• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx

      外源氮對瓊北不同類型土壤甲烷氧化能力的影響

      2016-05-30 16:18:47齊潤杰陳金霞但建國
      熱帶作物學(xué)報 2016年8期
      關(guān)鍵詞:銨態(tài)氮

      齊潤杰 陳金霞 但建國

      摘 要 氮輸入是影響土壤氧化吸收大氣甲烷(CH4)的重要因子之一。通過對瓊北5種旱地土壤進(jìn)行室內(nèi)培養(yǎng)實驗,評價不同類型土壤對低濃度CH4的吸收能力及其對硝態(tài)氮和不同濃度銨態(tài)氮的響應(yīng)。結(jié)果表明:火山灰土、富鐵土、雛形土、鐵鋁土和淋溶土的CH4氧化速率分別為67.01,50.05,47.00,72.82和57.10 ng/(kg·h)。按100(mg/kg)N添加的硝態(tài)氮僅對鐵鋁土CH4氧化有顯著的抑制效果,而按此濃度添加的銨態(tài)氮能顯著降低5種土壤的CH4氧化速率。銨態(tài)氮對5種土壤CH4氧化的抑制率與銨態(tài)氮添加量均呈極顯著的線性正相關(guān)。每單位(mg/kg)銨態(tài)氮添加量對鐵鋁土CH4氧化的抑制率最低,僅為其他4種土壤的53%~60%,這很可能跟鐵鋁土的高C/N和低N/P有關(guān)。因此,對這些土壤進(jìn)行科學(xué)管理時,應(yīng)根據(jù)土壤類型選用適宜的N肥類型,同時,還應(yīng)提高土壤有機(jī)質(zhì)含量,增施P肥,充分發(fā)揮土壤對大氣CH4的氧化潛力。

      關(guān)鍵詞 甲烷氧化;土壤類型;硝態(tài)氮;銨態(tài)氮

      中圖分類號 Q938.1+3 文獻(xiàn)標(biāo)識碼 A

      Abstract Nitrogen inputs is one of the key factors affecting atmospheric methane consumption by soils. The soil samples collected from five litchi orchards in northern Hainan Island were incubated at 26 ℃ with gravimetric water content of 20% and an initial CH4 concentration of approximately 10 μL/L,in order to determine the effects of exogenous nitrogen on the methane oxidation in soils of different types. Average rate of CH4 oxidation without N inputs by Andosols,F(xiàn)errosols,Cambosols,F(xiàn)erralsols and Luvisols was 67.01,50.05,47.00,72.82 and 57.10 ng/(kg·h),respectively. Addition of KNO3 at 100 mg N kg-1 d.w.s did not result in significant inhibition of CH4 oxidation in the soils except Ferralsols due to the higher native nitrate content. In contrast,CH4 oxidation in all soils decreased significantly after adding(NH4)2SO4 at 100 mg N kg-1 d.w.s. For all studied soils,percent inhibition by ammonia increased with the rate of ammonia application,which was fit well by linear regression. The slope for Ferralsols was only 0.10 and 53%~60% of those for other soils,indicating that the extent of ammonia inhibition of CH4 oxidation in Ferralsols was the smallest among the soils of the five types. Such response of CH4 oxidation in Ferralsols to added ammonia might be attributed to the highest C:N ratio and the lowest N:P ratio. Therefore,the correct selection of N fertilizers,improvement of organic matter status of soil,and application of P fertilizer were recommended for maintaining high CH4 oxidation rates for upland soils.

      Key words Methane oxidation;Soil type;Nitrate;Ammonia

      doi 10.3969/j.issn.1000-2561.2016.08.015

      甲烷(CH4)是地球大氣中的一種溫室氣體,百年時間尺度上單分子CH4增溫潛勢是CO2的26倍[1]。CH4對全球變暖貢獻(xiàn)約占17%,僅次于CO2[2]。過去200年來,人類活動導(dǎo)致大氣CH4濃度增加,至2014年大氣CH4濃度已達(dá)1.83 μL/L,是工業(yè)革命前的2.54倍[2]。大氣CH4濃度的持續(xù)升高是CH4排放源增加或吸收匯減小的結(jié)果[3]。土壤是大氣CH4主要的生物匯,土壤中的微生物每年氧化消耗15~45 Tg CH4[4-6],其氧化過程由隸屬γ-變形菌綱(Gammaproteobacteria)(即Type Ⅱ型)甲烷氧化菌來完成,包括Methylocystis屬、山地土壤菌群α(USCα)和γ(USCγ)等,這些甲烷氧化菌擁有高親和力的甲烷單加氧酶(MMO)[6-9]。氮輸入(施N肥或N沉降)是影響土壤氧化吸收大氣CH4的重要因子之一,其效果可歸為3類:抑制作用、促進(jìn)作用和無影響[10-12]。CH4氧化對氮輸入的響應(yīng)往往與所施N肥的種類和數(shù)量以及土壤N背景值有關(guān),施用銨態(tài)氮的抑制效果比硝態(tài)氮更強(qiáng)[13],銨態(tài)氮對CH4氧化的抑制作用隨銨態(tài)氮添加量的加大而增大[14]?!暗柡汀保∟-saturated)成熟林土中N添加使CH4氧化顯著減少[15-16],而“氮限制”(N-limited)森林土壤的N水平未達(dá)抑制臨界值,故施N對這些土壤CH4吸收無顯著影響[15,17]。此外,土壤對大氣CH4的氧化吸收能力跟土壤的類型有關(guān),Akiyama等[18]和Morishita等[19]曾報道,火山灰土的CH4氧化速率遠(yuǎn)高于其他幾種土壤。

      海南島地處熱帶,既具有熱帶海洋性氣候,又受熱帶季風(fēng)氣候的影響,成為中國熱帶土壤最集中分布、土壤資源最豐富的地區(qū)[20]。本研究在瓊北選取不同土綱的5種荔枝土壤,探討不同氮濃度及氮肥種類對土壤CH4氧化能力的影響,有助于尋求適宜的管理措施,以增強(qiáng)熱帶亞熱帶林地土壤對大氣CH4的氧化潛力。

      1 材料與方法

      1.1 研究地區(qū)概況

      研究區(qū)處于低緯度熱帶北緣(19°11′-20°04′ N,108°56′-110°42′E),屬熱帶海洋性季風(fēng)氣候。全年日照時間長,光照充足,年日照1 800~2 300 h,年平均氣溫22.4~24.0 ℃。降雨充沛,年平均降雨量1 434.6~2 447.1 mm[21]。地貌類型以火山巖臺地為主,土壤類型以磚紅壤為主,水稻土零星分布,局部有火山灰土和石質(zhì)土。土地利用類型以耕地為主,其次為園地和林地[22]。選取分屬于火山灰土、富鐵土、雛形土、鐵鋁土和淋溶土等土綱的5種荔枝園土壤進(jìn)行研究,它們分別是:火山灰土,位于??谑协偵絽^(qū)永興鎮(zhèn)雷虎村荔枝園,砂土,土壤呈黑色;富鐵土,位于儋州市三都鄉(xiāng)德義嶺北坡荔枝園,黏土,土壤呈紅棕色;雛形土,位于儋州市烏石至那大公路45 km處荔枝園,粉砂黏壤土,土壤呈黃橙色;鐵鋁土,位于??谑协偵絽^(qū)三門坡鎮(zhèn)荔枝園,黏土,土壤呈棕色;淋溶土,位于海口市瓊山區(qū)內(nèi)村南100 m處荔枝園,砂壤土,土壤呈橙色[20]。

      1.2 方法

      1.2.1 土樣采集與處理 于2014年12月下旬采用五點采樣法,在除去地表凋落物和表層土壤后的樣點上采集5~15 cm土壤,混合均勻后用塑料袋運(yùn)回實驗室,自然條件下風(fēng)干,過2 mm篩,一部分土壤用于理化性質(zhì)的測定(表1)[23],另一部分土壤用于室內(nèi)培養(yǎng)實驗。

      1.2.2 室內(nèi)培養(yǎng)實驗 稱取相當(dāng)于20 g干土的供試土樣于150 mL厭氧瓶中,分別加入含有0.4、1.2、2、4、6 mg N的(NH4)2SO4和2 mg N的KNO3作為各種外源氮處理,添加無菌去離子水作為不加氮處理(即對照),用無菌去離子水調(diào)節(jié)土壤水含量至20%;注入一定體積的高濃度CH4標(biāo)準(zhǔn)氣體使瓶內(nèi)頂空CH4濃度達(dá)10 μL/L左右[7,24],每處理設(shè)3次重復(fù);將所有厭氧瓶放置到26 ℃的黑暗條件下培養(yǎng)16 d,期間每3 d用Agilent 7890a氣相色譜儀測定一次瓶內(nèi)CH4濃度,以已知濃度的CH4標(biāo)準(zhǔn)氣體作參照進(jìn)行計算。根據(jù)瓶內(nèi)頂空CH4濃度隨時間變化的直線斜率,計算出CH4氧化速率。外源氮對每種土壤CH4氧化的抑制率按下列公式計算:

      PI=(1-Rt/Rc)×100

      其中,PI為土壤CH4氧化抑制率(%);Rt為外源氮處理的CH4氧化速率;Rc為不添加氮處理的CH4氧化速率。

      1.3 數(shù)據(jù)分析

      采用Excel 2003、SAS 9.1統(tǒng)計軟件進(jìn)行單因素方差分析、相關(guān)性分析及Duncan多重比較和作圖。

      2 結(jié)果與分析

      2.1 外源硝態(tài)氮和銨態(tài)氮對土壤CH4氧化速率的影響

      在不添加外源氮條件下,5種土壤對CH4的氧化能力有一定的差異(表2)。鐵鋁土的CH4氧化速率高,為72.82 ng/(kg·h),火山灰土[67.01 ng/(kg·h)]次之。富鐵土、雛形土和淋溶土的CH4氧化速率介于47.00~57.10 ng/(kg·h),這3種土壤之間沒有顯著差異(p>0.05)。土壤的各種理化參數(shù)中(表1),僅C/N和全磷與CH4氧化速率的相關(guān)性達(dá)到了顯著水平,均呈正相關(guān)關(guān)系,其相關(guān)系數(shù)分別為0.928和0.911。

      按100(mg/kg)N添加硝態(tài)氮后,以火山灰土的CH4氧化速率最高,其值為60.24 ng/(kg·h),雛形土的CH4氧化速率最低,僅為38.16 ng/(kg·h)(見表2)?;鹕交彝罜H4氧化速率與其他4種土壤CH4氧化速率之間的差異均達(dá)到顯著水平(p<0.05)。

      在添加銨態(tài)氮[100(mg/kg)N]條件下,鐵鋁土CH4氧化速率為59.98 ng/(kg·h),顯著高于其他4種土壤的CH4氧化速率(p<0.05)(表2)。富鐵土和雛形土的CH4氧化速率比較低,介于33.04~35.43 ng/(kg·h)。

      外源硝態(tài)氮和銨態(tài)氮對CH4氧化的抑制效果隨土壤種類而異。除鐵鋁土外,銨態(tài)氮對其余4種土壤CH4氧化的抑制作用均高于硝態(tài)氮(表2)。硝態(tài)氮僅對鐵鋁土的CH4氧化有顯著的抑制作用(p<0.05),其抑制率高達(dá)32.42%。銨態(tài)氮對5種土壤的CH4氧化均有顯著的抑制作用(p<0.05),抑制率介于17.64%~35.86%。

      2.2 添加不同濃度銨態(tài)氮對土壤CH4氧化速率的影響

      按20~300(mg/kg)N添加銨態(tài)氮后,5種土壤的CH4氧化速率均隨銨態(tài)氮濃度的增加而下降。銨態(tài)氮對每種土壤CH4氧化的抑制率與銨態(tài)氮的添加量均呈極顯著的正相關(guān)(表3)。表3中回歸方程的參數(shù)b用來表征單位銨態(tài)氮添加量對土壤CH4氧化的抑制潛能。鐵鋁土的參數(shù)b值僅為0.10,而其他4種土壤的b值比較接近,介于0.16~0.18。由此可見,外源銨態(tài)氮對鐵鋁土CH4氧化的抑制潛能比其他4種土壤低40%~47%。

      3 討論與結(jié)論

      本研究采用室內(nèi)培養(yǎng)實驗評價了5種荔枝土壤對低濃度CH4的氧化能力的影響,其氧化速率大小排序為:鐵鋁土>火山灰土>淋溶土>富鐵土>雛形土。國外的研究曾證實,火山灰土對大氣CH4的吸收能力遠(yuǎn)高于其他土壤[18-19,25]。

      不同類型的土壤理化特性不同。土壤CH4氧化速率與土壤理化特征值的相關(guān)分析結(jié)果表明,土壤C/N和全磷含量愈高,CH4氧化速率愈高。鐵鋁土和火山灰土的C/N和全磷含量位列前2位,所以,這2種土壤有較強(qiáng)的CH4氧化能力。富鐵土和雛形土擁有較低的C/N和全磷,其CH4氧化速率顯著低于前2種土壤。Tamai等[26]對樹齡為30~40年的日本扁柏林的研究表明,土壤對大氣CH4的吸收與土壤C/N呈顯著正相關(guān)。Veraart等[27]發(fā)現(xiàn)土壤P含量跟CH4氧化呈正相關(guān)。增施P肥能提高土壤中大氣CH4的氧化速率[16]。土壤C/N和全磷對CH4氧化的影響應(yīng)該與相關(guān)微生物群落結(jié)構(gòu)的變化有關(guān),土壤C/N和P含量是影響土壤細(xì)菌群落結(jié)構(gòu)的主要因子[28-29]。長期施N可使高親和力TypeⅡ型甲烷氧化菌種群數(shù)量減少70%以上[30]。土壤中微生物的活性因缺P而被抑制[31],施用P肥可使土壤微生物的生物量顯著增加[32-33]。

      土壤CH4氧化速率可能還受土壤鋁含量的影響。在本研究中,5種土壤均為酸性土,雛形土的交換性鋁含量最高,為3.42 cmol/kg。當(dāng)pH<4.8時,土壤鋁的溶解性會顯著增加,難溶性鋁轉(zhuǎn)變成交換性鋁,添加水溶性鋁鹽能抑制土壤對大氣CH4的氧化能力[24,26,34],所以,一旦土壤pH偏低或出現(xiàn)酸化,鋁會大量溶出,土壤對大氣CH4的氧化能力就會降低。在溫帶森林土壤[35]和熱帶土壤[36]均發(fā)現(xiàn)了鋁毒對CH4氧化的抑制作用。鐵鋁土的交換性鋁含量也較高,僅次于雛形土,但是前者含有較多的P,而P能吸附鋁[37],可減輕鋁對甲烷氧化菌的毒害作用[15,38]。

      土壤CH4氧化對外源氮的響應(yīng)往往與外源氮的種類和數(shù)量以及土壤N背景值有關(guān)。本研究結(jié)果表明,按100(mg/kg)N添加硝態(tài)氮后,只有鐵鋁土的CH4氧化過程受到顯著的抑制,這可能跟該土壤的硝態(tài)氮背景值較高有關(guān),鐵鋁土硝態(tài)氮含量高達(dá)67.88 mg/kg,其他4種土壤僅為13.46~18.79 mg/kg。按100(mg/kg)N添加的銨態(tài)氮對5種土壤的CH4氧化均有顯著的抑制作用。除鐵鋁土外,銨態(tài)氮對CH4氧化的抑制作用均大于硝態(tài)氮。Li等[39]在亞熱帶雛形土的研究中也觀測到類似的現(xiàn)象,銨態(tài)氮對CH4氧化有更強(qiáng)的抑制效果。國外研究者還證實,施用尿素后黃杉林火山灰土[25]和亞熱帶草原富鐵土[40]中大氣CH4的氧化過程受到明顯的抑制。在本研究中,銨態(tài)氮對5種土壤CH4氧化的抑制作用均隨銨態(tài)氮添加量的加大而增大,關(guān)于銨態(tài)氮的這種濃度效應(yīng)已有報道,如溫帶淋溶土[14]和亞熱帶雛形土[39]。然而,每單位(mg/kg)銨態(tài)氮添加量對CH4氧化的抑制潛能跟土壤類型有密切的關(guān)系。每單位銨態(tài)氮添加量對鐵鋁土CH4氧化的抑制潛能比其他4種土壤都低,這可能跟土壤的C/N和N/P有關(guān),在5種土壤中,鐵鋁土擁有最高的C/N和最低的N/P。土壤C/N是指土壤有機(jī)質(zhì)中的有機(jī)碳總量和氮素總量之比,其大小可反映有機(jī)質(zhì)的分解狀況,被認(rèn)為是氮素礦化能力的標(biāo)志。土壤氮的總礦化速率跟土壤C/N呈負(fù)相關(guān)[41-43],所以,高C/N意味著土壤內(nèi)部銨態(tài)氮的供應(yīng)量少。鐵鋁土銨態(tài)氮背景值的確比其他4種土壤都低(見表1)。此外,有研究表明,施P肥能有效緩解氮沉降對CH4氧化的抑制作用[16],此現(xiàn)象意味著N/P變小時外源氮對土壤CH4氧化的抑制潛能會下降。

      綜上所述,瓊北5種不同類型旱地土壤對CH4的吸收能力有一定的差異。外源硝態(tài)氮和銨態(tài)氮對土壤CH4氧化的抑制效果隨土壤的類型、C/N和全P而異。因此,對這些土壤進(jìn)行科學(xué)管理時,應(yīng)根據(jù)土壤類型選用適宜的N肥類型;同時,還應(yīng)提高土壤有機(jī)質(zhì)含量,增施P肥,進(jìn)而促使土壤對大氣CH4的氧化能力維持在較高的水平上。

      參考文獻(xiàn)

      [1] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013, 1-1535.

      [2] World Meteorological Organization. The state of greenhouse gases in the atmosphere based on global observations through 2014[J]. WMO greenhouse gas bulletin, 2015, 11: 1-4.

      [3] Dalal R C, Allen D E, Livesley S J, et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review[J]. Plant and Soil, 2008, 309(1-2): 43-76.

      [4] Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292.

      [5] Curry C L. The consumption of atmospheric methane by soil in a simulated future climate[J]. Biogeosciences, 2009, 6(11): 2 355-2 367.

      [6] Kolb S. The quest for atmospheric methane oxidizers in forest soils[J]. Environmental Microbiology Reports, 2009, 1(5): 336-346.

      [7] Lima A B, Muniz A W, Dumont M G. Activity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils[J]. Frontiers in Microbiology, 2014, 5: 550.

      [8] Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6(487): 1-38.

      [9] 張堅超, 徐鐿欽, 陸雅海.陸地生態(tài)系統(tǒng)甲烷產(chǎn)生和氧化過程的微生物機(jī)理[J]. 生態(tài)學(xué)報, 2015, 35(20): 6 592-6 603.

      [10] Bodelier P L E. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils[J]. Current Opinion in Environmental Sustainability, 2011, 3(3): 379-388.

      [11] 程淑蘭, 方華軍, 于貴瑞, 等.森林土壤甲烷吸收的主控因子及其對增氮的響應(yīng)研究進(jìn)展[J]. 生態(tài)學(xué)報, 2012, 32(15): 4 914-4 923.

      [12] Shrestha R K, Strahm B D, Sucre E B. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems[J]. New Forests, 2015, 46(2): 167-193.

      [13] Wang Y, Cheng S, Fang H, et al. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in Southern China[J]. PLOS ONE, 2014, 9(4): e93 571.

      [14] Hütsch B W. Methane oxidation in arable soil as inhibited by ammonium, nitrite and organic manure with respect to soil pH[J]. Biology and Fertility of Soils, 1998, 28(1): 27-35.

      [15] Zhang W, Mo J, Zhou G, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. Journal of Geophysical Research, 2008, 113(D11): 3 078.

      [16] Zhang T, Zhu W, Mo J. Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China[J]. Biogeosciences, 2011, 8(9), 2 805-2 813.

      [17] Veldkamp E, Koehler B, Corre M D. Indications of nitrogen-limited methane uptake in tropical forest soils[J]. Biogeosciences Discussions, 2013, 10(3): 6 007-6 037.

      [18] Akiyama H, Morimoto S, Tago K, et al. Relationship between ammonia oxidizers and N2O and CH4 fluxes in agricultural fields with different soil types[J]. Soil Science and Plant Nutrition, 2014, 60(4): 520-529.

      [19] Morishita T, Sakata T, Takahashi M, et al. Methane uptake and nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types[J]. Soil Science and Plant Nutrition, 2007, 53(5): 678-691.

      [20] 龔子同, 張甘霖, 漆智平.海南島土系概論[M]. 北京: 科學(xué)出版社, 2004: 99-211.

      [21] 海南省人民政府. 海南年鑒2013[M]. ??冢?海南年鑒社, 2013: 60-61.

      [22] 海南省地質(zhì)調(diào)查院. 瓊北火山巖區(qū)農(nóng)田土壤重金屬生態(tài)地球化學(xué)評價報告[R]. ??冢?海南省地質(zhì)調(diào)查院, 2010.

      [23] 鮑士旦. 土壤農(nóng)化分析(第三版)[M]. 北京: 中國農(nóng)業(yè)出版社, 2000.

      [24] Nanba K, King G M. Response of atmospheric methane consumption by Maine forest soils to exogenous aluminum salts[J]. Applied and Environmental Microbiology, 2000, 66(9): 3 674-3 679.

      [25] Shrestha R K, Strahm B D, Sucre E B, et al. Fertilizer management, parent material and stand age influence forest soil greenhouse gas fluxes[J]. Soil Science Society of America Journal, 2014, 78(6): 2 041-2 053.

      [26] Tamai N, Takenaka C, Ishizuka S, et al. Methane flux and regulatory variables in soils of three equal-aged Japanese cypress(Chamaecyparis obtusa)forests in central Japan[J]. Soil Biology and Biochemistry, 2003, 35(35): 633-641.

      [27] Veraart A J, Steenbergh A K, Ho A, et al. Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments[J]. Geoderma, 2015, (259-260): 337-346.

      [28] Nielsen U N, Osler G H R, Campbell C D, et al. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale[J]. Journal of Biogeography, 2010, 37(7): 1 317-1 328.

      [29] Kuramae E E, Yergeau E, Wong L C, et al. Soil characteristics more strongly influence soil bacterial communities than land-use type[J]. FEMS Microbiology Ecology, 2012, 79(1): 12-24.

      [30] Maxfield P J, Hornibrook E R C, Evershed R P. Acute impact of agriculture on high-affinity methanotrophic bacterial populations[J]. Environmental Microbiology, 2008, 10(7): 1 917-1 924.

      [31] Cleveland C C, Townsend A R, Schmidt S K. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies[J]. Ecosystems, 2002, 5(7): 680-691.

      [32] Liu L, Gundersen P, Zhang T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J]. Soil Biology and Biochemistry, 2012, 44(1): 31-38.

      [33] Liu L, Zhang T, Gilliam F S, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. PLOS ONE, 2013, 8(4): 61.

      [34] Tamai N, Takenaka C, Ishizuka S. Water-soluble al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil[J]. Soil Biology and Biochemistry, 2007, 39(7): 1 730-1 736.

      [35] Benstead J, King G M. The effect of soil acidification on atmospheric methane uptake by a Maine forest soil[J]. FEMS Microbiology Ecology, 2001, 34(3): 207-212.

      [36] Hassler E, Corre M D, Tjoa A, et al. Soil fertility controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations[J]. Biogeosciences, 2015, 12(12): 5 831-5 852.

      [37] Frossard E, Brossard M, Hedley MJ, et al. Reactions controlling the cycling of P in soils[M]∥Tiessen H. Phosphorus in the global environment: transfers, cycles and management. New York: John Wiley & Sons,1995: 107-137.

      [38] Bradford M A, Ineson P, Wookey P A, et al. The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study[J]. Soil Biology and Biochemistry, 2001, 33(1): 1 695-1 702.

      [39] Li X, Cheng S, Fang H, et al. The contrasting effects of deposited NH4+ and NO3- on soil CO2, CH4 and N2O fluxes in a subtropical plantation, Southern China[J]. Ecological Engineering, 2015, 85: 317-327.

      [40] Scheer C, Grace P R, Rowlings D W, et al. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia[J]. Plant and Soil, 2010, 345(1): 47-58.

      [41] Booth M S, Stark J M, Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data[J]. Ecological Monographs, 2005, 75: 139-157.

      [42] Hogberg M N, Chen Y, Hogberg P. Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests[J]. Biology and Fertility of Soils, 2007, 44(2): 363-366.

      [43] Christenson L M, Lovett G M, Weathers K C, et al. The influence of tree species, nitrogen fertilization, and soil C to N ratio on gross soil nitrogen transformations[J]. Soil Science Society of America Journal, 2009, 73(2): 638-646.

      猜你喜歡
      銨態(tài)氮
      玉米對氮素形態(tài)的反應(yīng)及機(jī)制研究進(jìn)展
      離子型稀土尾礦深層土壤剖面銨態(tài)氮污染特征及影響因素*
      錳離子對引黃灌區(qū)不同質(zhì)地土壤銨態(tài)氮吸附影響
      不同質(zhì)地土壤銨態(tài)氮吸附/解吸特征
      土壤輻照滅菌對土壤中銨態(tài)氮和硝態(tài)氮行為的影響
      不同鹽堿化土壤對NH+4吸附特性研究
      碳源共施對不同氮源的凈化效果的影響
      模擬降雨條件下不同植被覆蓋度/格局的坡地土壤銨態(tài)氮流失特征
      冬牧70黑麥秸稈還田對煙田土壤氮素礦化的影響
      有機(jī)質(zhì)對城市污染河道沉積物銨態(tài)氮吸附-解吸的影響*
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      404 Not Found

      404 Not Found


      nginx
      丰镇市| 临澧县| 三门县| 夏河县| 朝阳县| 尚志市| 仙桃市| 松阳县| 大庆市| 监利县| 塔河县| 中宁县| 洛阳市| 南投县| 柳州市| 定安县| 三原县| 武川县| 建昌县| 咸阳市| 建平县| 红原县| 油尖旺区| 襄垣县| 乌审旗| 新密市| 苍梧县| 工布江达县| 始兴县| 蕉岭县| 申扎县| 河间市| 门头沟区| 青河县| 门源| 西青区| 华池县| 资阳市| 泊头市| 莆田市| 漾濞|