• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      小膠質(zhì)細(xì)胞的吞噬功能在神經(jīng)退行性疾病中的作用

      2016-05-25 07:51:51操勝男鮑秀琦

      操勝男,鮑秀琦,孫 華,張 丹

      中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 藥物研究所天然藥物活性物質(zhì)與功能國家重點(diǎn)實(shí)驗(yàn)室,北京 100050

      ?

      ·綜述·

      小膠質(zhì)細(xì)胞的吞噬功能在神經(jīng)退行性疾病中的作用

      操勝男,鮑秀琦,孫華,張丹

      中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥物研究所天然藥物活性物質(zhì)與功能國家重點(diǎn)實(shí)驗(yàn)室,北京 100050

      摘要:小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)內(nèi)的免疫細(xì)胞,當(dāng)中樞神經(jīng)系統(tǒng)受到內(nèi)源性或外源性刺激時(shí),小膠質(zhì)細(xì)胞快速被激活為活化狀態(tài),活化的小膠質(zhì)細(xì)胞在神經(jīng)退行性疾病中發(fā)揮重要作用。小膠質(zhì)細(xì)胞的吞噬功能是受體介導(dǎo)的吞食和消化凋亡神經(jīng)元的過程,小膠質(zhì)細(xì)胞還能夠通過吞噬功能清除腦內(nèi)特有的物質(zhì)如鞘磷脂碎片和異常聚集的蛋白等。然而有研究顯示小膠質(zhì)細(xì)胞會(huì)吞噬活的神經(jīng)元引起腦內(nèi)神經(jīng)元丟失。目前對(duì)于小膠質(zhì)細(xì)胞的吞噬功能在神經(jīng)退行性疾病中發(fā)揮保護(hù)作用還是損傷作用尚存在爭(zhēng)議。本文主要綜述小膠質(zhì)細(xì)胞吞噬功能相關(guān)的機(jī)制和其在神經(jīng)退行性疾病中的作用,為神經(jīng)退行性疾病的治療提供新的思路。

      關(guān)鍵詞:小膠質(zhì)細(xì)胞;吞噬功能;神經(jīng)退行性疾病

      ActaAcadMedSin,2016,38(2):228-233

      吞噬功能phagocytosis一詞由希臘語衍生而來,它描述的是免疫細(xì)胞或單細(xì)胞真核生物對(duì)直徑大于0.5 μm微粒狀微生物或組織碎片的識(shí)別、吞食以及降解過程[1]。單細(xì)胞真核生物等通過吞噬功能攝取營養(yǎng)物質(zhì),但在多細(xì)胞高等生物中吞噬功能是一種非特異性免疫反應(yīng)而非攝食手段。多細(xì)胞生物中具有吞噬功能的細(xì)胞大部分是特化的免疫細(xì)胞,包括巨噬細(xì)胞、樹突細(xì)胞以及中性粒細(xì)胞等。小膠質(zhì)細(xì)胞是腦內(nèi)固有的免疫細(xì)胞,其數(shù)量約占中樞神經(jīng)系統(tǒng)細(xì)胞總數(shù)的10%。研究表明小膠質(zhì)細(xì)胞來源于單核吞噬細(xì)胞,血液中的單核細(xì)胞在嬰兒出生后早期即進(jìn)入中樞神經(jīng)系統(tǒng)內(nèi),轉(zhuǎn)變?yōu)樾∧z質(zhì)細(xì)胞[2]。正常情況下,小膠質(zhì)細(xì)胞胞體小,具有細(xì)長高度分支的突起,分支上有許多棘狀突起。生理?xiàng)l件下,小膠質(zhì)細(xì)胞處于靜息狀態(tài),發(fā)揮免疫監(jiān)視作用。當(dāng)中樞神經(jīng)系統(tǒng)受到炎癥、感染和外傷等因素刺激時(shí),小膠質(zhì)細(xì)胞能迅速被激活繼而介導(dǎo)多種免疫反應(yīng)。激活的小膠質(zhì)細(xì)胞體積變大、胞體變圓、細(xì)胞表面的突起消失,轉(zhuǎn)變?yōu)榘⒚装蜆泳奘杉?xì)胞狀態(tài),能夠迅速轉(zhuǎn)移并吞噬清除凋亡神經(jīng)元、突觸及細(xì)胞碎片等,維持中樞神經(jīng)系統(tǒng)內(nèi)環(huán)境穩(wěn)態(tài),延緩神經(jīng)退行性疾病發(fā)展進(jìn)程。近年來,研究人員發(fā)現(xiàn)另外一種吞噬現(xiàn)象,稱之為phagoptosis或者primary phagocytosis,即吞噬細(xì)胞吞噬活細(xì)胞引起細(xì)胞死亡、丟失[3]。有研究顯示中樞神經(jīng)系統(tǒng)內(nèi)也存在此現(xiàn)象,即小膠質(zhì)細(xì)胞吞噬活的神經(jīng)元造成神經(jīng)元死亡或丟失,研究人員推測(cè)這一現(xiàn)象與神經(jīng)退行性疾病發(fā)病及病程進(jìn)展相關(guān)[4]。因此,小膠質(zhì)細(xì)胞的吞噬功能是把“雙刃劍”,一方面,它有利于神經(jīng)系統(tǒng)損傷的修復(fù);另一方面,它在某些特定情況下誘發(fā)或加重神經(jīng)系統(tǒng)的退行性病變。本文主要綜述小膠質(zhì)細(xì)胞的吞噬功能的機(jī)制及其在神經(jīng)退行性疾病中的作用,希望有更多的研究者關(guān)注小膠質(zhì)細(xì)胞的吞噬功能對(duì)治療神經(jīng)退行性疾病的意義。

      小膠質(zhì)細(xì)胞吞噬功能的機(jī)制

      對(duì)吞噬功能的細(xì)胞生物學(xué)研究主要建立在骨髓來源的組織中巨噬細(xì)胞上,小膠質(zhì)細(xì)胞作為腦內(nèi)的巨噬細(xì)胞,與組織中巨噬細(xì)胞屬于同一家族,研究表明小膠質(zhì)細(xì)胞也是通過類似的機(jī)制發(fā)揮吞噬功能。因此本文將小膠質(zhì)細(xì)胞的吞噬過程總結(jié)為類似巨噬細(xì)胞吞噬過程的3步模型,即“找到我”:凋亡細(xì)胞釋放趨化因子(“找到我”信號(hào))使小膠質(zhì)細(xì)胞被募集到凋亡細(xì)胞周圍;“吃我”:在小膠質(zhì)細(xì)胞受體與凋亡細(xì)胞膜上的配體之間形成一個(gè)吞噬突觸,最終形成吞噬小體;“消化我”:凋亡細(xì)胞在吞噬小體中被消化分解[5]。

      “找到我”小膠質(zhì)細(xì)胞發(fā)現(xiàn)吞噬目標(biāo)分兩種情況,一類是由于小膠質(zhì)細(xì)胞的高遷移性及其在腦內(nèi)的免疫監(jiān)視作用使其能隨機(jī)檢測(cè)到神經(jīng)元上外露的“吃我”信號(hào)。另一類是由凋亡的神經(jīng)元分泌信號(hào)分子即“找到我”信號(hào)如趨化因子Fractalkine,引導(dǎo)小膠質(zhì)細(xì)胞向凋亡神經(jīng)元遷移并與小膠質(zhì)細(xì)胞表面Fractalkine受體CX3CR1結(jié)合促進(jìn)對(duì)凋亡神經(jīng)元吞噬[6]。凋亡神經(jīng)元也可向細(xì)胞外釋放鳥苷二磷酸,引導(dǎo)小膠質(zhì)細(xì)胞遷移并與小膠質(zhì)細(xì)胞膜上的嘌呤能受體P2Y6結(jié)合,進(jìn)而激活磷脂酶C合成肌醇- 1,4,5-三磷酸,并激發(fā)肌醇- 1,4,5-三磷酸受體敏感的鈣池釋放鈣離子導(dǎo)致細(xì)胞內(nèi)鈣超載,致使細(xì)胞肌動(dòng)蛋白極化形成偽足結(jié)構(gòu)促進(jìn)對(duì)凋亡神經(jīng)元吞噬[7]。

      “吃我”對(duì)吞噬目標(biāo)細(xì)胞的識(shí)別和吞食是吞噬中最為重要的步驟,也是大多數(shù)研究的關(guān)注點(diǎn)。正常細(xì)胞表達(dá)“不吃我”信號(hào)如整合素相關(guān)蛋白CD47避免被小膠質(zhì)細(xì)胞吞噬[8],而凋亡神經(jīng)元膜上則表達(dá)“吃我”信號(hào)被小膠質(zhì)細(xì)胞識(shí)別進(jìn)而被吞食,如外露的磷脂酰絲氨酸(phosphatidylserine,PS)[9]、膜連蛋白I等[10]。另外,凋亡細(xì)胞膜上還有很多目前尚未完全確定的“吃我”信號(hào),如細(xì)胞表面的鈣網(wǎng)蛋白[11]、氧化低密度脂蛋白顆粒[12]等。

      小膠質(zhì)細(xì)胞通過膜上多種受體識(shí)別凋亡神經(jīng)元表達(dá)的“吃我”信號(hào)。外露的PS是最經(jīng)典的“吃我”信號(hào),也是目前研究的較為清楚的“吃我”信號(hào)。PS不是直接與受體結(jié)合,而是通過橋聯(lián)分子間接結(jié)合。PS與玻連蛋白受體(vitronectin receptors,VNRs)的結(jié)合是通過乳脂球表皮生長因子8實(shí)現(xiàn)的[13]。VNRs又稱為整合蛋白,能夠特異性識(shí)別乳脂球表皮生長因子8中的精氨酸-甘氨酸-天冬氨酸肽結(jié)構(gòu),與PS結(jié)合后激活CRKII-DOCK180-RAC1信號(hào)通路引起小膠質(zhì)細(xì)胞骨架蛋白重構(gòu)使小膠質(zhì)細(xì)胞發(fā)揮吞噬功能[14]。清道夫受體也是與小膠質(zhì)細(xì)胞吞噬功能有關(guān)的重要受體之一,最初由Goldstein等[15]在巨噬細(xì)胞膜上發(fā)現(xiàn),能夠識(shí)別乙?;兔芏戎鞍?。小膠質(zhì)細(xì)胞膜上清道夫受體能夠識(shí)別凋亡神經(jīng)元表面的氧化低密度脂蛋白以及外露的PS等,結(jié)合后激活ERK/p38MAPK-Rac信號(hào)通路[16],導(dǎo)致肌動(dòng)蛋白骨架重排,最終實(shí)現(xiàn)吞噬凋亡神經(jīng)元。另一種重要的受體是髓樣細(xì)胞觸發(fā)受體- 2(triggering receptor expressed on myeloid cells- 2,TREM- 2),TREM- 2廣泛表達(dá)于髓樣細(xì)胞膜表面,如巨噬細(xì)胞、破骨細(xì)胞及小膠質(zhì)細(xì)胞等。目前對(duì)于TREM- 2在凋亡神經(jīng)元表面配基的研究并不十分明確。有報(bào)道熱休克蛋白60可能是TREM- 2的配基[17]。由于TREM- 2沒有胞內(nèi)信號(hào)模塊,因此它與凋亡神經(jīng)元上的配基結(jié)合后,通過胞質(zhì)尾結(jié)構(gòu)域與小膠質(zhì)細(xì)胞內(nèi)DAP12結(jié)合激活下游通路,使ERK/MAPK磷酸化,細(xì)胞骨架蛋白重構(gòu),從而吞噬清除凋亡神經(jīng)元及神經(jīng)軸突變性髓鞘碎片等[18]。近年研究發(fā)現(xiàn)補(bǔ)體系統(tǒng)也參與小膠質(zhì)細(xì)胞對(duì)凋亡神經(jīng)元、β-淀粉樣蛋白(β-amyloid,Aβ)聚集體、神經(jīng)軸突變性髓鞘碎片等的吞噬[19]。小膠質(zhì)細(xì)胞膜表面表達(dá)多種補(bǔ)體受體,目前研究最多的是三型補(bǔ)體受體(complement receptor 3,CR3)。凋亡神經(jīng)元表面的IgG、C3b等均能與CR3結(jié)合,繼而與胞內(nèi)DAP12結(jié)合激活下游通路[20],實(shí)現(xiàn)小膠質(zhì)細(xì)胞的吞噬功能。小膠質(zhì)細(xì)胞膜表面還存在許多其他參與吞噬的受體,如Mer酪氨酸激酶[21]、T細(xì)胞免疫球蛋白黏蛋白[22]、Toll樣受體[23]、信號(hào)調(diào)節(jié)蛋白[24]等。

      “消化我”有害物質(zhì)被吞噬細(xì)胞吞噬后,即形成由細(xì)胞膜包裹的吞噬小體,初級(jí)溶酶體很快與吞噬小體融合形成次級(jí)溶酶體,溶酶體內(nèi)含有多種水解酶,分解這些外源性的大分子[25]。Peri和Nusslein-Volhard[26]用活體成像技術(shù)在斑馬魚胚胎中觀察到小膠質(zhì)細(xì)胞吞噬分解凋亡神經(jīng)元及大腸桿菌的過程,并發(fā)現(xiàn)V型三磷酸腺苷酶V0結(jié)構(gòu)域在吞噬小體-溶酶體混合體形成以及最終分解過程中發(fā)揮重要作用。目前尚無在活體實(shí)驗(yàn)中直接觀察到小膠質(zhì)細(xì)胞分解異常聚集蛋白、髓鞘碎片等的現(xiàn)象,需要更多的研究揭示小膠質(zhì)細(xì)胞分解這些物質(zhì)的機(jī)制。

      小膠質(zhì)細(xì)胞的吞噬功能與神經(jīng)退行性疾病

      神經(jīng)退行性疾病是一類神經(jīng)元進(jìn)行性變性死亡導(dǎo)致中樞神經(jīng)系統(tǒng)受損從而影響患者的認(rèn)知及運(yùn)動(dòng)功能的疾病,主要包括阿爾茲海默癥(Alzheimer’s disease,AD)、帕金森氏病(Parkinson’s disease,PD)、多發(fā)性硬化癥(multiple sclerosis,MS)、肌萎縮側(cè)索硬化癥、亨廷頓氏病等。小膠質(zhì)細(xì)胞是神經(jīng)系統(tǒng)中的免疫細(xì)胞,在神經(jīng)退行性疾病發(fā)病及病程進(jìn)展中扮演重要角色。小膠質(zhì)細(xì)胞不僅可以吞噬入侵腦內(nèi)的病原體、凋亡細(xì)胞及碎片等,它還可以吞噬存在于中樞神經(jīng)系統(tǒng)內(nèi)的神經(jīng)退行性疾病發(fā)病相關(guān)的特殊物質(zhì)如Aβ、α-突觸核蛋白、髓鞘碎片等,對(duì)于神經(jīng)元的存活有重要意義。然而,小膠質(zhì)細(xì)胞還會(huì)吞噬活的神經(jīng)元,因此,小膠質(zhì)細(xì)胞的吞噬功能在神經(jīng)退行性疾病發(fā)病及病程發(fā)展中的作用十分重要且復(fù)雜。

      小膠質(zhì)細(xì)胞的吞噬功能與ADAD是最常見的神經(jīng)退行性疾病之一,臨床上以記憶障礙、執(zhí)行功能障礙以及人格和行為改變等全面性癡呆表現(xiàn)為特征。AD腦內(nèi)特征性的病理改變?yōu)榧?xì)胞外Aβ聚集形成老年斑和細(xì)胞內(nèi)tau蛋白形成神經(jīng)纖維纏結(jié)[27]。Aβ是淀粉樣前體蛋白APP經(jīng)蛋白酶水解后的產(chǎn)物,研究表明腦內(nèi)Aβ聚集體的積累與認(rèn)知損傷以及神經(jīng)元丟失有關(guān)[28]。因此,清除腦內(nèi)Aβ被認(rèn)為可能是一種有效的治療AD的方法。Stalder等[29]發(fā)現(xiàn)在APP23轉(zhuǎn)基因小鼠腦內(nèi)老年斑核附近聚集了很多含有溶酶體等結(jié)構(gòu)的活化小膠質(zhì)細(xì)胞。同時(shí),研究表明小膠質(zhì)細(xì)胞上表達(dá)多種受體參與吞噬Aβ聚集體,如Toll樣受體、清道夫受體和CR3等[30]。另外,小膠質(zhì)細(xì)胞還可以分泌多種酶水解Aβ,如α-分泌酶、金屬蛋白酶、胰島素水解酶和明膠酶A等。Hickman等[31]發(fā)現(xiàn)與野生老年鼠相比,AD轉(zhuǎn)基因老年鼠腦內(nèi)A類清道夫受體SR-A、糖基化終產(chǎn)物受體等可以介導(dǎo)小膠質(zhì)細(xì)胞吞噬功能的受體明顯減少,胰島素水解酶、金屬蛋白酶等降解Aβ的酶也顯著減少,提示小膠質(zhì)細(xì)胞的吞噬能力在AD后期顯著降低,這可能是Aβ淀粉樣斑塊形成的原因之一。根據(jù)上述研究推測(cè)小膠質(zhì)細(xì)胞可能在老年斑形成之前吞噬分解Aβ發(fā)揮保護(hù)作用,在AD后期,小膠質(zhì)細(xì)胞的吞噬能力降低因而導(dǎo)致疾病加重。因此,通過調(diào)節(jié)相關(guān)受體的表達(dá)等方法調(diào)節(jié)小膠質(zhì)細(xì)胞的吞噬清除Aβ的能力對(duì)于AD的治療有重要的意義。然而,也有研究表明小膠質(zhì)細(xì)胞的吞噬功能對(duì)AD的發(fā)病也可能有促進(jìn)作用,體外實(shí)驗(yàn)表明低濃度的Aβ能夠激活小膠質(zhì)細(xì)胞吞噬活的神經(jīng)元,阻斷PS外露或者敲除小膠質(zhì)細(xì)胞膜上VNRs則能減少神經(jīng)元丟失或死亡[32]??茖W(xué)家運(yùn)用雙光子成像技術(shù)在AD動(dòng)物模型中觀察到小膠質(zhì)細(xì)胞吞噬活的神經(jīng)元,而敲除小膠質(zhì)細(xì)胞上CX3CR1后能減少小膠質(zhì)細(xì)胞吞噬活的神經(jīng)元[33]。目前對(duì)于小膠質(zhì)細(xì)胞吞噬活的神經(jīng)元在AD不同發(fā)病時(shí)期中的作用尚無定論,仍需更多的研究。

      小膠質(zhì)細(xì)胞的吞噬功能與PDPD是發(fā)病率僅次于AD的神經(jīng)退行性疾病,其主要病理特征為中腦多巴胺能神經(jīng)元變性、死亡、缺失,導(dǎo)致黑質(zhì)-紋狀體多巴胺能系統(tǒng)功能減退。臨床表現(xiàn)為靜止性震顫、運(yùn)動(dòng)遲緩、肌僵直和姿勢(shì)步態(tài)異常等。PD腦內(nèi)重要的病理改變是腦內(nèi)α-突觸核蛋白過表達(dá)聚集形成路易小體[34]。體外研究顯示用α-突觸核蛋白單體刺激小膠質(zhì)細(xì)胞會(huì)使小膠質(zhì)細(xì)胞吞噬能力增強(qiáng),并且存在時(shí)間及劑量依賴關(guān)系。而α-突觸核蛋白聚集體不僅會(huì)通過拮抗α-突觸核蛋白單體對(duì)吞噬的誘導(dǎo)作用抑制小膠質(zhì)細(xì)胞對(duì)凋亡神經(jīng)元以及細(xì)胞碎片的吞噬,還會(huì)降低小膠質(zhì)細(xì)胞基礎(chǔ)吞噬能力[35]。由此推測(cè)小膠質(zhì)細(xì)胞的吞噬能力減弱與腦內(nèi)α-突觸核蛋白聚集有關(guān),因而調(diào)節(jié)小膠質(zhì)細(xì)胞對(duì)α-突觸核蛋白的吞噬能力對(duì)PD病理過程的干預(yù)有重要意義。凋亡的黑質(zhì)神經(jīng)元釋放的神經(jīng)黑色素(neuromelanin,NM)是導(dǎo)致PD發(fā)生的內(nèi)源性因素之一,研究顯示NM可以激活小膠質(zhì)細(xì)胞釋放炎癥因子,對(duì)中樞神經(jīng)系統(tǒng)造成損害,而激活的小膠質(zhì)細(xì)胞能夠吞噬分解凋亡神經(jīng)元釋放的NM,從而避免更多的小膠質(zhì)細(xì)胞被激活[36]。然而,也有研究表明激活的小膠質(zhì)細(xì)胞發(fā)揮的吞噬功能對(duì)神經(jīng)元也有損害作用。有研究表明NM激活小膠質(zhì)細(xì)胞后會(huì)導(dǎo)致神經(jīng)元丟失,并且如果敲除CR3基因后神經(jīng)元丟失會(huì)減少[37]。另外,用6-羥基多巴誘導(dǎo)得到的PD模型中,在黑質(zhì)神經(jīng)元附近發(fā)現(xiàn)有小膠質(zhì)細(xì)胞吞噬神經(jīng)元[38]。在魚藤酮誘導(dǎo)的PD模型上也發(fā)現(xiàn)小膠質(zhì)細(xì)胞的吞噬功能導(dǎo)致神經(jīng)元丟失,減弱小膠質(zhì)細(xì)胞的吞噬功能則能減少魚藤酮誘導(dǎo)的神經(jīng)元丟失[39]。因此,小膠質(zhì)細(xì)胞的吞噬功能在PD中的作用十分復(fù)雜,還需要更深入地研究如何最大程度利用其保護(hù)作用,減小其損害作用。

      小膠質(zhì)細(xì)胞的吞噬功能與MSMS是以炎癥反應(yīng)、脫髓鞘和軸突損傷為主要特征的中樞神經(jīng)系統(tǒng)退行性疾病。臨床癥狀主要包括視覺喪失、眼運(yùn)動(dòng)障礙、痙攣和共濟(jì)失調(diào)等。MS的病理學(xué)特點(diǎn)是中樞神經(jīng)系統(tǒng)白質(zhì)炎癥和多發(fā)性脫髓鞘病變伴軸突變性,導(dǎo)致慢性多發(fā)性硬化斑塊形成[40]。目前關(guān)于MS的發(fā)病機(jī)制尚不明確,但可以確定的是MS的發(fā)病與髓鞘磷脂碎片積累有關(guān)[41]。髓鞘磷脂蛋白如Nogo會(huì)干擾軸突再生和修復(fù),因而清除髓磷脂碎片對(duì)MS的治療具有重要意義[42]。實(shí)驗(yàn)性自身免疫性腦脊髓炎是研究MS的動(dòng)物模型,Napoli和Neuman[43]發(fā)現(xiàn)在實(shí)驗(yàn)性自身免疫性腦脊髓炎小鼠小膠質(zhì)細(xì)胞上高表達(dá)TREM- 2,通過抗體阻斷TREM- 2后小鼠病情明顯加重。在實(shí)驗(yàn)性自身免疫性腦脊髓炎小鼠靜脈內(nèi)移植髓樣前體細(xì)胞可以使小膠質(zhì)細(xì)胞TREM- 2表達(dá)增加,從而促進(jìn)髓磷脂碎片的清除和軸突再生[44]。此外,利用環(huán)己酮草酰二腙誘導(dǎo)脫髓鞘得到的另外一種MS小鼠模型中,研究發(fā)現(xiàn)在髓鞘再生階段,吞噬髓磷脂的小膠質(zhì)細(xì)胞不僅表達(dá)吞噬相關(guān)基因,還表達(dá)與少突膠質(zhì)細(xì)胞激活、遷移、增殖及分化相關(guān)的基因[45],而少突膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中的成髓鞘細(xì)胞,因而小膠質(zhì)細(xì)胞對(duì)髓鞘再生有重要作用。從目前的證據(jù)推測(cè)增強(qiáng)小膠質(zhì)細(xì)胞吞噬功能可能有兩方面有利作用,即清除髓磷脂和輔助髓鞘再生,這對(duì)于MS的治療發(fā)揮重要的意義。

      綜上,作為腦內(nèi)固有免疫細(xì)胞,小膠質(zhì)細(xì)胞對(duì)維持腦內(nèi)環(huán)境穩(wěn)態(tài)有重要作用。中樞神經(jīng)系統(tǒng)內(nèi)環(huán)境中微小的改變都會(huì)激活小膠質(zhì)細(xì)胞成為阿米巴樣巨噬細(xì)胞,一方面,小膠質(zhì)細(xì)胞能快速有效地吞噬清除中樞神經(jīng)系統(tǒng)內(nèi)有害物質(zhì),減少炎癥反應(yīng)及自身免疫反應(yīng)的發(fā)生;另一方面,小膠質(zhì)細(xì)胞也會(huì)吞噬活的神經(jīng)元,雖然目前并不清楚小膠質(zhì)細(xì)胞吞噬活的神經(jīng)元是否是中樞神經(jīng)系統(tǒng)神經(jīng)元丟失的主要原因,但是小膠質(zhì)細(xì)胞吞噬功能的增強(qiáng)可能參與神經(jīng)退行性疾病發(fā)病及病程進(jìn)展。因此,調(diào)控小膠質(zhì)細(xì)胞的吞噬功能對(duì)治療神經(jīng)退行性疾病具有重要意義。雖然關(guān)于小膠質(zhì)細(xì)胞吞噬功能在神經(jīng)退行性疾病中發(fā)揮作用的研究仍處于初級(jí)階段,但對(duì)于小膠質(zhì)細(xì)胞吞噬功能的作用機(jī)制在分子水平上的揭示,可為新藥設(shè)計(jì)提供靶點(diǎn),對(duì)于神經(jīng)退行性疾病的治療可能具有極大的推動(dòng)作用。

      參考文獻(xiàn)

      [1]Mukherjee S,Ghosh RN,Maxfield FR. Endocytosis[J]. Physiol,1997,77(3):759- 803.

      [2]Ling EA,Wong WC.The origin and nature of ramified and ameoboid microglia a historical review and current concepts[J]. Glia,1993,7(1):9- 18.

      [3]Brown GC,Neher JJ. Eaten alive! Cell death by primary phagocytosis:‘phagoptosis’ [J]. Trends Biochem Sci,2012,37(8):325- 332.

      [4]Brown GC,Neher JJ. Microglial phagocytosis of live neurons[J]. Nat Rev Nuerosci,2014,15(4):209- 216.

      [5]Saivill J,Dransfield I,Gregory C,et al. A blast from the past:clearance of apoptotic cells regulates immune responses[J]. Nat Immunol,2002,2(12):965- 975.

      [6]Noda M,Doi Y,Liang J,et al. Fractalkine attenuates excito-neurotoxicity via microglialclearance of damaged neuronsand antioxidant enzyme hemeoxygenase- 1 expression[J]. J Biol Chem,2011,286(3):2308- 2319.

      [7]Koizumi S,Shigemoto-Mogami Y,Nazu-Tada K,et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis[J]. Nature,2007,446(7139):1091- 1095.

      [8]Goto H,Kojima Y,Matsuda K,et al. Efficacy of anti-CD47 antibody-mediated phagocytosis with macrophages against primary effusion lymphoma[J]. Eur J Cancer,2014,50(10):1836- 1846.

      [9]Fadok VA,Voelker DR,Campbell PA,et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages[J]. J Immunol,1992,148(7):2207- 2216.

      [10]Arur S,Uche UE,Rezaul K,et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment[J]. Dev Cell,2003,4(4):587- 598.

      [11]Verneret M,Tacnet-Delorme P,Osman R,et al. Relative contribution of c1q and apoptotic cell-surface calreticulin to macrophage phagocytosis[J]. J Innate Immun,2014,6(4):426- 434.

      [12]Ramprasad MP,F(xiàn)ischer W,Witztum JL,et al. The 94-to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin,the mouse homologue of human CD68[J]. Proc Natl Acad Sci USA,1995,92(21):9580- 9584.

      [13]Spittau B,Rilka J,Steinfath E,et al. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8[J]. Glia,2015,63(1):142- 153.

      [14]Albert ML,Kim JI,Birge RB. alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells[J]. Nat Cell Biol,2000,2(12):899- 905.

      [15]Goldstein JL,Basu SK,Brown MS. Binding site on macrophages that mediates uptake an degradation of acetylated low density lipoprotein,producing massive cholesterol deposition[J]. Proc Natl Acad Sci USA,1979,76(1):333- 339.

      [16]張青海,易光輝,李媛彬,等. B類1型清道夫受體表達(dá)調(diào)控與信號(hào)轉(zhuǎn)導(dǎo)通路[J]. 中國生物化學(xué)與分子生物學(xué)報(bào),2009,25(11):1003- 1009.

      [17]Stefano L,Racchetti G,Bianco F,et al. The surface-exposed chaperone,Hsp60 is an agonist of the microglia TREM2 receptor[J]. J Neurochem,2009,110 (1):284- 294.

      [18]Agnieszka PG,Monika J. Structure,expression pattern and biological activity of molecular complex TREM- 2/DAP12[J]. Hum Immunol,2013,74(6):730- 737.

      [19]Fu HJ,Liu B,Jeffrey L,et al.Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia[J]. Glia,2012,60(6):993- 1003.

      [20]Kinugawa K,Monnet Y,Béchade C,et al. DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neuronsinvitrobut notinvivoin the MPTP mouse model of Parkinson’s disease[J]. J Neuroinflammation,2013,10(1):82.

      [21]Caberoy NB,Alvarado G,Li W. Tubby regulates microglial phagocytosis through MerTK[J]. J Neuroimmunol,2012,252(1- 2):40- 48.

      [22]Mazaheri F,Breus O,Durdu S,et al. Distinct roles for BAI1 and TIM- 4 in the engulfment of dying neurons by microglia[J]. Nat Commun,2014,5:4046.

      [23]Gambuzza ME,Sofo V,Salmeri FM,et al.Toll-like receptors in Alzheimer’s disease:a therapeutic perspective[J]. CNS Neurol Disord Drug Targets,2014,13(9):1542- 1558.

      [24]Linnartz B,Neumann H. Microglial activatory (immunoreceptor tyrosine-based activation motif)-and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx[J]. Glia,2013,61(1):37- 46.

      [25]Desjardins M,Huber LA,Parton RG,et al. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus[J]. J Cell Biol,1994,124(5):677- 688.

      [26]Peri F,Nusslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusioninvivo[J]. Cell,2008,133(5):916- 927.

      [28]Nathalie P,Jean-Noel O. Processing of amyloid precursor protein and amyloid peptide neurotoxicity[J]. Curr Alzheimer Res,2008,5(2):92- 99.

      [29]Stalder M,Deller T,Staufenbiel M,et al. 3D-reconstruction of microglia and amyloid in APP23 transgenic mice:no evidence of intracellular amyloid[J]. Neurobiol Aging,2001,22(3):427- 434.

      [30]Hu X,Liou AK,Leak RK,et al. Neurobiology of microglial action in CNS injuries:receptor-mediated signaling mechanisms and functional roles[J]. Prog Neurobiol,2014,119- 120:60- 84.

      [31]Hickman SE,Allison EK,Khoury EI. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice[J]. J Neurosci,2008,28(33):8354- 8360.

      [32]Neniskyte U,Brown GC. Lactadherin/MFG-E8 is essential for microglia-mediated neuronal loss and phagoptosis induced by amyloid β[J]. J Neurochem,2013,126(3):312- 317.

      [33]Fuhrmann M,Bittner T,Jung CK,et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease[J]. Nature Neurosci,2010,13(4):411- 413.

      [34]Volpicelli-Daley LA,Luk KC,Lee VM. Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates[J]. Nat Protoc,2014,9(9):2135- 2146.

      [35]Park JY,Paik SR,Jou J,et al. Microglial phagocytosis is enhanced by monomeric alpha-synuclein,not aggregated alpha-synuclein:implications for Parkinson’s disease[J]. Glia,2008,56(11):1215- 1223.

      [36]Zhang W,Philips K,Wielqus AR,et al. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons:implications for progression of Parkinson’s disease[J]. Neurotox Res,2011,19(1):63- 72.

      [37]Zhang Z,Chopp M,Powers C. Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion[J]. Brain Res,2011,744(2):189- 198.

      [38]Marinova-Mutafchieva L,Sadeghian M,Broom L,et al. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra:a time course study in a 6-hydroxydopamine model of Parkinson’s disease[J]. J Neurochem,2009,110(3):966- 975.

      [39]Emmrich JV,Tamara C. Rotenone induces neuronal death by microglial phagocytosis of neurons[J]. FEBS J,2013,280 (20):5030- 5038.

      [40]Hartley MD,Altowaijri G,Bourdette D.Remyelination and multiple sclerosis:therapeutic approaches and challenges[J]. Curr Neurol Neurosci Rep,2014,14(10):485.

      [41]Stys PK,Zamponi GW,van Minnen J,et al. Will the real multiple sclerosis please stand up[J]. Nat Rev Neurosci,2012,13(7):507- 514.

      [42]Cui Z,Kang J,Hu D,et al. Oncomodulin/truncated protamine-mediated Nogo- 66 receptor small interference RNA delivery promotes axon regeneration in retinal ganglion cells[J]. Mol Cells,2014,37(8):613- 619.

      [43]Napoli I,Neuman H. Protective effects of microglia in multiple sclerosis[J]. Exp Neurol,2010,225(1):24- 28.

      [44]Takahashi K,Prinz M,Stagi M,et al. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis[J]. PLoS Med,2007,4(4):e124.

      [45]Olah M,Amor S,Brouwer N,et al. Identification of a microglia phenotype supportive of remyelination[J]. Glia,2012,60(2):306- 321.

      Microglial Phagocytosis in the Neurodegenerative Diseases

      CAO Sheng-nan,BAO Xiu-qi,SUN Hua,ZHANG Dan

      State Key Laboratory of Natural Products and Functions,Institute of Materia Medica,CAMS and PUMC,Beijing 100050,China

      ABSTRACT:Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates,they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition,microglia can phagocyte brain-specific cargo,such as myelin debris and abnormal protein aggregation. However,recent studies have shown that microglia can also phagocyte stressed-but-viable neurons,causing loss of neurons in the brain. Thus,whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases,with an attempt to provide new insights in the treatment of neurodegenerative diseases.

      Key words:microglia;phagocytosis;neurodegenerative disease

      (收稿日期:2015- 03- 03)

      Corresponding author:ZHANG DanTel:010- 63165178,E-mail:danzhang@imm.ac.cn

      DOI:10.3881/j.issn.1000- 503X.2016.02.018

      中圖分類號(hào):R96

      文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1000- 503X(2016)02- 0228- 06

      通信作者:張丹電話:010- 63165178,電子郵件:danzhang@imm.ac.cn

      基金項(xiàng)目:北京市科技新星計(jì)劃(2011109)Supported by the Beijing New-star Plan of Sciences and Technology(2011109)

      霍林郭勒市| 临城县| 湘西| 大足县| 壤塘县| 花莲市| 彭泽县| 醴陵市| 西和县| 建昌县| 巢湖市| 星子县| 诸城市| 辰溪县| 清水县| 云南省| 海口市| 隆德县| 周至县| 延川县| 沾益县| 黄冈市| 巫溪县| 信丰县| 会泽县| 西峡县| 咸丰县| 安溪县| 邢台市| 唐河县| 高邮市| 玛多县| 日照市| 怀宁县| 临漳县| 锡林郭勒盟| 吴堡县| 平和县| 聂拉木县| 太仓市| 吉首市|