and the electric displacements can be determined,we omit them since the complexity of the expressions.

    The vector of the SIFs of the phonon field and the phason field,and the EDIFs can be expressed in theζ-plane,as[8]

    From(19)and(21),we have

    Substituting(26),(27)into(25),we obtain the SIFs of the phonon field and the

    phason field,and EDIFs at the crack tipfor electric impermeable as follows

    where

    called for the dimensionless intensity factor,is defined as

    (28)shows that the field intensity factors of three unequal cracks emanating from a circular hole in 1D hexagonal piezoelectric quasicrystals are related to the phonon and phason stress,electric loading,and the dimensionless intensity factor asKas well.

    When 1D hexagonal piezoelectric quasicrystals degenerated into 1D hexagonal quasicrystals,the SIFs of the phonon field and the phason field are these analytic solutions match with the result given in[18].

    3.2 Electric permeable problem

    The electric permeable boundary condition can be expressed as

    Substituting?=λinto(5)–(7),and applying(10),we have

    Substituting(32)into(31),we obtain

    Similar to the electric impermeable derivation process,we have

    Similarly,one can obtain the stresses fields and the electric displacements for the permeable case.Because of the diffusive calculation,we neglect them here.

    In the same way,the SIFs of phonon and phason fields,and the EDIFs for electric permeable can be obtained as follows

    whereKis given by(29).

    (35)indicates that for a permeable crack,the stress intensity factor relates to only the applied mechanical load,while the electric displacement intensity factor is induced by the piezoelectric effect.Furthermore,the electric displacement loading has no contribution to the stress intensity factor and the electric displacement intensity factor.The same conclusions for the permeable case in piezoelectric material are presented by the previous work[19].

    4 Discussion and results

    We have obtained the SIFs and the EDIFs of a circular hole with three unequal cracks in 1D hexagonal piezoelectric quasicrystals above.These results are discussed further as follows.

    1)W hen the vertical crack lengthL3tends to zero,one has thatc1→0 from(15).In this case,(28)becomes

    which denotes the result of two asymmetric cracks emanating from a circular hole in a 1D hexagonal piezoelectric quasicrystals.The SIFs of phonon and phason fields consist w ith[20]in the absence of the electric load.And in the absence of the phason field,which match with the result given in[21]fora=b.

    2)Especially,when the horizontal crack lengthL2approaches toL1,then(36)produces

    (37)represents result of a circular hole w ith two symmetric cracks in a 1D hexagonal piezoelectric quasicrystals.As far as the phonon field is concerned,which is identical to the corresponding result given by[22].As the phonon field and phason field are concerned,which agrees well w ith the result given in[23]fora=b.In the absence of the phason field,which are identical to the result given in[24]forn=2.

    In particular,if the horizontal crack lengthL2tends to zero,then(37)reduces to the result of a circular hole w ith a straight crack in a 1D hexagonal piezoelectric quasicrystals,i.e.,

    For the phonon field,(38)accords w ith those in[25].In the absence of the EDIFs,(38)matchs with the classical results[26].In the absence of the phason field,which match w ith the classical results[27].

    3)If(38)leads to

    (39)gives the exact analytic solutions of the SIFs and the EDIFs of the modeLcrack in 1D hexagonal piezoelectric quasicrystals.In particular,whenL3→0,(39)produces

    these are the result of the Griffith crack in a 1D hexagonal piezoelectric quasicrystals.As far as phonon field is concerned,which is identical to the results in[8].

    5 Numerical examples

    The dimensionless intensity factor,K,can be used to determine the field intensity factors of three edge cracks emanating from a circular hole.it can be seen from(29)that the dimensionless intensity factor is dependent on the radius of the circular hole as well as crack length.Introducing the dimensionless parametersL1/R,L2/RandL3/R(the ratio of crack length and radius)to represent crack size.The following numerical calculation to investigate the effect of geometric parameters on the dimensionless intensity factor.The numerical results are shown in Figure 2 to Figure 4.

    Figure2:Variations in K with L2/R for different L1/R

    Figure 3:Variations in K with L3/R for different L1/R

    The variations in the dimensionless intensity factorKversus the left crack lengthL2/Rfor different right crack lengthL1/Rare shown in Figure 2(L3/R=0.03,R=0.05).It is found that the value ofKincreases asL2/Rbecomes large,and then levels off.In addition,the value ofKalso increases as the right crack lengthL1/Rbecomes longer at a given left crack length.The result indicates that the increase of the right crack length easily promotes the failure of materials at given hole-size and the left crack length.

    Figure3:displays the effect of the vertical crack lengthL3/Ron the dimensionless intensity factorKunder different right crack lengthL1/RwhereL2/R=0.03,R=0.05.It is shown that the influence ofL3/RtoKis not obvious.The results show that if the solid is shear loading and electric loading along the quasiperiodic direction(x3direction)at infinity,the influence of the crack parallel tox2axis toKis very small.

    Figure4:demonstrates the effect of right crack lengthL1/Ron the dimensionless intensity factorKfor different the circle radiusR,whereL2/R=0.05,L3/R=0.03.It can be seen that in general cases,the value ofKincreases asRincreases,which indicates that the stress concentration around the crack tips may be relieved by adjusting the circle radius.

    Figure4:Variations in K with L1/R for different R

    6 Conclusion

    Under the electric impermeable and electrical permeable boundary conditions,the anti-plane shear problem of a circle hole with three unequal cracks in 1D hexagonal piezoelectric quasicrystals is solved by means of complex variable function method with conformal mapping in this paper.The exact solutions of the SIFs for the phonon field and the phason field,and the EDIFs are obtained.These solutions are found for the first time in a 1D hexagonal piezoelectric quasicrystals and have signi ficance to the theory of brittle fracture of solids including quasicrystals.Under the electrical impermeable boundary condition,it is shown that the SIFs and the EDIFs does not occur coupling,and they have singularities at the crack tip.While the EDIFs is different from the previous results on the electrical permeable crack assumption,it depends on both material properties and the shear loads,but not the electric loads.In other words,the uniform electric loads have no in fluence on the field singularities.So,in fluence of theelectric load on defects cannot be ignored,electric load has played an accelerating role in the fracture of materials.Therefore,this research is necessary.With the variation of the hole-size and the crack lengths,the present results can be applied to stimulate many new crack configurations in practice,such as two asymmetric cracks,two symmetric cracks and a straight crack emanating from a circular hole,the modeLcrack and the Griffith crack,which are new and useful to theoretical researchers,in particular for the study of quasicrystals.

    References:

    [1]Dieulesaint E,Royer G A.Elastic Waves in Solids[M].New York:John Wiley & Sons,1980

    [2]Rao S S,Sunar M.Piezoelectricity and its use in disturbance sensing and control of flexible structures:a survey[J].Applied Mechanics Review,1994,47(4):113-123

    [3]Tsou H S,Bergman L A.Dynamics and Control of Distributed[M].Cambridge:Cambridge University Press,1998

    [4]Uchino K.Materials issues in design and performance of piezoelectric actuators:an overview[J].Acta Materialia,1998,46(11):3745-3753

    [5]Shechtman D,Blech I,Gratias D,et al.Metallic phase with long-range orientational order and no translational symmetry[J].Physical Review Letters,1984,53(20):1951-1953

    [6]Meng X M,Tong B Y,Wu Y K.Mechanical properties of Al65 Cu20 Co15[J].Acta Metallurgica Sinica,1994,30(1):60-64

    [7]Zhang Z,Urban K.Transmission electron microscope observation of dislocation and stackling faults in a decagonal Al-Cu-Co alloy[J].Philosophical Magazine Letters,1989,60(3):97-102

    [8]Fan T Y.The Mathematical Theory of Elasticity of Quasicrystals and its Applications[M].Beijing:Science Press,2010

    [9]Li X F,Fan T Y.A straight dislocation in one-dimensional hexagonal quasicrystals[J].Physica Status Solidi,1999,212(1):19-26

    [10]Fan T Y,Li X F,Sun Y F.A moving screw dislocation in a one-dimensional hexagonal quasicrystals[J].Acta Physica Sinica(Overseas Edition),1999,8(4):288-295

    [11]Muskhelishvili N I.Some basic Problem of the Mathematical Theory of Elasticity[M].Groningen:Noordhoff,1953

    [12]Gao Y,Xu S P,Zhao B S.Boundary conditions for plate bending in one-dimensional hexagonal quasicrystals[J].Journal of Elasticity,2007,86(3):221-233

    [13]Wang X,Pan E.Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals[J].Journal of Physics,2008,70(5):911-933

    [14]Guo J H,Lu Z X.Exact solution of four cracks originating from an elliptical hole in one-dimensional hexag-onal quasicrystals[J].Applied Mathematics and Computation,2011,217(22):9397-9403

    [15]Wu Y F,Chen W Q,Li X Y.Indentation on one-dimensional hexagonal quasicrystals:general theory and complete exact solutions[J].Philosophical Magazine,2013,93(8):858-882

    [16]Li X,Huo H S,Shi P P.Analytic solutions of two collinear fast propagating cracks in a symmetrical strip of one-dimensional hexagonal piezoelectric quasicrystals[J].Chinese Journal of Solid Mechanics,2014,35(2):1-7

    [17]Yang J,Li X.Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects[J].Theoretical and Applied Fracture Mechanics,2015,doi:10.1016/j.tafmec.2015.07.012

    [18]Yang L Y.The complex variable function method research on the problem of complicated defects of classical elasticity and quasicrystals[D].Huhhot:Inner Mongolia Normal University,2010

    [19]Zhang T Y,Gao C F.Fracture behaviors of piezoelectric materials[J].Theoretical and Applied Fracture Mechanics,2004,41(1-3):339-379

    [20]Guo J H,Liu G T.Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J].Acta Mathematicae Applicatae Sinica,2007,30(6):1066-1075

    [21]Guo J H,Lu Z X,Han H T,et al.Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J].International Journal of Solids and Structures,2009,46(21):3799-3809

    [22]Sih G C.Stress distribution near internal crack tips for longitudinal shear problems[J].ASME,Journal of Applied Mechanics,1965,32(1):51-58

    [23]Guo J H,Liu G T.Analytic solutions to problem of elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J].Applied Mathematics and Mechanics,2008,29(4):485-493

    [24]Guo J H,Lu Z X,Feng X.The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials[J].Acta Mechanica,2010,215(1-4):119-134

    [25]Yang J,Li X.Analytic solutions of the anti-plane problems about a circular hole with a crack[J].Mathematics in Practice and Theory,2014,44(21):245-249

    [26]Ma G Y,Guo H M.Analytic solutions of problem about an circular hole with a straight crack in onedimensional hexagonal quasicrystals[J].Yinshan Academic Journal,2010,24(4):5-15

    [27]Wang Y J,Gao C F.The moDeIII cracks originating from the edge of a circular hole in a piezoelectric solid[J].International Journal of Solids and Struct,2008,45(16):4590-4599

    可以在线观看的亚洲视频| 欧美最新免费一区二区三区| 国产色爽女视频免费观看| 成人亚洲精品av一区二区| 日韩亚洲欧美综合| 中国美女看黄片| 九九热线精品视视频播放| 美女高潮喷水抽搐中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 午夜影院日韩av| 国产女主播在线喷水免费视频网站 | 国产乱人伦免费视频| 尾随美女入室| 国产伦精品一区二区三区四那| 久久久久久久亚洲中文字幕| 亚洲av不卡在线观看| 狂野欧美白嫩少妇大欣赏| 日韩 亚洲 欧美在线| 乱系列少妇在线播放| 国产成人av教育| 亚洲av免费高清在线观看| 18禁裸乳无遮挡免费网站照片| 欧美日韩乱码在线| 亚洲最大成人av| 有码 亚洲区| 99在线人妻在线中文字幕| 日日撸夜夜添| www.色视频.com| 久久这里只有精品中国| 婷婷六月久久综合丁香| 亚洲精品成人久久久久久| 日本与韩国留学比较| 人人妻,人人澡人人爽秒播| 中文字幕av成人在线电影| 亚洲一区二区三区色噜噜| 999久久久精品免费观看国产| 国产午夜福利久久久久久| 精品久久久久久久人妻蜜臀av| 久99久视频精品免费| 久久久国产成人免费| av女优亚洲男人天堂| 日韩亚洲欧美综合| 午夜爱爱视频在线播放| 午夜精品久久久久久毛片777| 男插女下体视频免费在线播放| 给我免费播放毛片高清在线观看| 欧美成人性av电影在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久精品吃奶| 日韩av在线大香蕉| 最近中文字幕高清免费大全6 | 国产亚洲av嫩草精品影院| 最后的刺客免费高清国语| a在线观看视频网站| 亚洲va在线va天堂va国产| 春色校园在线视频观看| 精品一区二区三区视频在线| 午夜精品久久久久久毛片777| 能在线免费观看的黄片| 国产精品美女特级片免费视频播放器| 熟女人妻精品中文字幕| 国产精品一区www在线观看 | 国产精品1区2区在线观看.| 国产精品一区二区三区四区免费观看 | 美女cb高潮喷水在线观看| 国产亚洲av嫩草精品影院| 男人的好看免费观看在线视频| 午夜免费激情av| 在现免费观看毛片| 麻豆成人午夜福利视频| 成人av在线播放网站| 精品人妻熟女av久视频| bbb黄色大片| 97超级碰碰碰精品色视频在线观看| 无人区码免费观看不卡| 制服丝袜大香蕉在线| av在线天堂中文字幕| eeuss影院久久| avwww免费| 丰满的人妻完整版| 色吧在线观看| 国产私拍福利视频在线观看| 国产精品人妻久久久影院| 国产男人的电影天堂91| 精品久久国产蜜桃| 狂野欧美激情性xxxx在线观看| 最近视频中文字幕2019在线8| 一个人免费在线观看电影| 男女之事视频高清在线观看| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 国产精品久久久久久av不卡| 最后的刺客免费高清国语| 久久久色成人| 51国产日韩欧美| 啦啦啦啦在线视频资源| 99热这里只有精品一区| 级片在线观看| 成人一区二区视频在线观看| 在线国产一区二区在线| 久久久久免费精品人妻一区二区| 老司机深夜福利视频在线观看| 久久久久国产精品人妻aⅴ院| 99久久九九国产精品国产免费| av福利片在线观看| 国产免费一级a男人的天堂| 午夜福利高清视频| 午夜免费成人在线视频| 亚洲精品日韩av片在线观看| 深夜a级毛片| 99热网站在线观看| 天堂√8在线中文| 久久久久久久午夜电影| 极品教师在线免费播放| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩卡通动漫| a在线观看视频网站| av女优亚洲男人天堂| 在线看三级毛片| 免费黄网站久久成人精品| 久久久久久久亚洲中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲,欧美,日韩| 婷婷精品国产亚洲av| 亚洲第一区二区三区不卡| 一进一出抽搐gif免费好疼| av天堂在线播放| eeuss影院久久| 长腿黑丝高跟| 露出奶头的视频| 成人午夜高清在线视频| 99久久精品国产国产毛片| 精品无人区乱码1区二区| 欧美中文日本在线观看视频| 精品人妻一区二区三区麻豆 | 在现免费观看毛片| 美女xxoo啪啪120秒动态图| 我要看日韩黄色一级片| 欧美日韩中文字幕国产精品一区二区三区| 在线看三级毛片| 午夜精品久久久久久毛片777| x7x7x7水蜜桃| 97超级碰碰碰精品色视频在线观看| 亚洲av不卡在线观看| 亚洲国产精品久久男人天堂| 国产精品一区二区免费欧美| 亚洲无线观看免费| 99视频精品全部免费 在线| 久久热精品热| 亚洲美女视频黄频| 99在线人妻在线中文字幕| 18禁在线播放成人免费| 国产成人影院久久av| 韩国av在线不卡| 日本在线视频免费播放| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 色综合色国产| 国产高潮美女av| 97人妻精品一区二区三区麻豆| 国产免费av片在线观看野外av| 九色成人免费人妻av| 欧美性猛交黑人性爽| 夜夜爽天天搞| 熟女人妻精品中文字幕| 亚洲七黄色美女视频| 日韩高清综合在线| 国产成人av教育| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩高清在线视频| 91狼人影院| 婷婷精品国产亚洲av| 91久久精品电影网| 亚洲精品日韩av片在线观看| 我的女老师完整版在线观看| 美女xxoo啪啪120秒动态图| 午夜福利在线观看吧| 久99久视频精品免费| 亚洲不卡免费看| 麻豆一二三区av精品| 日本熟妇午夜| 身体一侧抽搐| 91av网一区二区| 久久精品综合一区二区三区| 精品久久久久久久末码| bbb黄色大片| 精品久久久久久久久久久久久| 成人一区二区视频在线观看| 欧美激情久久久久久爽电影| av.在线天堂| av天堂在线播放| 97超视频在线观看视频| 搡老妇女老女人老熟妇| 国产人妻一区二区三区在| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验 | 免费搜索国产男女视频| 韩国av在线不卡| 老师上课跳d突然被开到最大视频| 国产精品亚洲美女久久久| 不卡一级毛片| 国产高清激情床上av| a级毛片a级免费在线| 免费观看的影片在线观看| 极品教师在线视频| 国产av麻豆久久久久久久| 变态另类成人亚洲欧美熟女| av中文乱码字幕在线| 日本精品一区二区三区蜜桃| 色播亚洲综合网| 精品无人区乱码1区二区| 九色国产91popny在线| 国产伦一二天堂av在线观看| 成人av一区二区三区在线看| 精品久久久久久久久亚洲 | 国产在视频线在精品| 国产午夜精品论理片| 一进一出抽搐gif免费好疼| 国产蜜桃级精品一区二区三区| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 欧美色欧美亚洲另类二区| 久久久精品大字幕| 国产黄片美女视频| 国产精品无大码| 琪琪午夜伦伦电影理论片6080| 日韩高清综合在线| 色av中文字幕| 午夜视频国产福利| 国产免费一级a男人的天堂| 一a级毛片在线观看| 亚洲av一区综合| 成人av在线播放网站| 中文在线观看免费www的网站| 欧美激情国产日韩精品一区| 大型黄色视频在线免费观看| 色吧在线观看| 少妇猛男粗大的猛烈进出视频 | 国产精品亚洲美女久久久| 不卡视频在线观看欧美| 国产乱人视频| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久av不卡| 色视频www国产| 欧美潮喷喷水| 精品一区二区三区人妻视频| 午夜a级毛片| 精品免费久久久久久久清纯| 很黄的视频免费| 免费人成在线观看视频色| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美免费精品| 精品无人区乱码1区二区| 午夜视频国产福利| 免费在线观看影片大全网站| 97超视频在线观看视频| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| av在线亚洲专区| 成人毛片a级毛片在线播放| 国产欧美日韩精品亚洲av| 午夜福利视频1000在线观看| 亚洲国产精品久久男人天堂| 欧美日韩瑟瑟在线播放| 久久欧美精品欧美久久欧美| 免费高清视频大片| 亚洲四区av| 国产综合懂色| 国产精品98久久久久久宅男小说| 日本色播在线视频| 亚洲精品国产成人久久av| 久久久国产成人免费| 国产精品一区二区免费欧美| 变态另类成人亚洲欧美熟女| 男女做爰动态图高潮gif福利片| 欧美日韩乱码在线| 最新在线观看一区二区三区| 赤兔流量卡办理| 国产爱豆传媒在线观看| 亚洲一级一片aⅴ在线观看| 亚洲精品久久国产高清桃花| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 色在线成人网| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 午夜视频国产福利| 22中文网久久字幕| 亚洲av日韩精品久久久久久密| 国产人妻一区二区三区在| 欧美潮喷喷水| 国产一级毛片七仙女欲春2| 免费电影在线观看免费观看| 一区二区三区免费毛片| 中文字幕免费在线视频6| 日韩精品中文字幕看吧| 一级a爱片免费观看的视频| 深爱激情五月婷婷| 国产成人av教育| 人人妻人人看人人澡| 久久精品人妻少妇| 琪琪午夜伦伦电影理论片6080| 麻豆成人午夜福利视频| 黄色欧美视频在线观看| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 成年人黄色毛片网站| av在线老鸭窝| 亚洲人成网站在线播放欧美日韩| 国产精品一及| www.www免费av| 日韩欧美国产在线观看| 成人特级黄色片久久久久久久| 我的女老师完整版在线观看| 亚洲av免费高清在线观看| 成人综合一区亚洲| 91久久精品电影网| 久久精品综合一区二区三区| 美女 人体艺术 gogo| 欧美日本视频| 男人舔奶头视频| 国产精品自产拍在线观看55亚洲| 午夜激情福利司机影院| 在线国产一区二区在线| 亚洲乱码一区二区免费版| 超碰av人人做人人爽久久| 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 男人舔女人下体高潮全视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 国产精品98久久久久久宅男小说| 久久久久久久久大av| 给我免费播放毛片高清在线观看| 久久久精品大字幕| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 久久久久国产精品人妻aⅴ院| 搡女人真爽免费视频火全软件 | 深夜a级毛片| 丝袜美腿在线中文| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 国产高清视频在线观看网站| 成人av在线播放网站| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 在线观看66精品国产| 精品午夜福利在线看| 可以在线观看的亚洲视频| 中国美白少妇内射xxxbb| 亚洲精品成人久久久久久| 嫩草影院入口| 乱码一卡2卡4卡精品| 一进一出抽搐gif免费好疼| 亚洲最大成人av| 亚洲欧美精品综合久久99| 黄色日韩在线| 美女高潮喷水抽搐中文字幕| 乱系列少妇在线播放| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 一区二区三区免费毛片| 亚洲在线自拍视频| 亚洲专区中文字幕在线| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 久久久久免费精品人妻一区二区| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 精品人妻一区二区三区麻豆 | av黄色大香蕉| 身体一侧抽搐| 俄罗斯特黄特色一大片| 中文字幕免费在线视频6| 九九在线视频观看精品| 久久人人爽人人爽人人片va| 国产中年淑女户外野战色| 国产探花极品一区二区| 99久久精品热视频| 久久午夜亚洲精品久久| 中文资源天堂在线| av国产免费在线观看| 春色校园在线视频观看| 看黄色毛片网站| av国产免费在线观看| 国产成人影院久久av| 美女被艹到高潮喷水动态| 91av网一区二区| 桃红色精品国产亚洲av| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 毛片女人毛片| 91狼人影院| 国产精品久久久久久精品电影| 1024手机看黄色片| 内射极品少妇av片p| 黄片wwwwww| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 婷婷色综合大香蕉| 日本欧美国产在线视频| 亚洲午夜理论影院| 色噜噜av男人的天堂激情| 久久午夜亚洲精品久久| 色综合婷婷激情| 成人国产麻豆网| 久久久国产成人免费| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 国产美女午夜福利| 国产毛片a区久久久久| 99热只有精品国产| 三级毛片av免费| 免费无遮挡裸体视频| 国产精品一区二区三区四区久久| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 999久久久精品免费观看国产| 欧美性猛交╳xxx乱大交人| 亚洲图色成人| 一区二区三区高清视频在线| 日本a在线网址| 国产在线精品亚洲第一网站| 亚洲精品在线观看二区| 性色avwww在线观看| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9| 一进一出抽搐动态| 亚洲欧美日韩东京热| 九色成人免费人妻av| 国产精品久久久久久久久免| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 99热这里只有是精品50| 日本与韩国留学比较| 午夜老司机福利剧场| av在线亚洲专区| 我的女老师完整版在线观看| aaaaa片日本免费| 国产精品98久久久久久宅男小说| 国产精品,欧美在线| 色视频www国产| 国产精品亚洲一级av第二区| 乱人视频在线观看| 尤物成人国产欧美一区二区三区| 久久久午夜欧美精品| 免费人成视频x8x8入口观看| 日韩大尺度精品在线看网址| 精品久久久久久久久亚洲 | 一个人看的www免费观看视频| 亚洲人成网站在线播| 国产毛片a区久久久久| 国产一区二区亚洲精品在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩人妻高清精品专区| 天天躁日日操中文字幕| 人人妻人人看人人澡| 久久久成人免费电影| 美女高潮的动态| 午夜福利在线观看免费完整高清在 | 午夜精品久久久久久毛片777| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 亚洲国产精品久久男人天堂| 最好的美女福利视频网| 久久国内精品自在自线图片| 亚洲最大成人中文| 欧美日韩中文字幕国产精品一区二区三区| 亚洲男人的天堂狠狠| 亚洲真实伦在线观看| 给我免费播放毛片高清在线观看| 亚洲国产精品合色在线| 丰满乱子伦码专区| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 中文亚洲av片在线观看爽| 男女之事视频高清在线观看| 美女被艹到高潮喷水动态| 久久精品国产亚洲av香蕉五月| 色视频www国产| av在线蜜桃| 欧美成人一区二区免费高清观看| 波多野结衣巨乳人妻| 免费高清视频大片| 日韩欧美在线二视频| 国产男靠女视频免费网站| 毛片女人毛片| 国产黄片美女视频| 制服丝袜大香蕉在线| 窝窝影院91人妻| 亚洲av美国av| 亚洲国产精品久久男人天堂| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 熟女电影av网| 欧美在线一区亚洲| 尾随美女入室| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 国产精品久久久久久精品电影| 久久草成人影院| 日本与韩国留学比较| 国产成人av教育| 1000部很黄的大片| 禁无遮挡网站| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 亚洲午夜理论影院| 欧美精品国产亚洲| 国产色爽女视频免费观看| 国产黄片美女视频| 偷拍熟女少妇极品色| 麻豆一二三区av精品| 国产成年人精品一区二区| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 可以在线观看毛片的网站| 成人三级黄色视频| 久久亚洲真实| 伦精品一区二区三区| 亚洲精品国产成人久久av| 大又大粗又爽又黄少妇毛片口| 精品乱码久久久久久99久播| 在线播放国产精品三级| 久久精品国产自在天天线| 成人二区视频| 国产三级中文精品| 日韩 亚洲 欧美在线| 99久久久亚洲精品蜜臀av| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 国产高清三级在线| 日韩欧美三级三区| 乱码一卡2卡4卡精品| 日日撸夜夜添| 天堂影院成人在线观看| avwww免费| 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 老熟妇仑乱视频hdxx| 成人av在线播放网站| 日韩欧美 国产精品| 最近在线观看免费完整版| 亚洲第一区二区三区不卡| a在线观看视频网站| 国产黄片美女视频| 夜夜爽天天搞| h日本视频在线播放| 久久亚洲真实| 婷婷精品国产亚洲av| 少妇猛男粗大的猛烈进出视频 | 国产黄片美女视频| 99久久无色码亚洲精品果冻| 人妻制服诱惑在线中文字幕| 国内毛片毛片毛片毛片毛片| 中文字幕av在线有码专区| 色综合站精品国产| 麻豆一二三区av精品| 国产精品日韩av在线免费观看| 看片在线看免费视频| 九九热线精品视视频播放| 18+在线观看网站| 亚洲无线在线观看| 亚洲午夜理论影院| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| 琪琪午夜伦伦电影理论片6080| a级一级毛片免费在线观看| 亚洲内射少妇av| 美女被艹到高潮喷水动态| 国产一区二区亚洲精品在线观看| 国产精品电影一区二区三区| 变态另类丝袜制服| 国产探花在线观看一区二区| 精品久久国产蜜桃| 可以在线观看毛片的网站| 国产精品日韩av在线免费观看| 亚洲av中文字字幕乱码综合| 我要看日韩黄色一级片| 国产精品不卡视频一区二区| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 麻豆一二三区av精品| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 制服丝袜大香蕉在线| 国内精品一区二区在线观看| 免费搜索国产男女视频| 在线a可以看的网站| 毛片女人毛片| 一进一出抽搐gif免费好疼| 国产成人av教育| 国产三级在线视频| 亚洲精品456在线播放app | aaaaa片日本免费| 亚洲美女黄片视频| 亚洲人成网站在线播| 国产精品久久久久久精品电影| 老女人水多毛片| 久久人人爽人人爽人人片va| 午夜视频国产福利|