• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      松花江流域不同空間尺度典型流域泥沙輸移比及其影響因素

      2016-06-18 07:12:36高燕張延玲焦劍謝云
      中國水土保持科學(xué) 2016年1期
      關(guān)鍵詞:松花江流域流域面積輸沙量

      高燕,張延玲,焦劍,謝云

      (1.水利部松遼水利委員會,130021,長春;2.中國水利水電科學(xué)研究院,100048,北京;3.北京師范大學(xué)地理學(xué)與遙感科學(xué)學(xué)院,100875,北京)

      ?

      松花江流域不同空間尺度典型流域泥沙輸移比及其影響因素

      高燕1,張延玲1,焦劍2?,謝云3

      (1.水利部松遼水利委員會,130021,長春;2.中國水利水電科學(xué)研究院,100048,北京;3.北京師范大學(xué)地理學(xué)與遙感科學(xué)學(xué)院,100875,北京)

      摘要:為在不同空間尺度上對東北黑土區(qū)流域侵蝕產(chǎn)沙建立宏觀認(rèn)識,以松花江流域為研究區(qū),選擇不同尺度的典型流域,通過收集降水、遙感影像和土地利用資料,計算不同尺度流域土壤流失量;采用流域出口量水堰和水文站徑流泥沙觀測資料,計算流域輸沙量,從而得出不同空間尺度典型流域懸移質(zhì)泥沙輸移比(SDR)。研究區(qū)小尺度流域全年SDR為0.33,大中尺度流域SDR變化于0.005~0.365之間,平均僅0.051。本區(qū)SDR存在顯著的季節(jié)差異:小尺度流域雨季SDR為0.38,春季融雪侵蝕期僅為0.17;流域面積(A)和主河道比降(SLP)是影響大中尺度流域SDR的重要因素;SDR與A呈冪函數(shù)遞減關(guān)系,這在丘陵漫崗區(qū)更為顯著;山區(qū)的流域的SDR隨SLP的增加而遞增。研究成果有助于建立本區(qū)土壤侵蝕與流域產(chǎn)沙之間的定量關(guān)系,為流域水土保持規(guī)劃提供科學(xué)依據(jù)。

      關(guān)鍵詞:泥沙輸移比; 土壤流失量; 輸沙量; 流域面積; 主河道比降; 黑土區(qū); 松花江流域

      泥沙輸移比是流域侵蝕產(chǎn)沙研究中的基礎(chǔ)問題。泥沙輸移比為流域出口控制斷面的輸沙量與控制斷面以上流域土壤流失總量的比值,是在不同空間尺度上建立產(chǎn)沙量和侵蝕量之間聯(lián)系的定量因子[1-2]。其中,流域輸沙量可以通過在出口設(shè)置水文站或量水堰,進(jìn)行水文觀測獲得;而作為推算泥沙輸移比的重要環(huán)節(jié),流域土壤流失量的計算是制約流域泥沙輸移比計算精度的重要因素。

      計算土壤流失量方法較多,總體而言可分為實(shí)地測量調(diào)查、模型計算和遙感調(diào)查等3大類。對于面積較大的區(qū)域,實(shí)地測量調(diào)查工作量十分巨大,結(jié)合遙感圖像信息,利用土壤侵蝕模型計算土壤流失量是相對簡便可行的方法[3]。在建模方法上,主要通過因果分析和統(tǒng)計分析,確定影響土壤侵蝕的主要因素,進(jìn)而建立計算土壤流失量方程式[4-5]。

      東北地區(qū)是我國重要的商品糧基地;然而,人類的長期不合理開發(fā)使得該地區(qū)水土流失日益嚴(yán)重,已對糧食安全構(gòu)成嚴(yán)重威脅[6]?,F(xiàn)有研究表明,東北黑土區(qū)坡面侵蝕面積大,河道輸沙量小是本區(qū)侵蝕產(chǎn)沙的鮮明特點(diǎn)之一[7]。由于目前尚不清楚流域尺度內(nèi)侵蝕物質(zhì)發(fā)生堆積的區(qū)域和條件,現(xiàn)有研究不能有效建立坡面侵蝕和流域產(chǎn)沙之間的定量聯(lián)系;因此,開展東北黑土區(qū)泥沙輸移比的研究,在不同空間尺度上對流域侵蝕產(chǎn)沙建立宏觀認(rèn)識,可為該區(qū)水土流失綜合治理提供重要科學(xué)依據(jù)。筆者以東北黑土區(qū)的松花江流域為研究區(qū),選擇不同尺度的典型流域,通過收集降水、遙感影像和土地利用資料,計算土壤流失量,采用流域出口量水堰和水文站徑流泥沙觀測資料,計算流域輸沙量,得出不同空間尺度典型流域泥沙輸移比,以建立本區(qū)土壤侵蝕與流域產(chǎn)沙之間的定量關(guān)系。

      1研究區(qū)概況

      圖1 氣象站和水文站分布Fig.1 Distribution of meteorological stations and hydrological stations

      松花江流域三面環(huán)山,西部和北部為大興安嶺和小興安嶺(合稱興安嶺山地),流域東部及東南部為完達(dá)山脈、老爺嶺、張廣才嶺和長白山脈(合稱流域東部山地)。興安嶺山地和流域東部山地自其山前丘陵區(qū)和漫川漫崗區(qū)向流域中心地帶的平原過渡。筆者在松花江干流、第二松花江和嫩江的不同級別支流共選擇35個流域(圖1)。其中:17個流域主體海拔高度在500 m以上,以山地為主,主河道比降變化介于2‰~5‰之間;18個流域主體海拔高度在200~500 m之間,以丘陵漫川漫崗為主,主河道比降變化介于1‰~2‰之間。鶴北8號流域位于農(nóng)墾九三分局鶴北流域內(nèi),流域面積2.8 km2,地貌類型為丘陵漫崗,坡緩坡長,土地利用以耕地為主,耕地面積占流域總面積的98%。

      按空間尺度差異,將研究流域分為小、中、大3類。參考已有的流域尺度類別劃分標(biāo)準(zhǔn)[8-9],將面積<100 km2的流域劃分為小尺度流域,選擇鶴北8號流域作為研究的典型流域,將面積>2 000 km2的流域劃分為大尺度流域,100~2 000 km2的流域為中尺度流域。

      2材料與方法

      2.1資料收集

      資料主要有降水資料、地圖與遙感資料、水文資料和徑流小區(qū)產(chǎn)流泥沙資料。降水資料包括36個氣象站和35個雨量站自20世紀(jì)50年代至2010年底的逐年日降雨數(shù)據(jù),用于計算降雨-徑流侵蝕力。地圖與遙感資料包括東北地區(qū)1∶100萬土壤類型圖和土地利用圖、美國航天飛機(jī)雷達(dá)拓樸測繪數(shù)據(jù)、小流域坡度遙感數(shù)據(jù)和土地利用(分辨率30 m×30 m)。其中,土壤類型圖用于計算土壤可蝕性,雷達(dá)拓樸測繪數(shù)據(jù)和土地利用圖用于提取大中尺度流域地表坡度和土地利用信息,小流域坡度遙感和土地利用數(shù)據(jù)用于提取小尺度流域地表坡長、坡度和土地利用信息,以計算坡長、坡度因子和水土保持措施因子。

      水文資料包括松花江流域35個水文站點(diǎn)(圖1)自20世紀(jì)50年代至2010年底的逐日降水量、徑流量和泥沙含量(懸移質(zhì))資料,以及鶴北8號小流域2004—2006年把口徑流堰徑流泥沙資料,以計算流域輸沙量。各水文站資料年限在12~55年之間,平均為28.8年。

      徑流小區(qū)產(chǎn)流泥沙資料為鶴北8號小流域17個徑流小區(qū)2004—2006年逐次產(chǎn)流的徑流量和泥沙量,可用于計算小尺度流域土壤流失量。

      2.2土壤流失量計算

      2.2.1大中尺度流域土壤流失量計算利用Liu Baoyuan等[10]提出的中國土壤流失預(yù)報方程(Chinese Soil Loss Equation,CSLE)計算多年平均土壤流失量

      AE=RKLSBET。

      (1)

      式中:AE為多年平均年土壤流失量,t/(hm2·a);R為降雨-徑流侵蝕力,MJ·mm/(hm2·h·a),依據(jù)多年平均降水量計算[11];K為土壤可蝕性,t·hm2·h/(hm2·MJ·mm),利用三次樣條法[12-13]計算。L和S分別為坡長因子和坡度因子。本文視研究區(qū)耕地地表坡長為300 m,其他土地利用類型為100 m,則L值依據(jù)劉寶元等[14]提出的典型黑土區(qū)坡長因子公式計算;S依據(jù)RUSLE[4]和Liu B Y等[15]提出的方法計算:

      (2)

      B為生物措施因子:耕地B值為大豆和玉米生物措施因子的平均值;疏林地、園地和草地B值依據(jù)本區(qū)荒山灌木梗小區(qū)觀測值確定,為0.054[16];水域、居民點(diǎn)、獨(dú)立工礦地和交通用地B值為0。根據(jù)水土流失抽樣調(diào)查結(jié)果,本區(qū)有林地的植被覆蓋度基本在70%~80%之間,故研究視有林地植被覆蓋度為75%,依據(jù)用劉秉正等[17]提出的經(jīng)驗公式計算得其B因子值為0.022。E為工程措施因子,取值為1。T為耕作措施因子,取橫坡和順坡種植的耕作措施因子的平均值,為0.441[16],其他土地利用類型T值均為1。

      多年平均土壤流失量由上述各因子圖層疊加運(yùn)算獲得,網(wǎng)格大小均插值到90 m×90 m。

      2.2.2小尺度流域土壤流失量計算流域侵蝕總量為片蝕量、淺溝侵蝕量和切溝侵蝕量之和。其中,片蝕量依據(jù)式(1)計算,除L和S因子,其他因子均利用雨季徑流小區(qū)產(chǎn)流泥沙資料獲得,并以網(wǎng)格分辨率為30 m×30 m的精度計算各流域土壤流失量。淺溝侵蝕量依據(jù)張永光等[18]觀測的淺溝侵蝕量獲得;根據(jù)Wu Yangqiu等[19]推算,該流域切溝侵蝕量應(yīng)為淺溝侵蝕量的2.35倍。

      2.3流域泥沙輸移比計算

      各流域的泥沙輸移比(SDR)為流域出口控制斷面的輸沙量與用模型計算的該流域土壤流失總量的比值。流域出口斷面輸沙量由徑流量和徑流含沙量獲得。本文將分析流域面積(A)、主河道比降(SLP)等下墊面特征對泥沙輸移比(SDR)的影響。對于小尺度流域,則分析了不同季節(jié)泥沙輸移比的差異。由于本區(qū)水文測站普遍缺乏推移質(zhì)觀測資料,筆者計算的SDR值為懸移質(zhì)泥沙輸移比。

      3結(jié)果與分析

      3.1小尺度流域泥沙輸移比

      鶴北8號小流域全年泥沙輸移比為0.33,雨季侵蝕產(chǎn)沙過程的泥沙輸移比變化介于0.04~0.76之間,平均為0.38。流域地表坡度大多在3°以下,致使匯流速度慢,徑流容易入滲;且夏季氣溫高,蒸發(fā)強(qiáng)烈。地表徑流在入滲和蒸發(fā)的同時,所挾帶侵蝕物質(zhì)會在坡腳、草甸等地勢平緩或地表阻力較大處沉積。鶴北8號小流域春季融雪侵蝕期流域泥沙輸移比僅為0.17。流域不同季節(jié)被輸送的泥沙質(zhì)地有顯著差別,融雪侵蝕期大多數(shù)泥沙來源于溝蝕和重力侵蝕,侵蝕物質(zhì)以粗沙為主;降雨侵蝕期大多數(shù)泥沙來源于面蝕和細(xì)溝侵蝕,侵蝕物質(zhì)以細(xì)沙為主。在泥沙輸移過程中,粗沙更易沉積,而細(xì)沙更易傳輸?shù)较掠巍?/p>

      3.2大中尺度流域泥沙輸移比

      本區(qū)大中尺度流域泥沙輸移比普遍較低,其值變化于0.005~0.365之間,平均僅為0.051,表明大部分侵蝕物質(zhì)在到達(dá)流域出口之前已發(fā)生沉積。侵蝕物質(zhì)的遷移距離和流域地形特征對本區(qū)SDR值有顯著影響。隨著A擴(kuò)大,侵蝕物質(zhì)遷移距離相應(yīng)增加,其發(fā)生沉積的可能性相應(yīng)增加。SDR與A的線性相關(guān)并不十分顯著,二者呈冪函數(shù)遞減關(guān)系(圖2):

      SDR=1.25A-0.41

      (R2= 0.32,n = 35,P < 0.01)。

      (3)

      圖2 松花江流域懸移質(zhì)泥沙輸移比與流域面積的關(guān)系Fig.2 Relationship between sediment delivery ratio of suspended load and drainage area in Songhua River Basin

      圖3 丘陵漫崗區(qū)和山區(qū)流域懸移質(zhì)泥沙輸移比與   流域面積的關(guān)系Fig.3 Relationship between sediment delivery ratio of suspended load and drainage area for the mountainous and hilly regions

      在坡緩坡長的丘陵漫崗區(qū),這一關(guān)系更為顯著(圖3):

      SDR= 4.01A-0.52

      (R2=0.55,n=18,P<0.01)。

      (4)

      位于山區(qū)的流域,其SDR隨SLP的增加而遞增,表明在地表起伏更為顯著,坡度相對較陡的流域,坡面侵蝕產(chǎn)生的泥沙更易被運(yùn)移至流域出口(圖4):

      SDR=0.007SLP+0.004

      (R2=0.48,n=16,P<0.01)

      (5)

      圖4 山區(qū)流域懸移質(zhì)泥沙輸移比與主河道比降的關(guān)系Fig.4 Relationship between sediment delivery ratio of suspended load and the slope for the main channel in mountainous region

      3.3東北典型黑土區(qū)侵蝕泥沙坡面至河道運(yùn)移過程

      我國黃河流域主要支流SDR值多變化,介于0.5~1.0之間[20-23];長江流域主要支流SDR值多變化,介于0.3~0.7之間[24-27]。與之相比,筆者所計算的各流域泥沙輸移比較低。本區(qū)侵蝕泥沙自坡面至河道的運(yùn)移特征可能是影響不同空間尺度SDR值變化的重要原因。

      東北典型黑土區(qū)地貌以丘陵漫川漫崗為主,坡度一般不大,主要是直線坡和凹形坡,也有一些弱變化的復(fù)式坡和不明顯的凹坡,從坡頂向下,面蝕起初隨坡面徑流厚度、流速和攜帶泥沙量的增大而逐漸增強(qiáng),至一定距離后,由于泥沙負(fù)荷太大,損耗徑流沖刷力使面蝕減弱,及至坡腳則代之以堆積[27]。而溝蝕在坡面和谷底均有發(fā)育。坡面溝侵蝕主要來源于溝壁崩塌和溝底下切;谷底溝溝頭溯源侵蝕濕潤年份發(fā)育迅速,干旱年份發(fā)育基本停滯,在降雨量中等的年份則多出現(xiàn)堆積[28]。

      目前,有關(guān)東北黑土區(qū)主要侵蝕類型特征均有報道,但對流域內(nèi)泥沙沉積的研究相對較為薄弱。在流域侵蝕產(chǎn)沙觀測中,需通過塘庫泥沙淤積調(diào)查、放射性元素測年等方法[29-30],推算泥沙淤積量。

      4結(jié)論

      1)本區(qū)小尺度流域全年泥沙輸移比為0.33,即約有2/3之多的侵蝕物質(zhì)在泥沙輸移過程中沉積。隨著流域尺度的增大,侵蝕物質(zhì)在進(jìn)入河道前發(fā)生沉積的機(jī)率會進(jìn)一步增加。本區(qū)大中尺度流域泥沙輸移比普遍較低,其值變化介于0.005~0.365之間,平均僅為0.051。

      2)本區(qū)泥沙輸移比存在顯著的季節(jié)差異,這主要由泥沙粒徑組成的差異造成。小尺度流域雨季侵蝕產(chǎn)沙過程的泥沙輸移比為0.38,春季融雪侵蝕期流域泥沙輸移比僅為0.17。融雪侵蝕期絕大多數(shù)泥沙來源于溝蝕和重力侵蝕,侵蝕物質(zhì)以粗沙為主;降雨侵蝕期泥沙多來源于面蝕和細(xì)溝侵蝕,侵蝕物質(zhì)以細(xì)沙為主。

      3)流域面積(A)和主河道比降(SLP)是影響大中尺度流域泥沙輸移比(SDR)的重要因素。SDR與A呈冪函數(shù)遞減關(guān)系,在坡緩坡長的丘陵漫崗區(qū),這一關(guān)系更為顯著SDR=4.01A-0.52。位于山區(qū)的流域,SDR隨SLP的增加而遞增。

      5參考文獻(xiàn)

      [1]Walling D E. The sediment delivery problem [J]. Journal of Hydrology, 1983, 65(83):209.

      [2]Lane L J,Hernandez M,Nichols M. Processing controlling sediment yield from watersheds as functions of spatial scale [J]. Environment Modeling & Software, 1997, 12(4): 355.

      [3]Van der Kinff J M, Jones R J A, Montanarella L. Soil erosion risk assessment in Europe[R]. Brussels, Belgium: European Commission, European Soil Bureau, 2000.

      [4]Renard K G, Forster G R, Weesies G A, et al. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE) [M]. Washington D C: US Department of Agriculture, 1997:14-17.

      [5]Lu H,Gallant J,Prosser I P, et al. Prediction of sheet and rill erosion over the Australian Continent,incorporating monthly soil loss distribution. CSIRO Land and Water Technical Report 13/01[R]. Canberra, Australia: Commonwealth Scientific and Industrial Research Organization, 2001.

      [6]Duan Xingwu, Xie Yun, Feng Yanjie,et al. Study on the method of soil productivity assessment in black soil region of Northeast China [J]. Agricultural Sciences in China, 2009, 8(4):472.

      [7]張小平,梁愛珍,申艷,等. 東北黑土水土流失特點(diǎn)[J]. 地理科學(xué),2006,26(6):687.

      Zhang Xiaoping, Liang Aizheng, Shen Yan, et al. Erosion characteristics of black soils in Northeast China[J]. Scientia Geographica Sinica, 2006, 26(6):687. (in Chinese)

      [8]王萬忠,焦菊英. 黃土高原侵蝕產(chǎn)沙與黃河輸沙[M]. 北京:科學(xué)出版社,1996:11-18.

      Wang Wanzhong, Jiao Juying. Rainfall and erosion sediment yield in the Loess Plateau and sediment transformation in the Yellow River Basin[M]. Beijing: Science Press, 1996. (in Chinese)

      [9]Gassman P W, Reyes M R, Green C H, et al. The Soil and water assessment tool: historical development, applications and future research directions [J]. Transactions of the ASABE, 2007, 50(4): 1211.

      [10]Liu Baoyuan, Zhang Keli, Xie Yun. An Empirical Soil Loss Equation [C]∥Proceedings of 12th ISCO conference, Vol. II Process of soil Erosion and Its Environment Effect. Beijing: Tsinghua University Press, 2002:21-25.

      [11]焦劍,謝云,林燕,等. 東北地區(qū)降雨-徑流侵蝕力研究[J]. 中國水土保持科學(xué),2009,7(3): 6.

      Jiao Jian, Xie Yun, Lin Yan, et al. Study on rainfall-runoff erosivity index in Northeastern China[J]. Science of Soil and Water Conservation, 2009, 7(3): 6. (in Chinese)

      [12]蔡永明,張科利,李雙才. 不同粒徑制間土壤質(zhì)地資料的轉(zhuǎn)換問題研究[J]. 土壤學(xué)報,2003,40(4): 511.

      Cai Yongming, Zhang Keli, Li Shuangcai. Study on the conservation of different soil texture[J]. Atca Pedologica Sinica, 2003, 40(4): 511. (in Chinese)

      [13]劉建立,徐紹輝, 劉慧. 幾種土壤累積粒徑分布模型的對比研究[J]. 水科學(xué)進(jìn)展,2003,14(5):588.

      Liu Jianli, Xu Shaohui, Liu Hui. Investigation of different models to describe soil particle-size distribution data[J]. Advances in Water Science, 2003, 14(5):588. (in Chinese)

      [14]劉寶元,閻百興,沈波,等. 東北黑土區(qū)農(nóng)地土壤流失現(xiàn)狀與綜合治理對策[J]. 中國水土保持科學(xué),2008,6(1):1.

      Liu Baoyuan, Yan Baixing, Shen Bo, et al. Current status and comprehensive strategies of soil erosion for cultivated land in the Northeastern black soil area of China[J]. Science of Soil and Water Conservation, 2008, 6(1):1. (in Chinese)

      [15]Liu B Y,Nearing M A,Risse L M. Slope gradient effects on soil loss for steep slopes [J]. Trans. ASAE, 1994, 37(6):1835.

      [16]范建榮,王念忠,陳光,等. 東北地區(qū)水土保持措施因子研究[J]. 中國水土保持科學(xué),2011,9(3):75.

      Fan Jianrong, Wang Nianzhong, Chen Guang, et al. Practice factor of soil and water conservation in Northeastern China[J]. Science of Soil and Water Conservation, 2011, 9(3):75. (in Chinese)

      [17]劉秉正,劉世海,鄭隨定. 作物植被的保土作用及作用系數(shù)[J]. 水土保持研究,1999,6(2):32.

      Liu Bingzheng, Liu Shihai, Zheng Suiding. Soil conservation and coefficient of soil conservation of crops[J]. Research of Soil and Water Conservation, 1999, 6(2):32. (in Chinese)

      [18]張永光,伍永秋,汪言在,等. 典型黑土區(qū)小流域淺溝侵蝕季節(jié)差異分析[J]. 地理研究,2008,27(1):145.

      Zhang Yongguang, Wu Yongqiu, Wang Yanzai, et al. Seasonal discrepancy of ephemeral gully erosion in Northeast China with black soils[J]. Geographical Research, 2008, 27(1):145. (in Chinese)

      [19]Wu Yangqiu, Zheng Qiuhong, Zhang Yongguan,et al. Development of gullies and sediment production in the black soil region of Northeastern China [J]. Geomorphology, 2008, 101(4):683.

      [20]劉紀(jì)根,蔡強(qiáng)國,張平倉.岔巴溝流域泥沙輸移比時空分異特征及影響因素[J].水土保持通報,2007,27(5):6.

      Liu Jigen,Cai Qiangguo,Zhang Pingcang.Temporal and spatial variations of sediment delivery ratio and its influencing factors in Chabagou watershed[J]. Bulletin of Soil and Water Conservation, 2007, 27(5):6.(in Chinese)

      [21]吳傲,李天宏,韓鵬. 黃河流域泥沙輸移比與流域面積的關(guān)系[J]. 泥沙研究,2014(1):61.

      Wu Ao, Li Tianhong, Han Peng. Relationship between sediment delivery ratio and basin area in Yellow River basin[J]. Journal of Sediment Research, 2014(1):61. (in Chinese)

      [22]許炯心,孫季. 水土保持措施對流域泥沙輸移比的影響[J]. 水科學(xué)進(jìn)展,2004,15(1):29.

      Xu Jiongxin, Sun Ji. Effect of soil control measures on sediment delivery ratio[J]. Advances in Water Science, 2004, 15(1):29. (in Chinese)

      [23]張曉明,曹文洪,周利軍.泥沙輸移比及其尺度依存研究進(jìn)展[J].生態(tài)學(xué)報,2014,34(24):7475.

      Zhang Xiaoming, Cao Wenhong, Zhou Lijun. Progress review and discussion on sediment delivery ratio and its dependence on scale[J]. Acta Ecologica Sinica, 2014, 34(24):7475. (in Chinese)

      [24]文安邦,張信寶,王玉寬,等. 云貴高原區(qū)龍川江上游泥沙輸移比研究[J]. 水土保持學(xué)報,2003,17(4):139.

      Wen Anbang, Zhang Xinbao, Wang Yukuan, et al. Study on sedimentation delivery ratio in upper Longchuan River of Yungui Plateau Region[J]. Journal of Soil and Water conservation, 2003, 17(4):139. (in Chinese)

      [25]景可,焦菊英,李林育. 長江上游紫色丘陵區(qū)土壤侵蝕與泥沙輸移比研究:以涪江流域為例[J]. 中國水土保持科學(xué),2010,8(5):1.

      Jing Ke,Jiao Juying,Li Linyu,et al.Soil erosion amount and sediment deliery ratio in the hilly purple soil region in the upper reaches of Yangtze River: a case study in the Fujiang River Basin[J].Science of Soil and Water Conservation, 2010,8(5): 1. (in Chinese)

      [26]景可,焦菊英,李林育,等.輸沙量、侵蝕量與泥沙輸移比的流域尺度關(guān)系:以贛江流域為例[J].地理研究,2010,29(7):1163.

      Jing Ke, Jiao Juying, Li Linyu, et al. The scale relationship of sediment discharge, erosion amount and sediment delivery ratio in drainage basin: a case study in the Ganjiang River Basin[J].Geographical Research, 2010, 29(7):1163. (in Chinese)

      [27]范昊明,張杰華,董長虹,等. 東北黑土區(qū)典型流域沙量平衡研究[M]. 北京: 中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2009: 102-105.

      Fan Haoming, Zhang Jiehua, Dong Changhong. Sediment yields balance for typical basins in the Northeastern black soil area of China[M]. Beijing: China Agricultural Science and Technology Press, 2009:102-105. (in Chinese)

      [28]董一帆. 小流域尺度的東北黑土區(qū)切溝侵蝕速率研究[D]. 北京:北京師范大學(xué),2011: 85-86.

      Dong Yifan. The gully erosion rate at catchment scale in the black soil region of Northeast China[D].Beijing: Beijing Normal University, 2011: 85-86. (in Chinese)

      [29]Walling D E, He Q. Use of fallout 137Cs in investigations of over bank sediment deposition on river floodplains[J]. Catena, 1997, 29:263.

      [30]Du P F, Walling D E. Using 210Pb measurements to estimate sedimentation rates on river floodplains [J]. Journal of Environmental Radioactivity, 2012, 103(1):59.

      (責(zé)任編輯:程云郭雪芳)

      Sediment delivery ratios of typical watersheds on different spatial scales in Songhua River Basin and its affecting factors

      Gao Yan1, Zhang Yanling1, Jiao Jian2, Xie Yun3

      (1.Songliao Water Resources Commission, Ministry of Water Resources, 130021,Changchun, China; 2.China Institute of Water Resources and Hydropower Research, 100048, Beijing, China; 3. School of Geography, Beijing Normal University, 100875, Beijing, China)

      Abstract:[Background] There is widespread concern about the severe soil loss in the black soil region of Northeastern China. To date, however, few studies have examined the relationships between soil loss and sediment yields of different watersheds in this area. In this contribution, we calculated sediment delivery ratios of the suspended load (SDR) for selected watersheds of different sizes to obtain an overview of sedimentation and erosion in this region. [Methods] We chose a total of 36 watersheds of different sizes, small, medium, and large, in the Songhua River Basin for our study. Nineteen of the 36 watersheds were in hilly region, where the altitudes ranged from 200 to 500 m; while the other 17 watersheds were in mountainous region, where the altitudes exceeded 500 m. The SDRof each watershed was the ratio of the sediment yields to the amount of soil loss. We used rainfall and land use data, and remote sensing images to calculate amount of soil loss for the different watersheds, with the adoption of the Chinese Soil Loss Equation (CSLE). We calculated sediment yields for the different watersheds from runoff and sediment yields data from 36 corresponding hydrological stations. [Results] The results indicated that the annual average SDRfor the small watershed was 0.33. The SDRvalues for the medium- and large-scale watersheds ranged from 0.005 to 0.365, and the average was only 0.051. The drainage area (A) and slope of the main channel (SLP) were the two main controls on the SDRvalues in the medium- and large-scale watersheds: SDRdecreased by a power function as A increased, and the relationship for the tested watersheds in the Songhua River Basin was SDR=1.25A-0.41. In the watersheds of the hilly region, this relationship was more obvious, the formula was SDR= 4.01A-0.52. In the mountainous region, SDRincreased as SLPincreased and the relationship was expressed as: SDR= 0.007SLP+0.004; however, this relationship did not apply to the hilly region. The slopes in the hilly region generally had gradients that were less than 5° and the slope lengths varied between 500 and 2 000 m, meaning that the eroded particles were easily deposited at the foot of the slope. The SDRvalues in the Songhua River Basin were clearly lower than those of the Yellow (0.5-1.0) and the Yangtze (0.3-0.7) River Basins. There were sizeable seasonal differences in the values of the SDR. The SDRfor the rainy season in the small watersheds was 0.38 but was only 0.17 in the snowmelt season, probably because the eroded particles transported in the snowmelt season were larger than those transported in the rainy season. [Conclusions] The results of this study will support the establishment of statistical relationships between soil loss and sediment yields at the watershed and basin scale, and will hopefully provide a robust scientific basis for soil conservation in this region.

      Keywords:sediment delivery ratio; soil loss; sediment delivery; drainage area; slope of the main channel; the black soil region; Songhua River Basin

      收稿日期:2015-07-16修回日期: 2016-01-13

      第一作者簡介:高燕(1972—),女,碩士,高級工程師。主要研究方向:水土保持監(jiān)測與規(guī)劃。E-mail:zhixuyu@163.com ?通信 焦劍(1983—),男,博士,高級工程師。主要研究方向:土壤侵蝕與非點(diǎn)源污染。E-mail:68283847@qq.com

      中圖分類號:TV142

      文獻(xiàn)標(biāo)志碼:A

      文章編號:1672-3007(2016)01-0021-07

      DOI:10.16843/j.sswc.2016.01.003

      項目名稱: 國家自然科學(xué)基金“北京山區(qū)水庫水體磷和重金屬表觀沉降速率研究”(41401560);水利部公益科研項目“典型黑土區(qū)坡耕地土壤侵蝕危險程度研究”(201501012)

      猜你喜歡
      松花江流域流域面積輸沙量
      海南省北門江中下游流域面積高程積分的應(yīng)用
      山西某電力工程設(shè)計洪水成果合理性分析
      自然災(zāi)害、農(nóng)戶傳統(tǒng)風(fēng)險管理手段與天氣指數(shù)保險需求
      吉林省松花江流域產(chǎn)業(yè)生態(tài)系統(tǒng)適應(yīng)性分析
      橫江水利專項工程中濕地治理對策
      基于一維水動力模型的洪水頂托影響分析
      遼河干流遼中站河道沖淤變化趨勢研究
      氣候變化和人類活動對祖厲河輸沙量變化的影響分析
      頻率曲線在荊江三口輸沙量計算中的應(yīng)用
      農(nóng)業(yè)面源氨氮污染減排體系的構(gòu)建及減排控制對策
      乾安县| 桦川县| 鹰潭市| 大冶市| 浦江县| 山丹县| 黎川县| 山东| 文成县| 青岛市| 叶城县| 凤城市| 云林县| 鸡东县| 松阳县| 东乡| 盐源县| 岳阳县| 金秀| 中西区| 临夏县| 昌黎县| 阿拉善左旗| 安岳县| 乐业县| 旬阳县| 揭东县| 垫江县| 兰西县| 吉隆县| 荥阳市| 仁化县| 淳安县| 盘山县| 五常市| 巴楚县| 景宁| 阿拉善盟| 西林县| 汪清县| 和龙市|