• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      LiBr-[BMIM]Cl/H2O工質(zhì)對的飽和蒸氣壓、結(jié)晶溫度和腐蝕性

      2016-07-12 09:17:32羅春歡張淵蘇慶泉北京科技大學(xué)機械工程學(xué)院北京00083北京科技大學(xué)北京市高校節(jié)能與環(huán)保工程研究中心北京00083
      化工學(xué)報 2016年4期
      關(guān)鍵詞:離子液體腐蝕

      羅春歡,張淵,蘇慶泉(北京科技大學(xué)機械工程學(xué)院,北京 00083;北京科技大學(xué)北京市高校節(jié)能與環(huán)保工程研究中心,北京 00083)

      ?

      LiBr-[BMIM]Cl/H2O工質(zhì)對的飽和蒸氣壓、結(jié)晶溫度和腐蝕性

      羅春歡1,2,張淵1,蘇慶泉1,2
      (1北京科技大學(xué)機械工程學(xué)院,北京 100083;2北京科技大學(xué)北京市高校節(jié)能與環(huán)保工程研究中心,北京 100083)

      摘要:為了解決LiBr/H2O工質(zhì)對易結(jié)晶和腐蝕性強的問題,提出了LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O新型工質(zhì)對,研究了離子液體 [BMIM]Cl和[BMIM]Br對LiBr/H2O結(jié)晶溫度和飽和蒸氣壓的影響。對質(zhì)量比為2.5的LiBr-IL(ionic liquids)/H2O的飽和蒸氣壓、結(jié)晶溫度和腐蝕性進(jìn)行了測定并與LiBr/H2O的進(jìn)行了比較,結(jié)果表明[BMIM]Cl/H2O和[BMIM]Br/H2O的飽和蒸氣壓與質(zhì)量分?jǐn)?shù)低8%~9%的LiBr/H2O的飽和蒸氣壓基本相同。在常用工作濃度范圍內(nèi),LiBr-[BMIM]Cl/H2O的結(jié)晶溫度比相同吸收能力的LiBr/H2O的低約30℃。在相同的腐蝕條件下,LiBr-[BMIM]Cl/H2O對碳鋼的腐蝕性明顯小于LiBr/H2O,對紫銅的腐蝕性與LiBr/H2O的基本相同。因此,采用LiBr-[BMIM]Cl/H2O作為替代工質(zhì)對具有一定的應(yīng)用潛力。

      關(guān)鍵詞:工質(zhì)對;離子液體;飽和蒸氣壓;結(jié)晶溫度;腐蝕

      2015-02-13收到初稿,2015-10-11收到修改稿。

      聯(lián)系人:蘇慶泉。第一作者:羅春歡(1983—),男,博士研究生,講師。

      Received date: 2015-02-13.

      Foundation item: supported by the Fundamental Research Funds for the Central Universities (FRF-TP-14-022A1) and the Key Project of the Ministry of Education and Guangdong Province (2009A090100032).

      引 言

      吸收式熱泵可以通過余熱驅(qū)動來提高熱量的品位或制冷,從而有效利用余熱,因而在節(jié)能領(lǐng)域具有廣闊的發(fā)展前景。LiBr/H2O是一種應(yīng)用廣泛的工質(zhì)對,但存在易結(jié)晶和高溫腐蝕性強的問題,嚴(yán)重制約了吸收式熱泵的發(fā)展。

      近年來,基于離子液體(ionic liquid,IL)工質(zhì)對的吸收式熱泵正受到越來越多的關(guān)注。現(xiàn)有離子液體中,咪唑類離子液體最為穩(wěn)定,其主要與H2O、NH3、CO2、醇類和HFCs等制冷劑組成新型的工質(zhì)對[1-5]。Kim等[6]的研究結(jié)果表明,H2O作為制冷劑可以獲得較高的COP,同時具有天然環(huán)保,容易獲得優(yōu)良特性,因此,IL/H2O工質(zhì)對成為當(dāng)今研究的一個熱點?;矢α⑾嫉萚7-9]對[BMIM]BF4/H2O、[EMIM]Ac/H2O和[HMIM]Cl/H2O的熱物性進(jìn)行了系統(tǒng)的測定,并對基于這些工質(zhì)對的制冷循環(huán)性能進(jìn)行了理論分析,結(jié)果表明IL/H2O工質(zhì)對不會出現(xiàn)結(jié)晶問題,在較高的發(fā)生溫度下[EMIM]Ac/H2O獲得的COP最大且與LiBr/H2O相當(dāng),但在常規(guī)工況下[EMIM]Ac/H2O達(dá)不到LiBr/H2O系統(tǒng)的性能系數(shù)。Zhang等[10]對基于[EMIM]DMP/H2O和[DMIM]DMP/H2O工質(zhì)對的吸收式熱泵系統(tǒng)的性能進(jìn)行了模擬計算,并與LiBr/H2O和TFE/E181系統(tǒng)的性能進(jìn)行了比較,發(fā)現(xiàn)[DMIM]DMP/H2O系統(tǒng)的COP比TFE/E181的大,但是小于LiBr/H2O系統(tǒng)。Dong等[11-14]對陰離子為Cl、Br、BF4和DMP的咪唑類離子液體展開了一系列的研究,確定了離子液體吸收劑的選擇標(biāo)準(zhǔn),測定了IL/H2O的飽和蒸氣壓和比熱容等熱物性,并同樣對基于[DMIM]DMP/H2O的吸收式制冷系統(tǒng)的性能進(jìn)行了計算,結(jié)果發(fā)現(xiàn)[DMIM]DMP/H2O在結(jié)晶溫度和腐蝕性上優(yōu)于LiBr/H2O,但COP略有降低。以上研究表明IL/H2O工質(zhì)對具有不易結(jié)晶和腐蝕性小的優(yōu)勢,但其吸收能力弱于LiBr/H2O,實際工況中所需濃度較高,導(dǎo)致溶液黏度和循環(huán)倍率過大,降低了系統(tǒng)的COP。

      為了解決現(xiàn)有工質(zhì)對存在的易結(jié)晶和腐蝕性強的問題,本文通過在LiBr/H2O的基礎(chǔ)上添加穩(wěn)定性和親水性好的離子液體,形成新型的LiBr-IL/H2O工質(zhì)對。根據(jù)Nie等[15]的研究結(jié)果,陰離子為鹵族元素的咪唑類離子液體具有較強的穩(wěn)定性和親水性,因此,本文對LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的飽和蒸氣壓、結(jié)晶溫度和腐蝕性進(jìn)行測定并與LiBr/H2O的進(jìn)行比較。

      表1 [BMIM]Cl和[BMIM]Br的分子結(jié)構(gòu)與性質(zhì)參數(shù)Table 1 Molecule structure and properties of [BMIM]Cl and [BMIM]Br

      1 實驗材料和方法

      1.1實驗材料

      實驗用溴化鋰(GR級,≥99%)和鉻酸鋰(AR級,≥98%)為天津市津科精細(xì)化工研究所生產(chǎn),鹽酸(AR級,36%~38%)和丙酮(AR級,≥98%)為北京化工廠生產(chǎn),所用超純水的純度為18.2 M?·cm-1。實驗所用離子液體[BMIM]Cl(AR級,≥99%)和[BMIM]Br(AR級,≥99%)為上海成捷化學(xué)有限公司生產(chǎn),分子結(jié)構(gòu)與性質(zhì)參數(shù)見表1。

      1.2實驗裝置和方法

      1.2.1結(jié)晶溫度結(jié)晶溫度采用動態(tài)變溫法測定,具體測定方法:用精密天平(梅特勒-托利多PL2002,0.1 mg)稱取并配制待測溶液,放置于已設(shè)定為一定溫度的精密恒溫循環(huán)器(JDC-1006,0.1℃)中,保持恒溫狀態(tài)24 h后,觀察其是否析出晶體。如果未結(jié)晶,降低設(shè)定溫度,繼續(xù)觀察;如果結(jié)晶,則適當(dāng)提高精密恒溫循環(huán)器的設(shè)定溫度,并將結(jié)晶加熱溶解后放置其中,繼續(xù)觀察。重復(fù)以上操作,直至精密恒溫循環(huán)器變溫幅度≤1.0℃,此時所測溶液析出晶體的溫度即為結(jié)晶溫度,測定誤差小于1.0℃。

      1.2.2飽和蒸氣壓溶液飽和蒸氣壓采用靜態(tài)法測定,即把待測溶液放在一個封閉系統(tǒng)中,抽真空后,在不同的溫度下,測定與液相達(dá)到蒸發(fā)平衡的蒸氣的壓力。實驗裝置主要包括恒溫系統(tǒng)、測溫系統(tǒng)、測壓系統(tǒng)及真空系統(tǒng)等,具體測定裝置和實驗方法見文獻(xiàn)[16]。本文測壓系統(tǒng)采用量程分別為0~20 kPa和0~110 kPa的精密數(shù)字絕壓表(AX-110,0.05級)。通過對超純水的飽和蒸氣壓進(jìn)行測定,并與文獻(xiàn)值[17]比較,得到該系統(tǒng)的不確定度為≤ ±1% (P≤20 kPa)和≤ ±3% (P>20 kPa)。

      1.2.3腐蝕性基于擬應(yīng)用的吸收式熱泵循環(huán)的工況條件,采用高溫浸泡法對Q235碳鋼和T6紫銅在LiBr-IL/H2O和LiBr/H2O中的腐蝕速率進(jìn)行測定。具體測定裝置和實驗方法見文獻(xiàn)[18]。

      2 實驗結(jié)果與分析

      2.1IL對LiBr/H2O結(jié)晶溫度和飽和蒸氣壓的影響2.1.1IL對LiBr/H2O結(jié)晶溫度的影響表2為總濃度為70%,不同質(zhì)量比(mLiBr/mIL)的LiBr-IL/H2O的結(jié)晶溫度。從表2中可以看出,LiBr-[BMIM]Cl/ H2O和LiBr-[BMIM]Br/H2O的結(jié)晶溫度明顯低于同濃度下LiBr/H2O的結(jié)晶溫度[19],且隨著質(zhì)量比mLiBr/mIL的減小,溶液結(jié)晶溫度會進(jìn)一步降低,這有利于解決吸收式熱泵的結(jié)晶問題。在總濃度和質(zhì)量比相同的條件下,LiBr-[BMIM]Br/H2O的結(jié)晶溫度高于LiBr-[BMIM]Cl/H2O,這可能是由[BMIM]Br 和LiBr中的陰離子所產(chǎn)生的共離子效應(yīng)導(dǎo)致的。

      表2 LiBr-[BMIM]Cl /H2O和LiBr-[BMIM]Br/H2O溶液的結(jié)晶溫度Table 2 Crystallization temperatures of LiBr-[BMIM]Cl/ H2O and LiBr-[BMIM]Br/H2O

      2.1.2IL對LiBr/H2O飽和蒸氣壓的影響圖1為總濃度為70%,質(zhì)量比mLiBr/mIL分別為1.8、2.5和6.0的LiBr-[BMIM]Cl/H2O及LiBr-[BMIM]Br/H2O的飽和蒸氣壓。

      從圖1可以看出,總濃度為70%的LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的飽和蒸氣壓明顯大于同濃度下LiBr/H2O的飽和蒸氣壓。LiBr-IL/H2O的飽和蒸氣壓隨著質(zhì)量比mLiBr/mIL的減小而增加,因此,質(zhì)量比mLiBr/mIL不能太小。但是,如果質(zhì)量比mLiBr/mIL太大,又不利于LiBr-IL/H2O結(jié)晶溫度的降低。綜合分析發(fā)現(xiàn),當(dāng)質(zhì)量比mLiBr/mIL為2.5時,總濃度70%的LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O溶液的吸收能力與62%的LiBr溶液相當(dāng),且具有較低的結(jié)晶溫度。因此,以下對質(zhì)量比mLiBr/mIL為2.5的LiBr-[BMIM]Cl/H2O與LiBr-[BMIM]Br/H2O的飽和蒸氣壓、結(jié)晶溫度和腐蝕性進(jìn)行研究,并與LiBr/H2O工質(zhì)對的進(jìn)行比較。

      圖1 不同質(zhì)量比的LiBr-IL/H2O三元系飽和蒸氣壓Fig.1 Saturated vapor pressures of 70%(mass) LiBr-IL/H2O ternary systems under different mass ratios

      2.2LiBr-IL(2.5:1)/H2O新型工質(zhì)對的飽和蒸氣壓

      表3和表4分別為LiBr-[BMIM]Cl(2.5:1)/H2O (60%~75%,296.2~445.7 K)和LiBr-[BMIM]Br (2.5:1)/H2O(60%~75%,296.4~449.6 K)的飽和蒸氣壓。

      LiBr-BMIM]Cl(2.5:1)/H2O和LiBr-[BMIM]Br (2.5:1)/H2O的飽和蒸氣壓實驗數(shù)據(jù)采用安托萬方程擬合成溫度和濃度的函數(shù)[20-22]

      式中,P為溶液的飽和蒸氣壓,kPa;Ai、Bi、Ci是回歸參數(shù);T為熱力學(xué)溫度,K;w為溶液質(zhì)量分?jǐn)?shù),%。實驗數(shù)據(jù)和擬合計算數(shù)據(jù)之間的平均絕對相對偏差A(yù)ARD值由式(2)計算得到

      式中,N為實驗點數(shù),Pexp為實驗值,Pcal為擬合計算值。擬合系數(shù)和 AARD值見表5和表6。

      表3 LiBr-[BMIM]Cl(2.5:1)/H2O三元系飽和蒸氣壓Table 3 Saturated vapor pressure of LiBr-[BMIM]Cl(2.5:1)/H2O ternary system

      表4 LiBr-[BMIM]Br(2.5:1)/H2O三元系飽和蒸氣壓Table 4 Saturated vapor pressure of LiBr-[BMIM]Br(2.5:1)/H2O ternary system

      表5 LiBr-[BMIM]Cl(2.5:1)/H2O飽和蒸氣壓回歸參數(shù)和AARD值Table 5 Regression parameters and AARD value of saturated vapor pressure for LiBr-[BMIM]Cl(2.5:1)/H2O

      表6 LiBr-[BMIM]Br(2.5:1)/H2O飽和蒸氣壓回歸參數(shù)和AARD值Table 6 Regression parameters and AARD value of saturated vapor pressure for LiBr-[BMIM]Br(2.5:1)/H2O

      圖2給出了LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O體系的飽和蒸氣壓實驗值與計算值的關(guān)系,并與LiBr/H2O的飽和蒸氣壓進(jìn)行了比較。從圖中可以看出,在實驗測定范圍內(nèi),實驗值與擬合方程式(1)計算值吻合良好,兩者的平均絕對相對偏差分別為2.92%和2.04%。LiBr-BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O體系的飽和蒸氣壓P隨溫度T呈指數(shù)增長,且隨質(zhì)量分?jǐn)?shù)的增加而減小。與LiBr/H2O的飽和蒸氣壓比較發(fā)現(xiàn),LiBr-BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的吸收能力基本相同,兩者的飽和蒸氣壓都與質(zhì)量分?jǐn)?shù)低8%~9%的LiBr/H2O的飽和蒸氣壓相當(dāng)。

      2.3LiBr-IL(2.5:1)/H2O新型工質(zhì)對的結(jié)晶溫度

      表7為LiBr-[BMIM]Cl(2.5:1)/H2O(68%~75%)和LiBr-[BMIM]Br(2.5:1)/H2O(68%~75%)的結(jié)晶溫度。

      表7 LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的結(jié)晶溫度Table 7 Crystallization temperatures of LiBr-[BMIM]Cl/H2O and LiBr-[BMIM]Br/H2O

      采用最小二乘法將結(jié)晶溫度實驗數(shù)據(jù)擬合成

      采用最小二乘法將結(jié)晶溫度實驗數(shù)據(jù)擬合成溶液濃度的函數(shù)[20]

      式中,w是LiBr-IL/H2O三元體系的濃度,%;算值的關(guān)系,并與相同吸收能力的LiBr/H2O的結(jié)晶溫度進(jìn)行了比較。從圖中可以看出,在實驗測定的范圍內(nèi),實驗值與擬合方程式(3)計算值吻合良好,T是結(jié)晶溫度。擬合系數(shù)Ai和 AARD值見表8。

      圖2 LiBr-IL/H2O與LiBr /H2O體系飽和蒸氣壓的比較Fig.2 Comparison of saturated vapor pressures between LiBr-IL/H2O and LiBr/H2O

      表8 擬合方程(3)系數(shù)和AARD值Table 8 Regression parameters and AARD value of fitting equation (3)

      圖3 相同吸收能力的LiBr-IL/H2O與LiBr/H2O結(jié)晶溫度的對比Fig.3 Comparison of crystallization temperature between LiBr-IL/H2O and LiBr/H2O of the same absorption ability

      圖3給出了LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O體系的結(jié)晶溫度的實驗值與計兩者的平均絕對相對偏差分別為0.18%和0.26%。LiBr-BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的結(jié)晶溫度T隨質(zhì)量分?jǐn)?shù)w呈近似線性增長,且前者結(jié)晶溫度明顯低于后者。在相同吸收能力的條件下,當(dāng)質(zhì)量分?jǐn)?shù)低于71%時,LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的結(jié)晶溫度分別比LiBr/H2O的低約30℃和15℃。當(dāng)質(zhì)量分?jǐn)?shù)低于72%時,采用LiBr-[BMIM]Cl/H2O作為替代工質(zhì)對在室溫下不易結(jié)晶,可以有效解決LiBr/H2O工質(zhì)對的結(jié)晶問題。

      2.4LiBr-IL(2.5:1)/H2O的腐蝕性研究

      為了研究LiBr-IL(2.5:1)/H2O對吸收式系統(tǒng)的腐蝕性,本文采用高溫浸泡法對結(jié)構(gòu)材料碳鋼和換熱材料紫銅在相同吸收能力的LiBr-IL(2.5:1)/H2O 和LiBr/H2O溶液中的腐蝕速率進(jìn)行了測定,結(jié)果如圖4所示。

      圖4 碳鋼和紫銅在相同吸收能力的LiBr-IL/H2O與LiBr/H2O中的腐蝕速率Fig.4 Corrosion rates of carbon steel and copper in LiBr-IL/H2O and LiBr/H2O at same absorption ability

      從圖4可以看出,在LiBr/H2O中添加[BMIM]Cl 和[BMIM]Br兩種離子液體,可以有效抑制LiBr/H2O對碳鋼的腐蝕,且添加[BMIM]Cl時的效果更加明顯,其主要原因是離子液體中陽離子咪唑環(huán)上氮原子含有的孤對電子可提供給鐵原子空軌道,與水合氫離子H3O+在碳鋼表面形成化學(xué)吸附的競爭,從而抑制了析氫反應(yīng)[23];其次,離子液體中的有機陽離子[BMIM]+能夠吸附在碳鋼表面形成一層有機膜,阻礙了金屬離子從表面向溶液本體擴散,也在一定程度上抑制了腐蝕的進(jìn)行。從圖4還可以看出,紫銅在LiBr-[BMIM]Cl/H2O中的腐蝕速率與LiBr/H2O中的腐蝕速率基本相同,而LiBr-[BMIM]Br/H2O對紫銅的腐蝕更為劇烈。這可能是由于Br-的摩爾分?jǐn)?shù)增大,促進(jìn)了Br-對紫銅表面氧化膜的侵蝕導(dǎo)致的。因此,采用LiBr-[BMIM]Cl/H2O作為替代工質(zhì)對,還可以改善LiBr/H2O工質(zhì)對的腐蝕性問題。

      3 結(jié) 論

      (1)用[BMIM]Cl和[BMIM]Br取代LiBr/H2O中部分LiBr可以有效降低溶液的結(jié)晶溫度,且結(jié)晶溫度隨著離子液體質(zhì)量比的增加而明顯下降??墒?,吸收能力隨著離子液體質(zhì)量比的增加而明顯減小。

      (2)對質(zhì)量比mLiBr/mIL為2.5的LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的飽和蒸氣壓和結(jié)晶溫度進(jìn)行了系統(tǒng)的測定,并與LiBr/H2O的進(jìn)行了比較。結(jié)果表明LiBr-[BMIM]Cl/H2O和LiBr-[BMIM]Br/H2O的吸收能力與質(zhì)量分?jǐn)?shù)低8%~9%的LiBr/H2O的吸收能力相當(dāng)。在常用工作濃度范圍內(nèi),LiBr-[BMIM]Cl/H2O的結(jié)晶溫度最低,比相同吸收能力的LiBr/H2O的低約30℃。采用LiBr-[BMIM]Cl/H2O作為LiBr/H2O的替代工質(zhì)對可以有效解決吸收式熱泵系統(tǒng)的結(jié)晶問題。

      (3)在相同的腐蝕條件下,LiBr-[BMIM]Cl/H2O對碳鋼的腐蝕速率明顯小于LiBr/H2O對碳鋼的腐蝕速率,而LiBr-[BMIM]Cl/H2O對紫銅的腐蝕速率與LiBr/H2O對紫銅的腐蝕速率基本相同。LiBr-[BMIM]Cl/H2O作為LiBr/H2O的替代工質(zhì)對還可以改善吸收式熱泵系統(tǒng)的腐蝕問題,因而具有一定的應(yīng)用潛力。

      References

      [1] KIM K S,SHIN B K,LEE H,et al. Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium tetrafluoroborate,and vapor pressure of binary systems for 1-butyl-3-methylimidazolium bromide + trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate + trifluoroethanol [J]. Fluid Phase Equilibria,2004,218(2): 215-220.

      [2] WANG J,ZHENG D,F(xiàn)AN LI,et al. Vapor pressure measurement for the water + 1,3-dimethylimidazolium chloride system and 2,2,2-trifluoroethanol + 1-ethy1-3-methylimidazlium [J]. Journal of Chemical and Engineering Data,2010,55(6): 2128-2132.

      [3] YOKOZEKI A,SHIFLETT M B. Vapor-liquid equilibria of ammonia+ ionic liquid mixtures [J]. Applied Energy,2007,84(12): 1258-1273.

      [4] MARTíN A,BERMEJO M D. Thermodynamic analysis of absorption refrigeration cycles using ionic liquid + supercritical CO2pairs [J]. The Journal of Supercritical Fluids,2010,55(2): 852-859.

      [5] 趙杰,梁世強,王立,等. [bmim]Cl-CH3OH 作為吸收式制冷工質(zhì)對的潛能分析 [J]. 化工學(xué)報,2009,60(12): 2957-2962. ZHAO J,LIANG S Q,WANG L,et al. Potential analysis of [bmim]Cl-CH3OH as working fluid for absorption refrigeration [J]. CIESC Journal,2009,60(12): 2957-2962.

      [6] KIM Y J,KIM S,JOSHI Y K,et al. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid [J]. Energy,2012,44(1): 1005-1016.

      [7] 關(guān)婷婷,孫立,皇甫立霞,等. 離子液體[BMIM]BF4+ H2O汽液相平衡實驗研究 [J]. 低溫物理學(xué)報,2011,33(3): 194-198. GUAN T T,SUN L,HUANGFU L X,et al. Experiment on vapor-liquid phase equilibrium of [BMIM]BF4+ H2O system [J]. Chinese Journal of Low Temperature Physics,2011,33(3): 194-198.

      [8] 孫立,郭開華,皇甫立霞. EMIMAc和HMIMCl及其水溶液熱力學(xué)特性實驗研究 [J]. 低溫物理學(xué)報,2011,33(6): 467-473. SUN L,GUO K H,HUANGFU L X. Experiments on thermodynamic properties of ionic liquid [EMIM]Ac and [HMIM]Cl as well as aqueous solution [J]. Chinese Journal of Low Temperature Physics,2011,33(6): 467-473.

      [9] 粟航,郭開華,皇甫立霞,等.強吸水性離子液體-水工質(zhì)對吸收式制冷循環(huán)性能分析 [J]. 制冷學(xué)報,2013,34(3):24-27. SU H,GUO K H,HUANGFU L X,et al. Study on absorption refrigeration cycle with a new working pair of ionic liquid and water [J]. Journal of Refrigeration,2013,34(3):24-27.

      [10] ZHANG X,HU D A. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water [J]. Applied Thermal Engineering,2012,37:129-135.

      [11] DONG L,ZHENG D X,WEI Z,et al. Synthesis of 1,3-dimethylimidazolium chloride and volumetric property investigations of its aqueous solution [J]. International Journal of Thermophysics,2009,30(5): 1480-1490.

      [12] DONG L,ZHENG D,NIE N,et al. Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system [J]. Applied Energy,2012,98: 326-332.

      [13] DONG L,ZHENG D,LI J,et al. Suitability prediction and affinity regularity assessment of H2O + imidazolium ionic liquid working pairs of absorption cycle by excess property criteria and UNIFAC model [J]. Fluid Phase Equilibria,2013,348: 1-8.

      [14] ZHENG D,DONG L,HUANG W,et al. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle [J]. Renewable and Sustainable Energy Reviews,2014,37:47-68.

      [15] NIE N,ZHENG D,DONG L,et al. Thermodynamic properties of the water + 1-(2-hydroxylethyl)-3-methylimidazolium chloride system [J]. Journal of Chemical and Engineering Data,2012,57(12): 3598-3603. [16] LUO C,SU Q,MI W.Solubilities,vapor pressuress,densities,viscosities,and specific heat capacities of the LiNO3/H2O binary system [J]. Journal of Chemical and Engineering Data,2013,58(3): 625-633.

      [17] 劉光啟,馬連湘,劉杰. 化學(xué)化工物性數(shù)據(jù)手冊(無機卷) [M]. 北京:化學(xué)工業(yè)出版社,2006: 17. LIU G Q,MA L X,LIU J. Handbook of Chemical and Engineering Property Data (Inorganic Volume) [M]. Beijing: Chemical Industry Press,2006: 17.

      [18] LUO C,SU Q. Corrosion of carbon steel in concentrated LiNO3solution at high temperature[J]. Corrosion Science,2013,74(9): 290-296.

      [19] 陳東,謝繼紅. 熱泵技術(shù)及其應(yīng)用[M]. Beijing: Chemical Industry Press,2006: 197. CHEN D,XIE J H. Heat Pump Technology and Application [M]. Beijing: Chemical Industry Press,2006: 197.

      [20] PARK Y,KIM J S,LEE H,et al. Density,vapor pressure,solubility,and viscosity for water + lithium bromide + lithium nitrate + 1,3-propanediol [J]. Journal of Chemical & Engineering Data,1997,42(1): 145-148.

      [21] SAFAROV J T. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: binary solutions of lithium nitrate with methanol [J]. Journal of Chemical Thermodynamics,2005,37(12): 1261-1267.

      [22] VEREVKIN S,SAFAROV J,BICH E,et al. Study of vapour pressure of lithium nitrate solutions in ethanol [J]. Journal of Chemical Thermodynamics,2006,38(5): 611-616.

      [23] 袁小麗. 金屬材料在離子液體型新工質(zhì)中的腐蝕性能[D]. 大連:大連理工大學(xué),2013. YUAN X L. Corrosion of metal materials in ionic liquid working fluids[D]. Dalian: Dalian University of Technology,2013.

      Saturated vapor pressure,crystallization temperature and corrosivity of LiBr-[BMIM]Cl/H2O working pair

      LUO Chunhuan1,2,ZHANG Yuan1,SU Qingquan1,2
      (1School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China;2Beijing Engineering Research Center for Energy Saving and Environnental Protection,University of Science and Technology Beijing,Beijing 100083,China)

      Abstract:In order to solve the problems of crystallization and corrosion for LiBr/H2O,LiBr-[BMIM]Cl/H2O and LiBr-[BMIM]Br/H2O were proposed as new working pairs. The influences of ionic liquids on crystallization temperatures and saturated vapor pressures of LiBr/H2O were investigated. The saturated vapor pressures,crystallization temperatures and corrosivity of LiBr-IL/H2O with a mass ratio of 2.5 were measured and compared with that of LiBr/H2O. The results showed that the saturated vapor pressures of [BMIM]Cl/H2O and [BMIM]Br/H2O were almost the same as that of LiBr/H2O with a 8%—9% lower concentration. In general operation concentration range,the crystallization temperatures of LiBr-[BMIM]Cl/H2O were about 30℃ lower than that of LiBr/H2O with the same absorption ability. Under the same corrosion conditions,the corrosion rate of carbon steel for LiBr-[BMIM]Cl/H2O was obviously smaller than that for LiBr/H2O,and the corrosion rate of copper for LiBr-[BMIM]Cl/H2O was nearly the same as that for LiBr/H2O. As an alternative working pair,LiBr-[BMIM]Cl/H2O has a great potential for absorption heat pump systems.

      Key words:working pair; ionic liquids; saturated vapor pressure; crystallization temperature; corrosion

      DOI:10.11949/j.issn.0438-1157.20150230

      中圖分類號:TK 01+9

      文獻(xiàn)標(biāo)志碼:A

      文章編號:0438—1157(2016)04—1110—07

      基金項目:中央高校基本科研業(yè)務(wù)費專項資金項目(FRF-TP-14-022A1);廣東省教育部產(chǎn)學(xué)研結(jié)合項目(2009A090100032)。

      Corresponding author:Prof. SU Qingquan,suqingquan@ustb.edu.cn

      猜你喜歡
      離子液體腐蝕
      離子液體—基質(zhì)固相分散—超聲霧化—固相萃取結(jié)合高效液相色譜法檢測人參中三嗪類除草劑
      溴化鋰溶液對制冷機組腐蝕及防范措施
      淺析石油管道焊接接頭的腐蝕與防護(hù)
      鎂合金的腐蝕特性及防護(hù)探討
      科技資訊(2016年19期)2016-11-15 08:38:47
      論述天然氣埋地鋼管腐蝕與防護(hù)
      鍍鋅產(chǎn)品表面腐蝕現(xiàn)象研究
      基于離子液體——綠色溶劑的制備和應(yīng)用分析
      科技傳播(2016年11期)2016-07-20 23:32:52
      分離分析中離子液體的應(yīng)用進(jìn)展
      科技傳播(2016年10期)2016-07-15 23:13:53
      離子液體在潤滑行業(yè)中的應(yīng)用及研究進(jìn)展
      潤滑油(2016年1期)2016-07-13 04:01:58
      離子色譜法測污染物中的有機陽離子
      商(2016年4期)2016-03-24 00:28:51
      安康市| 启东市| 荆门市| 武清区| 屯门区| 永清县| 永年县| 花莲市| 灵璧县| 桑植县| 绍兴县| 亚东县| 上杭县| 巴林右旗| 邯郸县| 偏关县| 济源市| 陇川县| 修武县| 忻城县| 济阳县| 深水埗区| 揭西县| 精河县| 平武县| 镇远县| 黔西| 会理县| 西和县| 旬阳县| 都昌县| 民县| 宁安市| 突泉县| 南涧| 长沙市| 方山县| 贞丰县| 柘城县| 普洱| 扬州市|