王志剛,王宏超
(1.安陽工學(xué)院 機械工程學(xué)院 河南 安陽 455000; 2.鄭州輕工業(yè)學(xué)院 機電工程學(xué)院,河南 鄭州 450002)
基于形態(tài)成分分析的汽輪機轉(zhuǎn)子早期碰摩微弱故障診斷
王志剛1,王宏超2
(1.安陽工學(xué)院 機械工程學(xué)院 河南 安陽 455000; 2.鄭州輕工業(yè)學(xué)院 機電工程學(xué)院,河南 鄭州 450002)
作為電力行業(yè)的關(guān)鍵咽喉設(shè)備-汽輪機,對其早期微弱故障進行有效診斷有著重要的安全及經(jīng)濟意義.汽輪機發(fā)生早期動靜碰摩故障時信號主要為轉(zhuǎn)子工頻成份及轉(zhuǎn)子與支撐間碰摩所致瞬態(tài)沖擊信號成份.據(jù)形態(tài)成分分析的原理,分別構(gòu)建正弦基及沖擊原子庫,對故障信號進行匹配分析,進而實現(xiàn)轉(zhuǎn)子早期動靜碰摩信號工頻成份與瞬態(tài)沖擊成份的有效分離,對碰摩故障進行模式識別.通過仿真信號及轉(zhuǎn)子碰摩實驗信號驗證形態(tài)成分分析方法在轉(zhuǎn)子早期碰摩故障診斷中的有效性.
形態(tài)成分分析; 汽輪機; 轉(zhuǎn)子碰摩; 故障診斷
汽輪機往往是電力行業(yè)的關(guān)鍵咽喉設(shè)備,一旦發(fā)生故障不但會造成嚴(yán)重的經(jīng)濟損失,而且還有可能造成嚴(yán)重的人員傷亡事故.為提高汽輪機的轉(zhuǎn)速,汽輪機轉(zhuǎn)子與支撐軸承的間隙往往非常小,以致非常容易造成轉(zhuǎn)子動靜碰摩故障的發(fā)生,若能對轉(zhuǎn)子的早期碰摩故障進行有效的診斷,就能防患于未然,進而實現(xiàn)經(jīng)濟與安全效益的最大化.對于轉(zhuǎn)子的動靜碰摩已經(jīng)有相當(dāng)?shù)奈墨I報道[1-3],就針對汽輪機轉(zhuǎn)子的動靜碰摩鮮有研究.形態(tài)成分分析(Morphological Component Analysis,MCA)[4]是近幾年剛剛發(fā)展起來的基于稀疏表征和形態(tài)差異性的信號表征方法,它是由稀疏表征基礎(chǔ)理論發(fā)展而來,并在圖像紋理分離和修復(fù)、腦電信號分析等領(lǐng)域迅速得到了應(yīng)用[5,6].在機械故障診斷中,不同的振源反應(yīng)到信號中的結(jié)構(gòu)往往存在一定的差異,如旋轉(zhuǎn)機械中常見的諧波成分、沖擊成分及其他瞬態(tài)成分等,這些多成分的共存導(dǎo)致原始信號較為復(fù)雜,給故障特征提取帶來了難度.形態(tài)成分分析的基本思想就是基于信號內(nèi)部不同結(jié)構(gòu)的形態(tài)相異性,通過構(gòu)建不同類型的字典稀疏表示不同的信號結(jié)構(gòu)分量,進而實現(xiàn)不同形態(tài)成分的分離.
對于任意包含K個不同結(jié)構(gòu)分量的信號s,我們期望找到它在所有字典Φk下的最稀疏表達:
(1)
由于字典Φk原子的單一性,可用其高效表達信號中的某一成分,而無法有效表達其他成分,則式(1)優(yōu)化問題的求解保證了信號各個成分的分離.根據(jù)稀疏分解相關(guān)理論,式中的l0范數(shù)問題是非凸的難以實際求解,將l0范數(shù)替換為l1范數(shù)則可以將式(1)優(yōu)化問題通過線性規(guī)劃求解,且l1范數(shù)可以保證解的稀疏性:
(2)
放寬式(1)的約束條件,我們可以得到:
(3)
(4)
對于式(4)的優(yōu)化問題存在一種快速數(shù)值求解算法Block-Coordinate Relaxation Method,具體可參看文獻[7],在此不再贅述.
基于Block-Coordinate Relaxation Method,式(4)的優(yōu)化問題求解可轉(zhuǎn)化為如下數(shù)值算法:
(1) 設(shè)定迭代次數(shù)Lmax,閾值δ=λ·Lmax,初始化形態(tài)分量sk=0,k=1,…,K;
(2) 執(zhí)行K次循環(huán):更新形態(tài)分量sk,假定其他形態(tài)分量sl,l≠k確定:
—計算稀疏系數(shù)αk=Tkr
(3) 更新閾值δ=δ-λ;
(4) 如果δ>λ則返回步驟2,否則算法結(jié)束.
圖1是某企業(yè)汽輪機正常運行時所采集到振動信號的時域波形圖,汽輪機轉(zhuǎn)子轉(zhuǎn)速為3 000 r/min.使用鄭州恩普特設(shè)備診斷科技股份有限公司研制的PEDS-F儀器對振動信號進行采集,配以位移傳感器.信號采樣頻率fs=2560 Hz.取前2560個點進行分析.由圖1可以看出,其波形圖基本為正弦,符合轉(zhuǎn)子正常運行的理論特征.
圖1 正常轉(zhuǎn)子時域圖Fig.1 The time waveform of normal state
轉(zhuǎn)子發(fā)生早期微弱碰摩故障時的時域波形圖見圖2.由圖2看出,轉(zhuǎn)子正常運行的正弦特征已不存在,而由碰摩所致瞬態(tài)沖擊成分不明顯,由該波形圖上較難判斷轉(zhuǎn)子是否發(fā)生碰摩故障.采用本文所述方法對圖2信號進行分離,結(jié)果見圖3.圖3(a)為故障信號正弦成分,主要為轉(zhuǎn)子工頻成分;圖3(b)為瞬態(tài)沖擊成分,經(jīng)計算兩沖擊峰值間隔約為0.02 s;圖3(c)為分解余項,主要為背景噪聲等成分.
為突出所述方法的優(yōu)越性,以下將給出基于總體經(jīng)驗?zāi)B(tài)分解方法(Ensemble Empirical Mode Decomposition,EEMD)的分析結(jié)果.EEMD是經(jīng)驗?zāi)B(tài)分解(Empirical Mode Decomposition,EMD)方法的延伸.EEMD相對于EMD方法不僅保留了其原有的所有優(yōu)點,而且還克服了EMD方法固有的頻混現(xiàn)象的弊端,分解精度更高.
圖2 轉(zhuǎn)子動靜碰摩時域圖Fig.2 The time waveform of rub-impact state
圖3 故障信號分解結(jié)果Fig.3 The separation result of the rub-impact fault signal
圖4是汽輪機轉(zhuǎn)子碰摩故障信號(即圖2)基于EEMD的分解結(jié)果,相對于所述方法的分析結(jié)果,效果相差甚遠.說明了所述方法的優(yōu)越性.
利用形態(tài)成分分析方法可以實現(xiàn)復(fù)雜故障信號中不同結(jié)構(gòu)成分的分離,進而提高故障探測的準(zhǔn)確性.與基于傳統(tǒng)方法相比,它能充分利用信號內(nèi)部的結(jié)構(gòu)特征,不存在因頻帶重疊等帶來的困擾.基于此,提出了基于MCA的汽輪機轉(zhuǎn)子早期碰摩微弱故障信號的故障診斷方法,為汽輪機轉(zhuǎn)子動靜碰摩故障診斷方法研究提供有益參考價值.
圖4 EEMD分解結(jié)果Fig.4 The decomposition results by EEMD
[1] Chu Fulei,Lu Wenxiu.Experimental observation of nonlinear vibrations in a rub-impact rotor system [J].Journal of Sound and Vibration 283(2005)621-643.
[2] Cheng Junsheng,Yu Dejie,Tang Jiashi,et al.Local rub-impact fault diagnosis of the rotor systems based on EMD[J].Mechanism and Machine Theory,2009(44):784-791.
[3] Li Yungong,Zhang Jinping,Wang Liqiang,et al.A fault feature extraction method for rotor rubbing based on load identification and measured impact response[J].International Conference on Advance in Engineering,Procedia Engineering,2011(24):793-797.
[4] BOBIN J,MOUDDEN Y,STARCK J-L.Enhanced source separation by morphological component analysis;proceedings of the Acoustics,Speech and Signal Processing[A].2006 ICASSP 2006 Proceedings 2006 IEEE International Conference on,F,2006[C].IEEE.
[5] ELAD M,STARCK J L,QUERRE P,et al.Simultaneous cartoon and texture image inpainting using morphological component analysis(MCA)[J].Appl Comput Harmon A,2005,19(3):340-58.
[6] YONG X,WARD R K,BIRCH G E.Generalized morphological component analysis for EEG source separation and artifact removal[A].proceedings of the Neural Engineering,2009 NER′09 4th International IEEE/EMBS Conference on,F,2009 [C].IEEE.
[7] DONOHO D L,JOHNSTONE J M.Ideal spatial adaptation by wavelet shrinkage [J].Biometrika,1994,81(3):425-55.
Early rub-impact fault diagnosis of turbine rotors based on morphological component analysis
WANG Zhi-gang,WANG Hong-chao
(1.AnYang Institute of technology,School of mechanical engineering,Henan Anyang 455000,China;2.Zhengzhou light industry institute,School of mechanical electricity,Henan Zhengzhou 450002,China)
As a key equipment for electric power industry, effective diagnosis on early rub-impact faults from turbine rotors possesses safety and economic significances. When the early rub-impact faults occur in rotor system, the vibration signals are mainly composed of periodic components of rotor rotation frequency and transient impulse signal components of rub-impact between rotor and bearing. Firstly, the sine-based and impulse-based dictionaries are respectively established based on morphological component analysis (MCA) theory. Then, these dictionaries are used to match the sine and impulse components. Finally, the early rub-impact vibration signals are effectively decomposed into two major components. Therefore, the feasibility and effectiveness of this method are verified using simulation and testing.
morphological component analysis; turbine; rotor rub-impact; fault diagnosis
王志剛(1977-),男,講師,碩士.E-mail:hongchao1983@126.com
TH 212; TH 213.3
A
1672-5581(2016)06-0545-03