王永霞,許為鋼,胡 琳,李 艷,齊學(xué)禮,王會(huì)偉,李小博
(1.南京農(nóng)業(yè)大學(xué)/作物遺傳與種質(zhì)創(chuàng)新國(guó)家重點(diǎn)實(shí)驗(yàn)室,江蘇南京 210095; 2.河南省農(nóng)業(yè)科學(xué)院小麥研究所/小麥國(guó)家工程實(shí)驗(yàn)室/河南省小麥生物學(xué)重點(diǎn)實(shí)驗(yàn)室,河南鄭州 450002)
?
外源玉米pepc基因?qū)π←淐3、C4途徑相關(guān)基因表達(dá)的效應(yīng)
王永霞1,2,許為鋼1,2,胡 琳2,李 艷2,齊學(xué)禮2,王會(huì)偉2,李小博1,2
(1.南京農(nóng)業(yè)大學(xué)/作物遺傳與種質(zhì)創(chuàng)新國(guó)家重點(diǎn)實(shí)驗(yàn)室,江蘇南京 210095; 2.河南省農(nóng)業(yè)科學(xué)院小麥研究所/小麥國(guó)家工程實(shí)驗(yàn)室/河南省小麥生物學(xué)重點(diǎn)實(shí)驗(yàn)室,河南鄭州 450002)
摘要:為進(jìn)一步探討外源玉米pepc基因改良小麥光合性能的機(jī)制,以基因槍介導(dǎo)T4代的轉(zhuǎn)玉米pepc基因小麥為試驗(yàn)材料,研究了抽穗期和灌漿期外源pepc基因?qū)π←渻?nèi)源光合相關(guān)酶基因表達(dá)的影響,并分析了轉(zhuǎn)基因小麥的光合生理特性及其產(chǎn)量性狀表現(xiàn)。結(jié)果表明,小麥抽穗期,pepc基因的表達(dá)上調(diào)了小麥C4微循環(huán)ppdk基因(丙酮酸磷酸雙激酶基因)、nadp-me基因(NADP-蘋果酸酶基因)、ca基因(碳酸酐酶基因)和C3循環(huán)rbcL基因(Rubisco大亞基基因)的表達(dá);小麥灌漿期,pepc基因的表達(dá)仍顯著上調(diào)C4微循環(huán)ppdk基因和nadp-me基因的表達(dá),而ca基因和C3循環(huán)rbcL基因、rbcS基因(Rubisco小亞基基因)的表達(dá)量與對(duì)照差異不大。相應(yīng)的酶活性在轉(zhuǎn)基因植株中比對(duì)照有所提高,灌漿期增幅最大。兩個(gè)測(cè)定時(shí)期的轉(zhuǎn)基因小麥旗葉凈光合速率(Pn)均比對(duì)照顯著提高,在灌漿期增幅最大,比對(duì)照提高10.35%~22.77%。產(chǎn)量性狀方面,轉(zhuǎn)基因小麥的單穗粒數(shù)和收獲指數(shù)均有所提高。上述研究結(jié)果表明,玉米C4型pepc基因?qū)胄←満?,促進(jìn)了小麥原有的C4循環(huán),從而提高了小麥的光合效率和籽粒產(chǎn)量。
關(guān)鍵詞:磷酸烯醇式丙酮酸羧化酶;轉(zhuǎn)基因小麥;基因表達(dá);凈光合速率
光合作用與作物的生長(zhǎng)及產(chǎn)量形成密切相關(guān),在主要的禾谷類作物(如水稻和小麥)中大約85%的干物質(zhì)是通過(guò)光合作用積累的。通過(guò)對(duì)作物光合效能進(jìn)行改良來(lái)實(shí)現(xiàn)作物生產(chǎn)性能的提高是作物遺傳改良的一個(gè)重要途徑。綠色植物根據(jù)其固定CO2的作用機(jī)制分為C3、C4和景天酸代謝(CAM)途徑3種不同的類型,干旱、高溫及高光強(qiáng)的條件下,C4植物的光合能力顯著優(yōu)于C3植物,具有較高的光合效率及營(yíng)養(yǎng)和水分利用效率[1]。大部分重要農(nóng)作物如水稻、小麥、馬鈴薯和大豆等都屬于C3植物,較低的光合效率是限制其生物學(xué)產(chǎn)量進(jìn)一步提高的重要因素。在過(guò)去的25年中,人們利用基因工程和轉(zhuǎn)基因技術(shù)在增強(qiáng)Rubisco羧化酶反應(yīng)效率[2-8]及將C4途徑相關(guān)酶基因轉(zhuǎn)入C3植物等方面做了大量的工作[9]。其中,從玉米(Zeamays)、高粱(Sorghumvulgare)和莧菜(Acalypha)等C4植物中克隆到的與C4光合作用途徑相關(guān)的關(guān)鍵酶基因,如磷酸烯醇式丙酮酸羧化酶(PEPC)、丙酮酸磷酸雙激酶(PPDK)和NADP-蘋果酸酶(NADP-ME)、磷酸烯醇式丙酮酸羧化激酶(PCK)等基因,已成功轉(zhuǎn)入水稻[10-13]、小麥[14-18]、煙草[19-20]等C3作物中。在獲得的轉(zhuǎn)基因植物中,C4高光效基因pepc均能得到表達(dá),轉(zhuǎn)pepc基因植株較未轉(zhuǎn)化對(duì)照產(chǎn)量顯著提高[16-18,21-23]。對(duì)高表達(dá)玉米pepc基因的轉(zhuǎn)基因水稻和小麥的研究表明,外源pepc提高了轉(zhuǎn)基因植株的光合效能[23-24]。
C4植物和CAM植物是由C3植物進(jìn)化而來(lái),在大豆、小麥和水稻等C3植物的葉片中存在著較低功效的C4光合循環(huán)[25-30],因此在分析導(dǎo)入單一的C4循環(huán)基因如pepc等對(duì)C3作物光合效能的影響時(shí),應(yīng)當(dāng)考察其與C3作物的C4微循環(huán)的關(guān)系。目前,這方面的研究主要集中在將玉米pepc基因?qū)隒3作物后對(duì)后者的相關(guān)酶學(xué)效率、光合特性和抗逆特性等表觀性狀的影響效應(yīng),而對(duì)已有C4循環(huán)相關(guān)酶基因表達(dá)的影響卻鮮有報(bào)道。本課題組將玉米pepc基因cDNA序列成功導(dǎo)入普通小麥中,并對(duì)轉(zhuǎn)玉米pepc基因小麥的T0代到T3代進(jìn)行連續(xù)研究,結(jié)果表明,轉(zhuǎn)基因植株中PEPC活性比對(duì)照提高了1.6~2.8倍,凈光合速率比對(duì)照提高了20%[17-18,23,31-32]。本研究以T4代轉(zhuǎn)玉米pepc基因小麥為材料,研究玉米pepc基因?qū)胄←満螅瑢?duì)小麥C4循環(huán)中ppdk、nadp-me和ca(碳酸酐酶,Carbonic anhydrase)基因以及控制C3循環(huán)中碳同化關(guān)鍵酶基因rbcL(Rubisco大亞基,Rubisco large subunit)和rbcS(Rubisco小亞基,Rubisco small subunit)表達(dá)量的調(diào)節(jié)效應(yīng),同時(shí),對(duì)轉(zhuǎn)基因小麥的光合生理特性及其產(chǎn)量性狀表現(xiàn)進(jìn)行分析,以期為進(jìn)一步探討外源玉米pepc基因改良小麥光合性能的機(jī)制提供參考。
1材料與方法
1.1供試材料
供試材料為普通小麥品種周麥19(對(duì)照,轉(zhuǎn)基因受體)及T4代轉(zhuǎn)玉米pepc基因小麥株系1-27-3、1-45-3和1-51-4[31],均由河南省農(nóng)業(yè)科學(xué)院小麥研究所分子育種研究室提供。所有材料于2011年10月種植于國(guó)家黃淮海轉(zhuǎn)基因小麥中試與產(chǎn)業(yè)化基地(河南原陽(yáng)),種植方式為行距25 cm,株距10 cm,常規(guī)大田管理。
1.2外源pepc基因的PCR檢測(cè)
采用CTAB法提取T4代轉(zhuǎn)基因小麥各株系和對(duì)照植株幼苗葉片的基因組總DNA。以各轉(zhuǎn)基因株系及對(duì)照植株基因組總DNA、質(zhì)粒p3301-pepc和PCR反應(yīng)用水為模板,利用C4型高光效pepc基因的特異性引物(F:5′-CGCCCTTC CATACAGTCTCA-3′,R:5′-CATCTCGCTTCC GTGCTTAG-3′,均由上海生工生物技術(shù)服務(wù)公司合成。)進(jìn)行PCR擴(kuò)增。反應(yīng)體系(25 μL):10×Buffer 2.5 μL,10 mmol·L-1dNTP 0.5 μL,上下游引物(20 μmol·L-1)各0.25 μL,DNA模板 1.25 μL,Taq酶(5 U·μL-1)0.15 μL,ddH2O 20.1 μL。反應(yīng)程序:94 ℃預(yù)變性5 min;94 ℃變性30 s,58 ℃退火30 s,72 ℃延伸45 s,35個(gè)循環(huán);72 ℃延伸10 min。擴(kuò)增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳分離,溴化乙錠染色后使用凝膠成像系統(tǒng)進(jìn)行觀察。
1.3旗葉凈光合速率(Pn)的測(cè)定
于抽穗期(2012年4月25日)和灌漿期(2012年5月12日)上午9:00-11:00,分別選取長(zhǎng)勢(shì)一致的轉(zhuǎn)基因株系和對(duì)照植株的主蘗旗葉,采用CIRAS-2型光合測(cè)定系統(tǒng)測(cè)定Pn。其中,測(cè)定時(shí)CO2濃度設(shè)定為380 μmol·L-1,溫度和光照強(qiáng)度與自然環(huán)境相同,每個(gè)轉(zhuǎn)基因株系和對(duì)照株系測(cè)定10個(gè)單株,往返重復(fù)測(cè)定3次。同時(shí),分別取所測(cè)植株旗葉0.1 g和0.5 g分裝后于液氮中速凍后保存于-80 ℃冰箱備用。
1.4產(chǎn)量性狀調(diào)查
取收獲后自然風(fēng)干的各轉(zhuǎn)基因株系及對(duì)照植株各30株,調(diào)查單莖重、單穗重、單穗粒數(shù)、千粒重和收獲指數(shù)等產(chǎn)量相關(guān)性狀,并對(duì)各項(xiàng)指標(biāo)進(jìn)行t-檢驗(yàn)。
1.5光合相關(guān)酶基因的實(shí)時(shí)熒光定量PCR分析
取出1.3中保存于液氮中的各轉(zhuǎn)基因株系和對(duì)照植株的0.1 g旗葉,利用植物總RNA提取試劑盒(北京康為世紀(jì)生物科技有限公司)提取總RNA。根據(jù)PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒(Takara公司)的操作流程進(jìn)行第一鏈cDNA的合成。參照已有的玉米pepc基因、NCBI數(shù)據(jù)庫(kù)中光合相關(guān)酶基因的編碼序列,用Primer 3.0軟件設(shè)計(jì)引物(表1)。以小麥actin基因?yàn)閮?nèi)參,采用Toyobo公司SYBR Green RT-PCR試劑盒在Bio-Rad CFX96實(shí)時(shí)熒光定量PCR儀上進(jìn)行表達(dá)分析?;蛳鄬?duì)表達(dá)量參照Livak等[33]的2-ΔΔCt法進(jìn)行計(jì)算。
1.6光合相關(guān)酶活性的測(cè)定
取出1.3中保存于液氮中的各轉(zhuǎn)基因株系和對(duì)照植株的0.5 g旗葉,在適量的Tris-HCl緩沖液(10 mmol·L-1MgCl2、5 mmol·L-1DTT、1 mmol·L-1EDTA、1% PVP和10%甘油,pH 7.0)中冰浴研磨,磨細(xì)碎后全部轉(zhuǎn)移到2 mL離心管內(nèi),放置30 min左右,15 000 r·min-14 ℃離心15 min,棄沉淀,上清液用于酶活測(cè)定。酶活性的測(cè)定均在室溫(30 ℃)下進(jìn)行,用UV-4802型紫外可見(jiàn)光分光光度計(jì)測(cè)定并記錄340 nm處的光吸收值,以及反應(yīng)底物的濃度變化。
PEPC活性的測(cè)定參照Ku等[10]的方法進(jìn)行。3 mL反應(yīng)體系中包含2.8 mL反應(yīng)液[50 mmol·L-1tricine-KOH(pH 8.0)、0.1 mmol·L-1EDTA、1 mmol·L-1DTT、10 mmol·L-1MgCl2、10 mmol·L-1NaHCO3、3 U NAD-蘋果酸脫氫酶、0.2 mmol·L-1NADH]和0.1 mL酶提取液,以0.1 mL 的40 mmol·L-1PEP啟動(dòng)反應(yīng),PEP的終濃度是2 mmol·L-1。
PPDK活性的測(cè)定參照Hatch和Slack[34]的方法進(jìn)行。3 mL反應(yīng)體系中含有2.8 mL反應(yīng)液[25 mmol·L-1Hepes-KOH(pH 8.0)、 8 mmol·L-1MgSO4、10 mmol·L-1DTT、10mmol·L-1NaHCO3、2 mmol·L-1丙酮酸鈉、5 mmol·L-1(NH4)2SO4、1 mmol·L-1葡萄糖-6-磷酸、2.5 mmol·L-1K2HPO4、0.2 mmol·L-1NADH、0.5 U PEPC及2 U NAD-MDH]和0.1 mL酶提取液,以0.1 mL 的30 mmol·L-1ATP啟動(dòng)反應(yīng),ATP的終濃度是1 mmol·L-1。
表1 實(shí)時(shí)熒光定量PCR所用引物
NADP-ME活性的測(cè)定參照陳景治等[35]的方法進(jìn)行。3 mL反應(yīng)體系中含有2.8 mL反應(yīng)液[50 mmol·L-1Tris-HC1(pH 8.0)、1 mmol·L-1MgCl2、1 mmol·L-1MnCl2、1 mmol·L-1EDTA及0.33 mmol·L-1NADP]和0.1 mL酶提取液,以0.1 mL的 150 mmol·L-1蘋果酸啟動(dòng)反應(yīng),蘋果酸的終濃度是5 mmol·L-1。
RuBPc活性的測(cè)定參照魏錦城等[36]和Kung等[37]的方法進(jìn)行。3 mL反應(yīng)體系中含有2.8 mL反應(yīng)液[100 mmol·L-1Tris-HCl(pH 7.8)、5 mmol·L-1ATP、3 mmol·L-1NADH、50 mmol·L-1DTT、200 mmol·L-1NaHCO3、4 U磷酸肌酸激酶、16 U磷酸甘油酸激酶、10 U磷酸甘油醛脫氫酶]和0.1 mL酶提取液,以0.1 mL的37.5 mmol·L-1RuBP啟動(dòng)反應(yīng),RuBP的終濃度為1.25 mmol·L-1。
2結(jié)果與分析
2.1外源pepc基因的PCR檢測(cè)結(jié)果
利用pepc基因的特異性引物對(duì)T4代轉(zhuǎn)基因小麥、對(duì)照植株、質(zhì)粒p3301-pepc及PCR反應(yīng)用水進(jìn)行PCR檢測(cè),結(jié)果(圖1)發(fā)現(xiàn),各轉(zhuǎn)基因植株和質(zhì)粒p3301-pepc在800 bp附近均有特異性條帶,而對(duì)照植株和PCR反應(yīng)用水卻未擴(kuò)增出相應(yīng)的特異性條帶。說(shuō)明外源pepc基因已經(jīng)整合到小麥基因組中。
2.2旗葉Pn的比較分析
在抽穗期,轉(zhuǎn)基因株系旗葉Pn比對(duì)照植株提高9.92%~17.04%;在灌漿期,轉(zhuǎn)基因株系旗葉Pn比對(duì)照植株提高10.35%~22.77%。進(jìn)一步方差分析結(jié)果(表2)表明,在以上2個(gè)時(shí)期,各轉(zhuǎn)基因株系旗葉Pn與對(duì)照植株之間的差異均達(dá)到顯著水平。
M:DL2000;+:質(zhì)粒p3301-pepc;-:周麥19;1:水對(duì)照;2~10:T4代轉(zhuǎn)基因植株
M: DL2000;+:Plasmid p3301-pepc; -:Zhoumai 19; 1:Water control; 2-10:T4transgenic plants
圖1 T4代轉(zhuǎn)pepc基因小麥的PCR檢測(cè)結(jié)果
數(shù)據(jù)為10個(gè)單株重復(fù)的平均值±標(biāo)準(zhǔn)差; *P<0.05;**P<0.01
Mean±SD based on the average of ten plants; *P<0.05; **P<0.01
2.3產(chǎn)量性狀的比較分析
由表3可知,總體上,與對(duì)照植株相比,各轉(zhuǎn)基因株系產(chǎn)量性狀的各項(xiàng)指標(biāo)均有所提高。其中,各轉(zhuǎn)基因株系的單穗粒數(shù)和收獲指數(shù)、轉(zhuǎn)基因株系1-27-3的單穗重和千粒重、轉(zhuǎn)基因株系1-45-3的單莖重和單穗重及轉(zhuǎn)基因株系1-51-4的千粒重顯著高于對(duì)照植株。說(shuō)明轉(zhuǎn)基因株系提高了籽粒產(chǎn)量。
表3 各轉(zhuǎn)基因株系和對(duì)照周麥19的產(chǎn)量性狀
數(shù)據(jù)為30個(gè)單株重復(fù)的平均值±標(biāo)準(zhǔn)差; *P<0.05;**P<0.01
Mean ± SD based on the average of thirty; *P<0.05; **P<0.01
2.4光合相關(guān)酶基因的表達(dá)分析
2.4.1外源pepc基因相對(duì)表達(dá)量的變化
由圖2可知,對(duì)照植株中也存在cDNA擴(kuò)增產(chǎn)物,說(shuō)明實(shí)時(shí)熒光定量PCR檢測(cè)到的表達(dá)量中含有小麥內(nèi)源pepc基因的轉(zhuǎn)錄物。外源pepc基因?qū)牒?,無(wú)論在抽穗期還是灌漿期,不同轉(zhuǎn)基因株系的pepc基因相對(duì)轉(zhuǎn)錄水平均顯著高于對(duì)照植株。2.4.2C4微循環(huán)光合相關(guān)酶基因相對(duì)表達(dá)量的變化
由圖3可知,外源pepc基因?qū)牒螅瑹o(wú)論在小麥抽穗期還是灌漿期,不同轉(zhuǎn)基因株系的C4微循環(huán)光合相關(guān)酶基因相對(duì)轉(zhuǎn)錄水平均高于對(duì)照植株,但是同一時(shí)期不同基因及不同時(shí)期相同基因在不同株系中的相對(duì)表達(dá)量相對(duì)于對(duì)照植株的提高程度有所差異。轉(zhuǎn)基因株系1-27-3的C4微循環(huán)光合相關(guān)酶基因(除ca基因外)在抽穗期和灌漿期的相對(duì)表達(dá)量均顯著高于對(duì)照;轉(zhuǎn)基因株系1-45-3的ppdk基因在抽穗期和灌漿期的相對(duì)表達(dá)量均顯著高于對(duì)照,而nadp-me基因和ca基因在抽穗期和灌漿期的相對(duì)表達(dá)量與對(duì)照植株的差異并未達(dá)到顯著水平;轉(zhuǎn)基因株系1-51-4的C4微循環(huán)光合相關(guān)酶基因在抽穗期的相對(duì)表達(dá)量與對(duì)照植株的差異均未達(dá)到顯著水平,而ppdk基因和nadp-me基因在灌漿期均顯著高于對(duì)照植株。
*:P<0.05;**:P<0.01
2.4.3C3循環(huán)光合相關(guān)酶基因相對(duì)表達(dá)量的變化
由圖4可知,外源pepc基因?qū)牒螅鬓D(zhuǎn)基因小麥株系的C3循環(huán)光合相關(guān)酶基因在抽穗期相對(duì)表達(dá)量均高于對(duì)照植株,其中,rbcL基因與對(duì)照植株差異顯著;但在灌漿期各轉(zhuǎn)基因株系的C3循環(huán)光合相關(guān)酶基因的相對(duì)表達(dá)量均低于對(duì)照植株,但與對(duì)照植株的差異并未達(dá)到顯著水平。
*:P<0.05;**:P<0.01
2.5光合相關(guān)酶活性的比較分析
外源pepc基因?qū)牒?,各轉(zhuǎn)基因小麥株系的C4循環(huán)光合相關(guān)酶活性在抽穗期和灌漿期均高于對(duì)照植株(圖5)。轉(zhuǎn)基因株系1-27-3的PEPC和NADP-ME活性及1-45-3的各C4循環(huán)光合相關(guān)酶活性在抽穗期和灌漿期均顯著高于對(duì)照植株;轉(zhuǎn)基因株系1-51-4的PEPC活性在抽穗期及PEPC和PPDK活性在灌漿期均顯著高于對(duì)照植株。各轉(zhuǎn)基因株系的C3循環(huán)光合酶RuBPc活性在抽穗期和灌漿期均顯著高于對(duì)照植株。
**:P<0.01;*:P<0.05
**:P<0.01;*:P<0.05
3討 論
在植物長(zhǎng)期進(jìn)化過(guò)程中,C4植物形成與其光合循環(huán)相匹配的“Kranz”結(jié)構(gòu),但其并不是C4光合途徑所必須的。單細(xì)胞水生植物黑藻(Hydrillaverticilata)和水蘊(yùn)草(Egeriadensa)無(wú)“Kranz”結(jié)構(gòu)而有C4光合途徑的運(yùn)行,說(shuō)明在植物葉片的單一細(xì)胞中也是可以同時(shí)進(jìn)行C3和C4光合循環(huán)的,預(yù)示著通過(guò)C4光合酶基因向C3植物的轉(zhuǎn)移可以提高C3植物光合作用[38-39]。自Ku等[10]利用農(nóng)桿菌介導(dǎo)法成功地將玉米C4途徑關(guān)鍵酶基因pepc導(dǎo)入水稻進(jìn)行高光效分子育種以來(lái),在小麥高光效轉(zhuǎn)基因研究領(lǐng)域,陳緒清等[14]和張慶琛等[16]將完整的玉米C4型pepc基因?qū)氲叫←溨?,并?duì)T0代和T1代轉(zhuǎn)基因小麥植株進(jìn)行篩選和光合特性初步研究,但至今尚未有較為深入的研究報(bào)道。李 艷等[17]和Hu等[18]將玉米C4型pepc基因的cDNA序列轉(zhuǎn)入普通小麥栽培品種中,并對(duì)轉(zhuǎn)基因后代材料的分子特征和光合生理特性進(jìn)行了初步研究和篩選,結(jié)果表明,pepc基因以1~3個(gè)拷貝整合到轉(zhuǎn)基因小麥基因組的不同位點(diǎn)[31];在田間自然條件下,T2代轉(zhuǎn)基因小麥的單穗重和千粒重較對(duì)照均顯著提高,PEPC活性比對(duì)照提高了2.8和1.6 倍[23],植株的光飽和點(diǎn)和羧化效率較對(duì)照分別提高20%和22.5%[18];對(duì)T3代轉(zhuǎn)基因小麥時(shí)空表達(dá)特性的研究結(jié)果表明,轉(zhuǎn)基因小麥各生育時(shí)期葉片Pn和PEPC活性均高于對(duì)照,灌漿期增幅最大,較對(duì)照分別增加21%和2.4倍,差異達(dá)顯著水平,轉(zhuǎn)基因植株各器官中PEPC活性總體變化趨勢(shì)為葉>穗>鞘和莖[32]。本研究以經(jīng)前期研究篩選到的T4代高光效轉(zhuǎn)基因株系為實(shí)驗(yàn)材料進(jìn)行研究,結(jié)果顯示,抽穗期和灌漿期轉(zhuǎn)基因小麥中PEPC活性和Pn均顯著高于對(duì)照周麥19。這與前期吳 瓊等[23]、Hu等[18]和Han等[32]對(duì)轉(zhuǎn)pepc基因小麥植株光合生理特性的研究結(jié)果相一致。由此可見(jiàn),玉米pepc基因?qū)D(zhuǎn)基因小麥植株P(guān)n的提高是能夠穩(wěn)定遺傳的,C4光合途徑關(guān)鍵酶基因在小麥產(chǎn)量遺傳改良中具有潛在的利用價(jià)值。
在許多C3植物的綠色器官中,不僅存在著RuBPc,也存在著PEPC、NADP-MDA、NADP-ME和PPDK等C4途徑酶系統(tǒng),但是其活性很低[25-26]。有報(bào)道指出,雖然在C3植物中的C4途徑酶活性較低,但當(dāng)在內(nèi)外環(huán)境發(fā)生變化時(shí),其活性也將會(huì)發(fā)生變化,如小麥或大豆在干旱條件下,PEPC活性顯著提高[27]。Ku等[11]對(duì)轉(zhuǎn)pepc基因水稻和野生型水稻進(jìn)行分析發(fā)現(xiàn),轉(zhuǎn)基因水稻中除PEPC活性明顯高于野生型水稻外,碳酸酐酶活性比對(duì)照高2倍左右,RuBPc活性與對(duì)照相近。季本華等[30]對(duì)轉(zhuǎn)pepc基因水稻和野生型水稻葉內(nèi)光合相關(guān)酶活性進(jìn)行分析發(fā)現(xiàn),轉(zhuǎn)基因水稻中除PEPC活性明顯高于野生型水稻外,PPDK、NADP-ME、NADP-MDH、碳酸酐酶以及C3光合酶RuBPc的活性均與對(duì)照相近,其研究結(jié)果還表明PEPC是C3植物水稻中C4微循環(huán)中的限速酶,如果能夠進(jìn)一步提高現(xiàn)有高產(chǎn)品種中的PEPC活性,則還可以進(jìn)一步提高植株的光合潛力。本研究對(duì)轉(zhuǎn)玉米pepc基因小麥中C4光合酶PEPC、NADP-ME、PPDK和C3光合酶RuBPc在轉(zhuǎn)錄水平和相應(yīng)酶活性水平上進(jìn)行分析,表明小麥中存在有內(nèi)源的C4微循環(huán)。外源C4植物的pepc基因的高表達(dá)及活性的增加,提高了C4途徑PDK、NADP-ME和C3光合酶RuBPc的轉(zhuǎn)錄和酶活性,改善了小麥中內(nèi)源C4微循環(huán),使細(xì)胞有可能通過(guò)“CO2泵”的方式提高光合碳循環(huán)的CO2濃度,使Rubisco的催化方向朝著有利于形成碳水化合物的方向運(yùn)轉(zhuǎn)。光合速率的提高是一個(gè)復(fù)雜的過(guò)程,受諸多因素影響,本研究的結(jié)果將為進(jìn)一步解析玉米pepc基因?qū)隒3作物小麥后增強(qiáng)光合碳同化的作用機(jī)理提供了試驗(yàn)依據(jù)。
參考文獻(xiàn):
[1]Endo T,Mihara Y,Furumoto T,etal.Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3plants:mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity [J].JournalofExperimentalBotany,2008,59(7):1811-1818.
[2]Miyagawa Y,Tamoi M,Shigeoka S.Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth [J].NatureBiotechnology,2001,19(10):965-969.
[3]Tamoi M,Shigeoka S.Improvement of photosynthesis in higher plants [M]//Plant Responses to Air Pollution and Global Change.Tokyo:Springer Japan,2005:141-147.
[4]Chen S,Hajirezaei M,Peisker M,etal.Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis,alters carbohydrate partitioning,and reduces growth [J].Planta,2005,221(4):479-492.
[5]Chida H,Nakazawa A,Akazaki H,etal.Expression of the algal cytochrome c6 gene inArabidopsisenhances photosynthesis and growth [J].PlantandCellPhysiology,2007,48(7):948-957.
[6]Feng L,Han Y,Liu G,etal.Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants [J].FunctionalPlantBiology,2007,34(9):822-834.
[7]Kumar A,Li C,Portis Jr A R.Arabidopsisthalianaexpressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures [J].PhotosynthesisResearch,2009,100(3):143-153.
[8]Suzuki Y,Miyamoto T,Yoshizawa R,etal.Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS [J].Plant,Cell&Environment,2009,32(4):417-427.
[9]Ruan C H,Shao H B,Teixeira da Silva J A.A critical review on the improvement of photosynthetic carbon assimilation in C3plants using genetic engineering [J].CriticalReviewsinBiotechnology,2012,32(1):1-21.
[10]Ku M S,Agarie S,Nomura M,etal.High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants [J].NatureBiotechnology,1999,17(1):76-80.
[11]Ku M S B,Ranade U,Hsu T P,etal.Photosynthetic performance of transgenic rice plants overexpressing maize C4photosynthesis enzymes [J].StudiesinPlantScience,2000,7:193-204.
[12]Fukayama H,Hatch M D,Tamai T,etal.Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants [J].PhotosynthesisResearch,2003,77(2-3):227-239.
[13]Bandyopadhyay A,Datta K,Zhang J,etal.Enhanced photosynthesis rate in genetically engineeredindicarice expressingpepcgene cloned from maize [J].PlantScience,2007,172(6):1204-1209.
[14]陳緒清,張曉東,梁榮奇,等.玉米C4型pepc基因的分子克隆及其在小麥的轉(zhuǎn)基因研究 [J].科學(xué)通報(bào),2004,49(19):1976-1982.
Chen C Q,Zhang X D,Liang R Q,etal.Cloning maize C4phosphoenolpyruvate carboxylase gene and transformation in wheat [J].ChineseScienceBulletin,2004,49(19):1976-1982.
[15]張 彬,丁在松,張桂芳,等.根癌農(nóng)桿菌介導(dǎo)獲得稗草Ecppc轉(zhuǎn)基因小麥的研究 [J].作物學(xué)報(bào),2007,33(3):356-362.
Zhang B,Ding Z S,Zhang G F,etal.Introduction of Phosphoenolpyruvate carboxylase gene fromEchinochloacrusgalliinto wheat mediated byAgrobacteriumtumefaciens[J].ActaAgronomicaSinica,2007,33(3):356-362.
[16]張慶琛,許為鋼,胡 琳,等.玉米C4型全長(zhǎng)pepc基因?qū)肫胀ㄐ←湹难芯?[J].麥類作物學(xué)報(bào),2010,30(2):194-197.
Zhang Q C,Xu W G,Hu L,etal.Development of transgenic wheat plants with maize C4-specificpepcgene by particle bombardment [J].JournalofTriticeaeCrops,2010,30(2):194-197.
[17]李 艷,許為鋼,胡 琳,等.玉米磷酸烯醇式丙酮酸羧化酶基因高效表達(dá)載體構(gòu)建及其導(dǎo)入小麥的研究 [J].麥類作物學(xué)報(bào),2009,29(5):741-746.
Li Y,Xu W G,Hu L,etal.Construction of a high efficient expression vector for maize phosphoenolpyruvate carboxylase gene and its transformation in wheat [J].JournalofTriticeaeCrops,2009,29(5):741-746.
[18]Hu L,Li Y,Xu W,etal.Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4phosphoenolpyruvate carboxylase gene [J].PlantBreeding,2012,131(3):385-391.
[19]Hudspeth R L,Grula J W,Dai Z,etal.Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco effects on biochemistry and physiology [J].PlantPhysiology,1992,98(2):458-464.
[20]Sheriff A,Meyer H,Riedel E,etal.The influence of plant pyruvate,orthophosphate dikinase on a C3plant with respect to the intracellular location of the enzyme [J].PlantScience,1998,136(1):43-57.
[21]李 霞,焦德茂,戴傳超,等.轉(zhuǎn)育PEPC基因的雜交水稻的光合生理特性 [J].作物學(xué)報(bào),2001,27(2):137-143.
Li X,Jiao D M,Dai C C,etal.Photosynthetic characteristics for rice hybrids with transgenic PEPC parent HPTER-01 [J].ActaAgronomicaSinica,2001,27(2):137-143.
[22]Jiao D,Huang X,Li X,etal.Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4photosynthesis enzymes [J].PhotosynthesisResearch,2002,72(1):85-93.
[23]吳 瓊,許為鋼,李 艷,等.田間條件下轉(zhuǎn)玉米C4型pepc基因小麥的光合生理特性 [J].作物學(xué)報(bào),2011,37(11):2046-2052.
Wu Q,Xu W G,Li Y,etal.Physiological characteristics of photosynthesis in transgenic wheat with maize-pepcgene under field conditions[J].ActaAgronomicaSinica,2011,37(11):2046-2052.
[24]凌麗俐,林宏輝,焦德茂.轉(zhuǎn)PEPC基因水稻種質(zhì)的穩(wěn)定光合生理特性 [J].作物學(xué)報(bào),2006,32(4):527-531.
Ling L L,Lin H H,Jiao D M.The stable photosynthetic characteristics of a PEPC transgenic rice germplasm [J].ActaAgronomicaSinica,2006,32:527-531.
[25]Duffus C M,Rosie R.Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp [J].Planta,1973,114(3):219-226.
[26]Agarie S,Miura A,Sumikura R,etal.Overexpression of C4PEPC caused O2-insensitive photosynthesis in transgenic rice plants [J].PlantScience,2002,162(2):257-265.
[27]李衛(wèi)華,郝乃斌,戈巧英,等.C3植物中C4途徑的研究進(jìn)展 [J].植物學(xué)報(bào),1999,16(2):97-106.
Li W H,Hao N B,Ge Q Y,etal.Advances in study on C4pathway in C3plant [J].ChineseBulletinofBotany,1999,16(2):97-106.
[28]丁在松,趙 明,荊玉祥,等.玉米ppc基因過(guò)表達(dá)對(duì)轉(zhuǎn)基因水稻光合速率的影響 [J].作物學(xué)報(bào),2007,33(5):717-722.
Ding Z S,Zhao M,Jing Y X,etal.Effect of overexpression of maizeppcgene on photosynthesis in transgenic rice plants [J].ActaAgronomicaSinica,2007,33(5):717-722.
[29]Jiao D M,Kuang T Y,Li X,etal.Physiological characteristics of the primitive CO2concentrating mechanism in PEPC transgenic rice [J].ScienceinChinaSeriesC:LifeSciences,2003,46:438-446.
[30]季本華,朱素琴,焦德茂.轉(zhuǎn)玉米C4光合酶基因水稻株系中的光合C4微循環(huán) [J].作物學(xué)報(bào),2004,30(6):536-543.
Ji B H,Zhu S Q,Jiao D M.Photosynthetic C4-microcycle in transgenic rice plant lines expressing the maize C4-photosynthetic enzymes [J].ActaAgronomicaSinica,2004,30(6):536-543.
[31]張建紅,許為鋼,王會(huì)偉,等.轉(zhuǎn)玉米C4型高光效pepc基因小麥的分子特征及光合特性研究 [J].麥類作物學(xué)報(bào),2012,32(6):1043-1048.
Zhang J H,Xu W G,Wang H W,etal.Molecular characteristics and photosynthetic property of the transgenic wheat expressing a maize C4-typepepcgene [J].JournalofTriticeaeCrops,2012,32(6):1043-1048.
[32]Han L L,Xu W G,Hu L,etal.Preliminary study on the physiological characteristics of transgenic wheat with maize C4-pepcgene in field conditions [J].CerealResearchCommunications,2013,42(1):70-80.
[33]Livak K J,Schmittgen T D.Analysis of relative gene expression date using real-time quantitative PCR and 2-ΔΔCtmethod [J].Methods,2001,25:402-408.
[34]Hatch M D,Slack C R.Pyruvate,Pidikinase from leaves [J].MethodsinEnzymology,1975,42:212-219.
[35]陳景治,陳冬蘭,吳敏賢,等.高粱和小麥葉片蘋果酸酶某些特性比較 [J].植物生理學(xué)報(bào),1981,4(4):345-350.
Chen J Z,Chen D L,Wu M X,etal.Comparison of some characteristics of NADP-malic enzyme from sorghum and wheat leaves [J].ActaPhytophysiolSinica,1981,4(4):345-350.
[36]魏錦城,王仁雷,程光宇.雜交稻核酮糖二磷酸羧化酶的動(dòng)力學(xué)性質(zhì) [J].植物生理學(xué)報(bào),1994,1(1):55-60.
Wei J C,Wang R L,Cheng G Y.Studies on the kinetics properties of ribulose-1,5-bisphosphate carboxylase from F1hybrid rice [J].ActaPhytophysiologicaSinica,1994,1(1):55-60.
[37]Kung S D,Chollet R,Marsho T V.Crystallization and assay procedures of tobacco ribulose-1,5-bisphosphate carboxlase-oxygenase [J].MethodsinEnzymology,1980,69:326-336.
[38]Magnin N C,Cooley B A,Reiskind J B,etal.Regulation and localization of key enzymes during the induction of Kranz-less,C4-type photosynthesis inHydrillaverticillata[J].PlantPhysiology,1997,115(4):1681-1689.
[39]Voznesenskaya E V,Franceschi V R,Kiirats O,etal.Kranz anatomy is not essential for terrestrial C4plant photosynthesis [J].Nature,2001,414(6863):543-546.
Effect ofpepcGene from Maize on Photosynthesis-related Genes Expression in Transgenic Wheat
WANG Yongxia1,2,XU Weigang1,2,HU Lin2,LI Yan2,
QI Xueli2,WANG Huiwei2,LI Xiaobo1,2
(1.Nanjing Agricultural University/Natinal Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing,Jiangsu 210095,China; 2.Wheat Research Insitute,Henan Academy of Agricultural Sciences/National Laboratory,of Wheat Engineering/Henan Laboratory of Wheat Biology,Zhengzhou,Henan 450002,China)
Abstract:To investigate how pepc gene from maize regulates the expression of endogenous photosynthesis-related genes in transgenic wheat plants,T4 transgenic wheat lines were developed by particle bombardment.The expression level of photosynthesis-related genes in the flag leaf was investigated by using PCR test,qRT-PCR and enzyme activity analysis.The results showed that exogenous gene pepc up-regulated the expression of several wheat endogenous genes,i.e.,ppdk(Pyruvate orthophosphate dikinase),nadp-me(NADP-malic enzyme),ca(Carbonic anhydrase)and rbcL(Rubisco large subunit)at heading stage.At filling stage,the expression levels of pepc,ppdk and nadp-me in transgenic plants were increased,whereas there was no change in the expression levels of ca,rbcL and rbcS(Rubisco small subunit) gene in transgenic plants.In transgenic plants,the enzyme activities of the corresponding genes were higher than those in untransformed plants and the increase rate reached the maximum at filling stage.Net photosynthetic rate(Pn) of transgenic plants were 10.35%-22.77% higher than that of untransformed plants at filling stage,with a maximum increase rate.Individual plant yield components analysis indicated that the grain number per spike and harvest index of transgenic plants were higher than those of untransformed plants.Introduction of pepc gene from maize into wheat plants resulted in up-regulation of both C3 and C4 photosynthetic enzymes,and increased corresponding enzyme activity,and improved photosynthetic capacity and grain yield.The results obtained from this study gave us a better understanding on the regulation mechanism of maize pepc gene in wheat for improving their photosynthesis ability.
Key words:Phosphoenolpyruvate carboxylase(PEPC); Transgenic wheat; Gene expression; Net photosynthetic rate
中圖分類號(hào):S512.1;S330
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-1041(2016)01-0001-08
通訊作者:許為鋼(E mail:xuwg1958@163.com)
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31371707); 國(guó)家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2011ZX08002-003/005); 國(guó)家現(xiàn)代產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-3-1-19); 國(guó)家科技支撐計(jì)劃項(xiàng)目(2011BAD07B01)
收稿日期:2015-10-16修回日期:2015-11-19
網(wǎng)絡(luò)出版時(shí)間:2016-01-08
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160108.1820.002.html
第一作者E-mail:wangyongxia005@163.com